Skip to main content

Binding Free Energy Calculation Using Quantum Mechanics Aimed for Drug Lead Optimization

  • Protocol
  • First Online:
Quantum Mechanics in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2114))

Abstract

The routine use of in silico tools is already established in drug lead design. Besides the use of molecular docking methods to screen large chemical libraries and thus prioritize compounds for purchase or synthesis, more accurate calculations of protein–ligand binding free energy has shown the potential to guide lead optimization, thus saving time and resources. Theoretical developments and advances in computing power have allowed quantum mechanical-based methods applied to calculations on biomacromolecules to be increasingly explored and used, with the purpose of providing a more accurate description of protein–ligand interactions and an enhanced level of accuracy in the calculation of binding affinities. It should be noted that the quantum mechanical formulation includes, in principle, all contributions to the energy, considering terms usually neglected in molecular mechanics force fields, such as electronic polarization, metal coordination, and covalent binding; moreover, quantum mechanical approaches are systematically improvable. By treating all elements and interactions on equal footing, and avoiding the need of system-dependent parameterizations, they provide a greater degree of transferability. In this review, we illustrate the increasing relevance of quantum mechanical methods for binding free energy calculation in the context of structure-based drug lead optimization, showing representative applications of the different approaches available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Phatak SS, Stephan CC, Cavasotto CN (2009) High-throughput and in silico screenings in drug discovery. Expert Opin Drug Discov 4:947–959

    Article  CAS  PubMed  Google Scholar 

  2. Congreve M, Murray CW, Blundell TL (2005) Structural biology and drug discovery. Drug Discov Today 10:895–907

    Article  CAS  PubMed  Google Scholar 

  3. Cavasotto CN, Orry AJ (2007) Ligand docking and structure-based virtual screening in drug discovery. Curr Top Med Chem 7:1006–1014

    Article  CAS  PubMed  Google Scholar 

  4. Jorgensen WL (2009) Efficient drug lead discovery and optimization. Acc Chem Res 42:724–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jorgensen WL (2012) Challenges for academic drug discovery. Angew Chem Int Ed Engl 51:11680–11684

    Article  CAS  PubMed  Google Scholar 

  6. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cavasotto CN (2011) Handling protein flexibility in docking and high-throughput docking. In: Sotriffer C (ed) Virtual screening. Principles, challenges and practical guidelines. Wiley-VCH Verlag, Weinheim, Germany, pp 245–262

    Chapter  Google Scholar 

  8. Cavasotto CN (2012) Normal mode-based approaches in receptor ensemble docking. Methods Mol Biol 819:157–168

    Article  CAS  PubMed  Google Scholar 

  9. Spyrakis F, Bidon-Chanal A, Barril X et al (2011) Protein flexibility and ligand recognition: challenges for molecular modeling. Curr Top Med Chem 11:192–210

    Article  CAS  PubMed  Google Scholar 

  10. Cozzini P, Dellafiora L, Ginex T et al (2015) How protein flexibility can influence docking/scoring simulations. In: Cavasotto CN (ed) In silico drug discovery and design: theory, methods, challenges, and applications. CRC Press, Taylor & Francis Group, Boca Raton, FL, pp 411–440

    Chapter  Google Scholar 

  11. Campbell AJ, Lamb ML, Joseph-McCarthy D (2014) Ensemble-based docking using biased molecular dynamics. J Chem Inf Model 54:2127–2138

    Article  CAS  PubMed  Google Scholar 

  12. Spyrakis F, Cavasotto CN (2015) Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Arch Biochem Biophys 583:105–119

    Article  CAS  PubMed  Google Scholar 

  13. Gilson MK, Zhou HX (2007) Calculation of protein-ligand binding affinities. Annu Rev Biophys Biomol Struct 36:21–42

    CAS  PubMed  Google Scholar 

  14. Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl 41:2644–2676

    CAS  PubMed  Google Scholar 

  15. Mobley DL, Gilson MK (2017) Predicting binding free energies: frontiers and benchmarks. Annu Rev Biophys 46:531–558

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cavasotto CN (2012) Binding free energy calculations and scoring in small-molecule docking. In: Luque FJ, Barril X (eds) Physico-chemical and computational approaches to drug discovery. Royal Society of Chemistry, London, pp 195–222

    Chapter  Google Scholar 

  17. Cross JB, Thompson DC, Rai BK et al (2009) Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model 49:1455–1474

    Article  CAS  PubMed  Google Scholar 

  18. Hansen N, van Gunsteren WF (2014) Practical aspects of free-energy calculations: a review. J Chem Theory Comput 10:2632–2647

    Article  CAS  PubMed  Google Scholar 

  19. Mobley DL, Klimovich PV (2012) Perspective: alchemical free energy calculations for drug discovery. J Chem Phys 137:230901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gathiaka S, Liu S, Chiu M et al (2016) D3R grand challenge 2015: evaluation of protein-ligand pose and affinity predictions. J Comput Aided Mol Des 30:651–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gaieb Z, Liu S, Gathiaka S et al (2018) D3R grand challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative binding free energies. J Comput Aided Mol Des 32:1–20

    Article  CAS  PubMed  Google Scholar 

  22. Gaieb Z, Parks CD, Chiu M et al (2019) D3R grand challenge 3: blind prediction of protein-ligand poses and affinity rankings. J Comput Aided Mol Des 33:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grimme S, Schreiner PR (2018) Computational chemistry: the fate of current methods and future challenges. Angew Chem Int Ed Engl 57:4170–4176

    Article  CAS  PubMed  Google Scholar 

  24. Richards WG (1977) Quantum pharmacology. Butterworths, London; Boston

    Google Scholar 

  25. Mucs D, Bryce RA (2013) The application of quantum mechanics in structure-based drug design. Expert Opin Drug Discov 8:263–276

    Article  CAS  PubMed  Google Scholar 

  26. De Benedetti PG, Fanelli F (2014) Multiscale quantum chemical approaches to QSAR modeling and drug design. Drug Discov Today 19:1921–1927

    Article  CAS  PubMed  Google Scholar 

  27. Blomberg MR, Borowski T, Himo F et al (2014) Quantum chemical studies of mechanisms for metalloenzymes. Chem Rev 114:3601–3658

    Article  CAS  PubMed  Google Scholar 

  28. Forti F, Cavasotto CN, Orozco M et al (2012) A multilevel strategy for the exploration of the conformational flexibility of small molecules. J Chem Theory Comput 8:1808–1819

    Article  CAS  PubMed  Google Scholar 

  29. Juarez-Jimenez J, Barril X, Orozco M et al (2015) Assessing the suitability of the multilevel strategy for the conformational analysis of small ligands. J Phys Chem B 119:1164–1172

    Article  CAS  PubMed  Google Scholar 

  30. Cavasotto CN, Adler NS, Aucar MG (2018) Quantum chemical approaches in structure-based virtual screening and lead optimization. Front Chem 6:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Aucar MG, Cavasotto CN (2019) Molecular docking using quantum mechanical-based methods. Methods Mol Biol 2114:269–284

    Google Scholar 

  32. Ryde U, Söderhjelm P (2016) Ligand-binding affinity estimates supported by quantum-mechanical methods. Chem Rev 116:5520–5566

    Article  CAS  PubMed  Google Scholar 

  33. Yilmazer ND, Korth M (2016) Prospects of applying enhanced semi-empirical QM methods for 2101 virtual drug design. Curr Med Chem 23:2101–2111

    Article  CAS  PubMed  Google Scholar 

  34. Raha K, Merz KM Jr (2004) A quantum mechanics-based scoring function: study of zinc ion-mediated ligand binding. J Am Chem Soc 126:1020–1021

    Article  CAS  PubMed  Google Scholar 

  35. Dewar MJS, Zoebisch EG, Healy EF et al (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  36. Dixon SL, Merz KM Jr (1996) Semiempirical molecular orbital calculations with linear system size scaling. J Chem Phys 104:6643–6649

    Article  CAS  Google Scholar 

  37. Raha K, Merz KM Jr (2005) Large-scale validation of a quantum mechanics based scoring function: predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes. J Med Chem 48:4558–4575

    Article  CAS  PubMed  Google Scholar 

  38. Gilson MK, Given JA, Bush BL et al (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72:1047–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Simonson T, Archontis G, Karplus M (1997) Continuum treatment of long-range interactions in free energy calculations. J Phys Chem B 101:8349–8362

    Article  Google Scholar 

  40. Srinivasan J, Cheatham TE, Cieplak P et al (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc 120:9401–9409

    Article  CAS  Google Scholar 

  41. Qiu D, Shenkin PS, Hollinger FP et al (1997) The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate born radii. J Phys Chem A 101:3005–3014

    Article  CAS  Google Scholar 

  42. Anisimov VM, Cavasotto CN (2011) Quantum mechanical binding free energy calculation for phosphopeptide inhibitors of the Lck SH2 domain. J Comput Chem 32:2254–2263

    Article  CAS  PubMed  Google Scholar 

  43. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  44. Anisimov VM, Cavasotto CN (2011) Hydration free energies using semiempirical quantum mechanical Hamiltonians and a continuum solvent model with multiple atomic-type parameters. J Phys Chem B 115:7896–7905

    Article  CAS  PubMed  Google Scholar 

  45. Cavasotto CN, Aucar MG, Adler NS (2019) Computational chemistry in drug lead discovery and design. Int J Quantum Chem 119:e25678

    Article  CAS  Google Scholar 

  46. Stewart JJP (1989) Optimization of parameters for semiempirical methods I. J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  47. Anikin NA, Anisimov VM, Bugaenko VL et al (2004) Local SCF method for semiempirical quantum-chemical calculation of ultralarge biomolecules. J Chem Phys 121:1266–1270

    Article  CAS  PubMed  Google Scholar 

  48. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  49. Swanson JMJ, Adcock SA, McCammon JA (2005) Optimized radii for Poisson−Boltzmann calculations with the AMBER force field. J Chem Theory Comput 1:484–493

    Article  CAS  PubMed  Google Scholar 

  50. Woo HJ, Roux B (2005) Calculation of absolute protein-ligand binding free energy from computer simulations. Proc Natl Acad Sci U S A 102:6825–6830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anisimov VM, Ziemys A, Kizhake S et al (2011) Computational and experimental studies of the interaction between phospho-peptides and the C-terminal domain of BRCA1. J Comput Aided Mol Des 25:1071–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Naïm M, Bhat S, Rankin KN et al (2007) Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J Chem Inf Model 47:122–133

    Article  PubMed  CAS  Google Scholar 

  53. Pearlman DA, Charifson PS (2001) Are free energy calculations useful in practice? A comparison with rapid scoring functions for the p38 MAP kinase protein system. J Med Chem 44:3417–3423

    Article  CAS  PubMed  Google Scholar 

  54. Nascimento ÉCM, Oliva M, Świderek K et al (2017) Binding analysis of some classical acetylcholinesterase inhibitors: insights for a rational design using free energy perturbation method calculations with QM/MM MD simulations. J Chem Inf Model 57:958–976

    Article  CAS  PubMed  Google Scholar 

  55. Swiderek K, Ruiz-Pernia JJ, Moliner V et al (2014) Heavy enzymes—experimental and computational insights in enzyme dynamics. Curr Opin Chem Biol 21:11–18

    Article  CAS  PubMed  Google Scholar 

  56. Olsson MA, Ryde U (2017) Comparison of QM/MM Methods to obtain ligand-binding free energies. J Chem Theory Comput 13:2245–2253

    Article  CAS  PubMed  Google Scholar 

  57. Rod TH, Ryde U (2005) Quantum mechanical free energy barrier for an enzymatic reaction. Phys Rev Lett 94:138302

    Article  PubMed  CAS  Google Scholar 

  58. Stewart JJP (2009) Application of the PM6 method to modeling proteins. J Mol Model 15:765–805

    Article  CAS  PubMed  Google Scholar 

  59. Korth M (2010) Third-generation hydrogen-bonding corrections for semiempirical QM methods and force fields. J Chem Theory Comput 6:3808–3816

    Article  CAS  Google Scholar 

  60. Ehrlich S, Goller AH, Grimme S (2017) Towards full quantum-mechanics-based protein-ligand binding affinities. ChemPhysChem 18:898–905

    Article  CAS  PubMed  Google Scholar 

  61. Sure R, Grimme S (2013) Corrected small basis set Hartree-Fock method for large systems. J Comput Chem 34:1672–1685

    Article  CAS  PubMed  Google Scholar 

  62. Grimme S, Antony J, Ehrlich S et al (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  63. Grimme S, Brandenburg JG, Bannwarth C et al (2015) Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J Chem Phys 143:054107

    Article  PubMed  CAS  Google Scholar 

  64. Brandenburg JG, Grimme S (2014) Accurate modeling of organic molecular crystals by dispersion-corrected density functional tight binding (DFTB). J Phys Chem Lett 5:1785–1789

    Article  CAS  PubMed  Google Scholar 

  65. Gaus M, Cui Q, Elstner M (2011) DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). J Chem Theory Comput 7:931–948

    Article  CAS  Google Scholar 

  66. Klamt A (1995) Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235

    Article  CAS  Google Scholar 

  67. Klamt A (2011) The COSMO and COSMO-RS solvation models. Wiley Interdiscip Rev Comput Mol Sci 1:699–709

    Article  CAS  Google Scholar 

  68. Frush EH, Sekharan S, Keinan S (2017) In silico prediction of ligand binding energies in multiple therapeutic targets and diverse ligand sets-A case study on BACE1, TYK2, HSP90, and PERK proteins. J Phys Chem B 121:8142–8148

    Article  CAS  PubMed  Google Scholar 

  69. Åqvist J, Medina C, Samuelsson JE (1994) A new method for predicting binding affinity in computer-aided drug design. Protein Eng 7:385–391

    Article  PubMed  Google Scholar 

  70. Su Y, Gallicchio E, Das K et al (2007) Linear interaction energy (LIE) models for ligand binding in implicit solvent: theory and application to the binding of NNRTIs to HIV-1 reverse transcriptase. J Chem Theory Comput 3:256–277

    Article  CAS  PubMed  Google Scholar 

  71. Pecina A, Meier R, Fanfrlik J et al (2016) The SQM/COSMO filter: reliable native pose identification based on the quantum-mechanical description of protein-ligand interactions and implicit COSMO solvation. Chem Commun 52:3312–3315

    Article  CAS  Google Scholar 

  72. Pecina A, Brynda J, Vrzal L et al (2018) Ranking power of the SQM/COSMO scoring function on carbonic anhydrase II-inhibitor complexes. ChemPhysChem 19(7):873–879

    Article  CAS  PubMed  Google Scholar 

  73. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pu C, Yan G, Shi J et al (2017) Assessing the performance of docking scoring function, FEP, MM-GBSA, and QM/MM-GBSA approaches on a series of PLK1 inhibitors. Medchemcomm 8:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jones G, Willett P, Glen RC (1995) A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J Comput Aided Mol Des 9:532–549

    Article  CAS  PubMed  Google Scholar 

  76. Bowers KJ, Chow E, Xu H et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the 2006 ACM/IEEE conference on Supercomputing. ACM, Tampa, Florida, p 84

    Chapter  Google Scholar 

  77. Misini Ignjatovic M, Caldararu O, Dong G et al (2016) Binding-affinity predictions of HSP90 in the D3R grand challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations. J Comput Aided Mol Des 30:707–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sherman W, Day T, Jacobson MP et al (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Agency for the Promotion of Science and Technology (ANPCyT) (PICT-2014-3599 and PICT-2017-3767). CNC thanks Molsoft LLC (San Diego, CA) for providing an academic license for the ICM program. The author thanks the National System of High Performance Computing (Sistemas Nacionales de Computación de Alto Rendimiento, SNCAD), the Centro de Computación de Alto Rendimiento (Computational Centre of High Performance Computing, CeCAR), and the Centro de Cálculo de Alto Desempeño (Universidad Nacional de Córdoba) for granting use of their computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio N. Cavasotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cavasotto, C.N. (2020). Binding Free Energy Calculation Using Quantum Mechanics Aimed for Drug Lead Optimization. In: Heifetz, A. (eds) Quantum Mechanics in Drug Discovery. Methods in Molecular Biology, vol 2114. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0282-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0282-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0281-2

  • Online ISBN: 978-1-0716-0282-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics