1 Introduction

Proper and punctual working of water supply system is very important to all citizens of a city. The supply system works without failure behind this, the idea of inspection, preventive maintenance, priority and repair of identical or non-identical units under different weather conditions have been discussed by the researchers including, (Osaki and Asakura 1970) obtained a two-unit standby redundant system with repair and preventive maintenance. (Srinivasan and Gopalan 1973) discussed probability analysis of a two-unit system with warm standby and single repair facility. (Dhillon and Natesan 1983) analyzed stochastically outdoor power system in fluctuating environment. (Gupta and Goel 1991) obtained profit analysis of two-unit cold standby system with abnormal weather condition. (Chander 2005) analyzed reliability models with priority for operation and repair with arrival time of server. (Malik and Barak 2009) discussed reliability and economic analysis of a system operating under different weather conditions. (Kumar et al. 2012) discussed cost analysis of a two-unit cold standby system subjected to degradation, inspection and priority. (Kishan and Jain 2012) presented a two non-identical unit standby system model with repair, inspection and post-repair under classical and Bayesian viewpoints. (Kadyan and Ramniwas 2013) discussed cost–benefit analysis of a single-unit system with warranty for repair. (Deswal and Malik 2015) explained reliability measures of a system of two non-identical units with priority subject to weather conditions. Recently, (Barak and Barak 2016) discussed impact of abnormal weather conditions on various reliability measures of a repairable system with inspection. (Barak et al. 2017a, b) analyzed stochastically a cold standby system with conditional failure of server. (Barak et al. 2017a, b) discussed stochastic analysis of two-unit redundant system with priority to inspection over repair. Barak et al. 2018) analyzed stochastically a two-unit system with standby and server failure subject to inspection.

Keeping these studies in mind, a water supply system consists of two identical units (as in Fig.1) in which the unit may fail directly from normal mode. Initially, one unit is operative and other is in spare as cold standby. There is a single server who attends the system immediately whenever required. Server is capable of performing three operations i.e. preventive maintenance, inspection and repair. The preventive maintenance is carried out after a maximum operation time. Repair of unit is done at complete failure. Inspection facility is available before repair/replacement of the failed unit. Priority is given to preventive maintenance over inspection. Unit works as new after repair/preventive maintenance. Server starts, restarts or resumes its duty in normal weather only. Operations preventive maintenance and repair are stopped in abnormal weather to protect the system from unnecessary damage. It is assumed that the rate of change of weather, failure rate and the rate by which system undergoes for preventive maintenance or inspection are constant. The distributions for preventive maintenance, repair time, inspection time are taken as arbitrary with different distributions. Graphical and numerical inferences are explained in detail. All random variables are statistically independent.

Fig. 1
figure 1

State transition diagram

2 Transition probabilities and mean Sojourn times

Simple probabilistic consideration yields the following expressions for non-zero elements. In particular case; let \(f(t) = \theta {\text{e}}^{ - \theta t}\), \(g(t) = \phi e^{ - \phi t}\). The transition probabilities obtained are as follows:

$$p_{i,j} = Q_{ij} (\infty ) = \int_{0}^{\infty } {q_{i,j} (t){\text{d}}t}$$
(1)
$$\begin{aligned} p_{0,1} & = \frac{{\alpha_{0} }}{{\alpha_{0} + \lambda }},\;p_{0,2} = \frac{\lambda }{{\alpha_{0} + \lambda }},\;p_{1,0} = \frac{\theta }{{\lambda + \beta + \theta + \alpha_{0} }},\;p_{1,3} = \frac{\beta }{{\lambda + \beta + \theta + \alpha_{0} }},\;p_{1,9} = \frac{\lambda }{{\lambda + \beta + \theta + \alpha_{0} }} \\ p_{1,10} & = \frac{{\alpha_{0} }}{{\lambda + \beta + \theta + \alpha_{0} }},\;p_{2,0} = \frac{b\eta }{{\lambda + \beta + \eta + \alpha_{0} }},\;p_{2,4} = \frac{a\eta }{{\lambda + \beta + \eta + \alpha_{0} }},\;p_{2,6} = \frac{\beta }{{\lambda + \beta + \eta + \alpha_{0} }} \\ p_{2,23} & = \frac{{\alpha_{0} }}{{\lambda + \beta + \eta + \alpha_{0} }},\;p_{2,31} = \frac{\lambda }{{\lambda + \beta + \eta + \alpha_{0} }},\;p_{3,1} = p_{5,4} = p_{6,2} = \frac{{\beta_{1} }}{{\lambda + \beta_{1} + \alpha_{0} }},\;p_{3,13} = p_{5.37} = p_{6,27} = \frac{{\alpha_{0} }}{{\lambda + \beta_{1} + \alpha_{0} }} \\ p_{3,13} & = p_{5.37} = p_{6,27} = \frac{{\alpha_{0} }}{{\lambda + \beta_{1} + \alpha_{0} }},\;p_{3,15} = p_{5,36} = p_{6,29} = \frac{\lambda }{{\lambda + \beta_{1} + \alpha_{0} }} \\ \end{aligned}$$
$$\begin{aligned} p_{{4,0}} & = \frac{\phi }{{\phi + \alpha _{0} + \lambda + \beta }},\;p_{{4,5}} = \frac{\beta }{{\phi + \alpha _{0} + \lambda + \beta }},\;p_{{4,17}} = \frac{\lambda }{{\phi + \alpha _{0} + \lambda + \beta }},\;p_{{4,20}} = \frac{{\alpha _{0} }}{{\phi + \alpha _{0} + \lambda + \beta }} \\ p_{{7,2}} & = p_{{9,2}} = p{}_{{10,1}} = p_{{12,1}} = p_{{14,1}} = p_{{16,2}} = \frac{\theta }{{\theta + \beta }}, \\ p_{{7,8}} & = p_{{9,8}} = p_{{10,11}} = p_{{12,11}} = p_{{14,13}} = p_{{16,15}} = \frac{\beta }{{\theta + \beta }} \\ p_{{17,2}} & = p_{{19,2}} = p_{{20,1}} = p_{{22,1}} = p_{{26,1}} = p_{{34,2}} = p_{{35,2}} = p_{{38,1}} = \frac{\phi }{{\phi + \beta }} \\ p_{{17,18}} & = p_{{19,18}} = p_{{20,21}} = p_{{22,21}} = p_{{26,37}} = p_{{34,36}} = p_{{35,36}} = p_{{38,37}} = \frac{\beta }{{\phi + \beta }} \\ p_{{23,1}} & = p_{{25,1}} = p_{{28,1}} = p_{{30,2}} = p_{{31,2}} = p_{{33,2}} = \frac{{b\eta }}{{\eta + \beta }} \\ \end{aligned}$$
$$\begin{aligned} p_{23,24} & = p_{25,24} = p_{28,27} = p_{30,29} = p_{31,32} = p_{33,32} = \frac{\beta }{\eta + \beta } \\ p_{23,26} & = p_{25,26} = p_{28,26} = p_{30,34} = p_{31,34} = p_{33,34} = \frac{a\eta }{\eta + \beta } \\ \end{aligned}$$
$$\begin{aligned} p_{8,7} & = p_{11,12} = p_{12,13} = p_{13,14} = p_{15,16} = p_{18,19} = p_{21,22} = p_{24,25} = \\ p_{27,28} & = p_{29,30} = p_{32,33} = p_{36,35} = p_{37,38} = 1 \\ \end{aligned}$$
$$\begin{aligned} p_{1,1;10} & = \frac{{\theta \alpha_{0} }}{{(\beta + \theta )(\lambda + \theta + \beta + \alpha_{0} )}},\;p_{1,1;10(11,12)} = \frac{{\beta \alpha_{0} }}{{(\beta + \theta )(\lambda + \theta + \beta + \alpha_{0} )}}, \\ p_{1,2;9} & = \frac{\theta \lambda }{{(\beta + \theta )(\lambda + \theta + \beta + \alpha_{0} )}},\;p_{1,2;9(8,7)} = \frac{\beta \lambda }{{(\beta + \theta )(\lambda + \theta + \beta + \alpha_{0} )}}, \\ p_{2,2;23} & = \frac{{\alpha_{0} \theta }}{{(\beta + \theta )(\lambda + \eta + \beta + \alpha_{0} )}},\;p_{2,2;23(24,25)} = \frac{{\beta \alpha_{0} }}{{(\beta + \theta )(\lambda + \eta + \beta + \alpha_{0} )}}, \\ p_{2,2;28} & = \frac{b\lambda \eta }{{(\beta + \eta )(\lambda + \eta + \beta + \alpha_{0} )}},\;p_{2,2;28(29,30)} = \frac{b\lambda \beta }{{(\beta + \eta )(\lambda + \eta + \beta + \alpha_{0} )}} \\ p_{2,2;28,31} & = \frac{a\lambda \beta \phi }{{(\beta + \eta )(\beta + \phi )(\lambda + \eta + \beta + \alpha_{0} )}},\;p_{2,2;28(29,30)31} = \frac{a\lambda \beta \phi }{{(\beta + \phi )(\beta + \eta )(\lambda + \eta + \beta + \alpha_{0} )}} \\ p_{2,2;28,31(32,33)} & = \frac{a\lambda \eta \beta }{{(\beta + \phi )(\eta + \lambda + \beta + \alpha_{0} )(\eta + \beta )}} \\ p_{2,2;28(29,30)31(32,33)} & = \frac{{a\lambda \beta^{2} }}{{(\beta + \phi )(\lambda + \eta + \beta + \alpha_{0} )(\beta + \eta )}},\;p_{{3,1;(13,14)^{{}} }} = p_{5,1;(34,35)} = \frac{{\alpha_{0} }}{{\lambda + \beta_{1} + \alpha_{0} }} \\ p_{3,2;(15,16)} & = p_{5,2;(32,33)} = \frac{\lambda }{{\lambda + \beta_{1} + \alpha_{0} }} \\ \end{aligned}$$
$$\begin{aligned} p_{4,1;20} & = \frac{{\alpha_{0} \phi }}{{(\beta + \phi )(\lambda + \phi + \beta + \alpha_{0} )}},\;p_{4,2;17} = \frac{\lambda \phi }{{(\beta + \phi )(\lambda + \phi + \beta + \alpha_{0} )}} \\ p_{4,1;20(21,22)} & = \frac{{\alpha_{0} \beta }}{{(\beta + \phi )(\lambda + \phi + \beta + \alpha_{0} )}},\;p_{4,2;17(18,19)} = \frac{\lambda \beta }{{(\beta + \phi )(\lambda + \phi + \beta + \alpha_{0} )}}, \\ p_{6,2;(24,25)} & = \frac{{\alpha_{0} }}{{(\lambda + \beta_{1} + \alpha_{0} )}},\;p_{6,2;(26,27)} = \frac{{a\alpha_{0} \phi }}{{(\beta + \phi )(\alpha_{0} + \lambda + \beta_{1} )}} \\ \end{aligned}$$
$$p_{6,2;(26,27)31} = \frac{a\lambda \phi }{{(\beta + \phi )(\alpha_{0} + \lambda + \beta_{1} )}},\;p_{6,2;(26,27)31(32,33)} = \frac{a\lambda \beta }{{(\beta + \phi )(\alpha_{0} + \lambda + \beta_{1} )}}$$
(2)

The mean Sojourn times \((\mu_{i} \,{\text{and}}\,\mu^{\prime}_{i} )\) is the state Si are

$$\mu_{0} = \frac{1}{{\alpha_{0} + \lambda }},\;\mu_{1} = \frac{1}{{\alpha_{0} + \lambda + \beta + \theta }},\;\mu_{2} = \frac{1}{{\alpha_{0} + \lambda + \beta + \eta }},\;\mu_{3} = \mu_{5} = \mu_{6} = \frac{1}{{\alpha_{0} + \lambda + \beta_{1} }}$$
$$\mu_{4} = \frac{1}{{\alpha_{0} + \lambda + \beta + \phi }}$$
(3)

and \(\mu^{\prime}_{1} = \frac{{\theta \beta_{1} + (\lambda + \alpha_{0} )(\beta + \beta_{1} )}}{{\theta \beta_{1} (\lambda + \beta + \theta + \alpha_{0} )}}\), \(\mu^{\prime}_{2} = \frac{{\eta \theta \phi \beta_{1} + (\alpha_{0} \eta \phi + \lambda \theta \phi + a\lambda \theta \eta )(\beta + \beta_{1} )}}{{\theta \phi \eta \beta_{1} (\lambda + \beta + \eta + \alpha_{0} )}}\)

$$\mu^{\prime}_{3} = \frac{{\theta \beta_{1} + (\lambda + \alpha_{0} )(\beta + \beta_{1} + \theta )}}{{\theta \beta_{1} (\lambda + \beta_{1} + \alpha_{0} )}},\;\mu^{\prime}_{4} = \frac{{\beta_{1} \phi + (\alpha_{0} + \lambda )(\beta + \beta_{1} )}}{{\phi \beta_{1} (\lambda + \beta + \alpha_{0} + \phi )}}$$
$$\mu^{\prime}_{5} = \frac{{\phi \beta_{1} + (\lambda + \alpha_{0} )(\beta + \beta_{1} + \phi )}}{{\phi \beta_{1} (\lambda + \beta_{1} + \alpha_{0} )}},\;\mu^{\prime}_{6} = \frac{{\beta_{1} \eta \theta \phi + \alpha_{0} (\theta + \beta )\eta \phi + \lambda (\eta + \beta )\theta \phi + a\lambda (\beta + \beta_{1} )\eta \theta }}{{\theta \phi \eta \beta_{1} (\lambda + \beta_{1} + \alpha_{0} )}}$$
(4)

3 Reliability and mean time to system failure (MTSF)

Let \(\phi_{i} (t)\) be the c.d.f. of first passage time from the regenerative state Si to a failed state. Regarding the failed state as absorbing state, we have the following recursive relations for: \(\phi_{i} (t)\).

$$\phi_{0} (t) = q_{0,1} (t) \otimes \phi_{1} (t) + q_{0,2} (t) \otimes \phi_{2} (t)$$
$$\phi_{1} (t) = q_{1,0} (t) \otimes \phi_{0} (t) + q_{1,3} (t) \otimes \phi_{3} (t) + q_{1,9} (t) + q_{1,10} (t)$$
$$\phi_{2} (t) =\, q_{2,0} (t) \otimes \phi_{0} (t) + q_{2,4} (t) \otimes \phi_{4} (t) + q_{2,6} (t) \otimes \phi_{6} (t) + q_{2,23} (t) + q_{2,28} (t)$$
$$\phi_{3} (t) = q_{3,1} (t) \otimes \phi_{1} (t) + q_{3,13} (t) + q_{3,15} (t)$$
$$\phi_{4} (t) = q_{4,0} (t) \otimes \phi_{0} (t) + q_{4,5} (t) \otimes \phi_{5} (t) + q_{4,17} (t) + q_{4,20} (t)$$
$$\phi_{5} (t) = q_{5,4} (t) \otimes \phi_{4} (t) + q_{5,32} (t) + q_{5,34} (t)$$
$$\phi_{6} (t) = q_{6,2} (t) \otimes \phi_{2} (t) + q_{6,24} (t) + q_{6,26} (t).$$
(5)

Taking L.T. of above relation (6.6.1) and solving for \(\tilde{\phi }_{0} (t)\). We have

$$R^{*} (s) = \frac{{1 - \tilde{\phi }_{0} (s)}}{s}$$
(6)

The reliability of the system model can be obtained by taking Laplace inverse transformation of (6.6.2). The mean time to system failure (MTSF) is given by:

$$\begin{aligned} {\text{MTSF}} & = \mathop {\lim }\limits_{s \to 0} \frac{{1 - \tilde{\phi }_{0} (s)}}{s} \\ & = \frac{{\left[ {\begin{array}{*{20}l} {[\{ (\theta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} \{ (\eta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} } \hfill \\ {\{ (\phi + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} ] + [\alpha_{0} \{ (\eta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} (\lambda + \alpha_{0} + \beta_{1} + \beta )} \hfill \\ {\{ (\phi + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} ] + [\lambda \{ (\theta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} (\lambda + \alpha_{0} + \beta_{1} + \beta )\} } \hfill \\ {\{ (\phi + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} ] + [a\lambda \eta (\lambda + \alpha_{0} + \beta_{1} )(\lambda + \alpha_{0} + \beta + \beta_{1} )} \hfill \\ {\{ (\theta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} )\} ]} \hfill \\ \end{array} } \right]}}{{\left[ {\begin{array}{*{20}l} {[(\lambda + \alpha_{0} )\{ (\eta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} )\} \{ (\theta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} )\} } \hfill \\ { - \theta \alpha_{0} (\lambda + \alpha_{0} + \beta_{1} )\{ (\eta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} )\} } \hfill \\ { - b\eta \lambda (\lambda + \alpha_{0} + \beta_{1} )\{ (\theta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} )\} ] \, } \hfill \\ {[(\phi + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} ] - [a\eta \lambda \phi (\lambda + \alpha_{0} + \beta_{1} )^{2} \{ (\theta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} )]} \hfill \\ \end{array} } \right]}} \\ \end{aligned}$$
(7)

4 Steady state availability

Let \(A_{i} (t)\) be the probability that the system is in up-state at instant ‘t’ given that the system entered regenerative state Si at t = 0. The recursive relations for \(A_{i} (t)\) are given as:

$$A_{0} (t) = M_{0} (t) + q_{0,1} (t) \oplus A_{1} (t) + q_{0,2} (t) \oplus A_{2} (t)$$
$$\begin{aligned} A_{1} (t) & = M_{1} (t) + q_{1,0} (t) \oplus A_{0} (t) + [q_{1,1;10} (t) + q_{1,1;10(11,12)} (t)] \oplus A_{1} (t) + [q_{1,2;9} (t) + q_{1,2;9(8,7)} (t)] \oplus A_{2} (t) \\ & \quad + q_{1,3} (t) \oplus A_{3} (t) \\ \end{aligned}$$
$$\begin{aligned} A_{2} (t) & = M_{2} (t) + q_{20} (t) \oplus A_{0} (t) + [q_{2,2;23} (t) + q_{2,2;23(24,25)} (t) + q_{2,2;28} (t) + q_{2,2;28,31} (t) + q_{2,2;28(29,30)} (t) \\ & \quad + q_{2,2;28(29,30)31} (t) + q_{2,2;28,31(32,33)} (t) + q_{2,2;28(29,30)31(32,33)} ] \oplus A_{2} (t) + q_{2,4} (t) \oplus A_{4} (t) \\ & \quad + q_{2,6} (t) \oplus A_{6} (t) \\ \end{aligned}$$
$$A_{3}^{{}} (t) = M_{3} (t) + [q_{3,1} (t) + q_{3,1;(13,14)} (t)] \oplus A_{1} (t) + q_{3,2;(15,16)} (t) \oplus A_{2} (t)$$
$$\begin{aligned} A_{4} (t) & = M_{4} (t) + q_{4,0} (t) \oplus A_{0} (t) + [q_{4,1;20} (t) + q_{4,1;20(21,22)} (t)] \oplus A_{1} (t) \\ & \quad + [q_{4,2;17} (t) + q_{4,2;17(18,19)} (t)] \oplus A_{2} (t) + q_{4,5} (t) \oplus A_{5} (t)\, \\ \end{aligned}$$
$$A_{5} (t) =\, M_{5} (t) + [q_{5,1;(34,35)} (t)] \oplus A_{1} (t) + [q_{5,2;(32,33)} (t)] \oplus A_{2} (t) + q_{5,4} (t) \oplus A_{4} (t)$$
$$\begin{aligned} A_{6} (t) & = M_{6} (t) + [ \, q_{6,2} (t) + q_{6,2;(24,25)} (t) + \,q_{6,2;(26,27)} (t) + q_{6,2;(26,27)31} (t) \\ & \quad + \, q_{6,2;(26,27)31(32,33)} ] \oplus A_{2} (t), \\ \end{aligned}$$
(8)

where \(M_{i} (t)\) is the probability that the system is up initially in state \(S_{i} \in E\) is up at time t without visiting to any other regenerative state, we have

$$\begin{aligned} M_{0} (t) & = {\text{e}}^{{ - (\alpha _{0} + \lambda )t}} ,\;M_{1} (t) = {\text{e}}^{{ - (\alpha _{0} + \lambda + \beta )t}} \overline{{F(t)}} ,\;M_{2} (t) = {\text{e}}^{{ - (\alpha _{0} + \beta + \lambda )t}} \overline{{H(t)}} \\ M_{4} (t) & = {\text{e}}^{{ - (\alpha _{0} + \beta + \lambda )t}} \overline{{G(t)}} \;{\text{and}}\;M_{3} (t) = M_{5} (t) = M_{6} (t) = {\text{e}}^{{ - (\alpha _{0} + \beta + \lambda )t}} \\ \end{aligned}$$
(9)

Taking Laplace transformation of above relations (8) and (9) and solving for \(A_{0}^{*} (s)\), the steady state availability is given by

$$A_{0} (\infty ) = \mathop {\lim }\limits_{s \to 0} sA_{0}^{*} (s) = \mathop {\lim }\limits_{s \to 0} \frac{{sN_{0}^{*} }}{{D_{0}^{*} }} = \frac{{N_{0} }}{{D^{\prime}_{0} }}\quad \left( {\frac{0}{0}\,{\text{form}}} \right)$$
(10)
$${\text{where}}\;N_{0} = \mathop {\lim }\limits_{s \to 0} N_{0}^{*} \quad {\text{and}}\quad D_{0}^{\prime } = \mathop {\lim }\limits_{s \to 0} D_{0}^{\prime *}$$
(11)
$$N_{0} = \frac{{\left[ \begin{aligned} \{ (\phi + \lambda + \alpha_{0} + \beta_{1} )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} \{ (\theta + \lambda + \alpha_{0} + \beta_{{}} )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} \hfill \\ \{ (\eta + \lambda )(\lambda + \alpha_{0} + \beta_{1} ) + \lambda \beta \} \hfill \\ \end{aligned} \right]}}{{[(\lambda + \alpha_{0} )(\lambda + \alpha_{0} + \beta_{1} )^{3} (\lambda + \alpha_{0} + \theta + \beta )(\lambda + \alpha_{0} + \phi + \beta )(\lambda + \alpha_{0} + \eta + \beta )]}}$$
(12)
$$D^{\prime}_{0} = X + T(P_{1} + P_{2} + P_{3} )$$
(13)

where

$$X = \frac{{\left[ {\eta \{ (\theta + \alpha_{0} + \lambda + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - (\alpha_{0} (\alpha_{0} + \lambda + \beta + \beta_{1} ) + \beta \beta_{1} )} \right]}}{{(\lambda + \alpha_{0} )(\lambda + \alpha_{0} + \beta_{1} )(\lambda + \alpha_{0} + \theta + \beta )(\lambda + \alpha_{0} + \eta + \beta )}}$$
$$T = \frac{{\left[ {(\phi + \alpha_{0} + \lambda + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta_{1} \beta \} } \right]}}{{[(\lambda + \alpha_{0} + \beta_{1} )(\lambda + \alpha_{0} + \phi + \beta )]}}$$
$$\begin{aligned} P_{1} = \frac{{\left[ \begin{array}{l} [\{ (\theta + \alpha _{0} + \lambda + \beta )(\lambda + \alpha _{0} + \beta ) - \beta \beta _{1} \} - \alpha _{0} (\alpha _{0} + \lambda + \beta + \beta _{1} )\} \\ \{ (\eta + \alpha _{0} + \lambda + \beta )(\lambda + \alpha _{0} + \beta ) - \beta \beta _{1} \} - \lambda (\alpha _{0} + \lambda + \beta + \beta _{1} )\} ] - \alpha _{0} \lambda (\alpha _{0} + \lambda + \beta + \beta _{1} )^{2} \\ \end{array} \right]}}{{(\lambda + \alpha _{0} + \beta _{1} )^{2} (\theta + \alpha _{0} + \lambda + \beta )(\eta + \alpha _{0} + \lambda + \beta )}} \\ P_{3} = \frac{{\left[ \begin{array}{l} [\lambda \{(\theta+\alpha _{0}+\lambda+\beta )(\lambda + \alpha _{0} + \beta _{1} ) - \beta \beta _{1} \} ][\beta + \beta _{1} ][(\alpha _{0} + \lambda + \beta + \beta _{1} )\{ \alpha _{0} \eta \phi + \lambda \theta \phi + a\eta \theta \eta ) \\ + (\alpha _{0} + \lambda + \beta _{1} )\eta \theta \phi ] \\ \end{array} \right]}}{{[\beta _{1} \eta \phi (\lambda + \alpha _{0} )(\lambda + \alpha _{0} + \beta _{1} )^{2} (\lambda + \alpha _{0} + \theta + \beta )(\lambda + \alpha _{0} + \eta + \beta )]}} \\ P_{2} = \frac{{\left[ {\alpha _{0} \eta (\beta + \beta _{1} )\{ (\alpha _{0} + \lambda + \theta + \beta + \beta _{1} )(\alpha _{0} + \lambda ) + \beta _{1} \theta \} } \right]}}{{[\theta \beta _{1} (\lambda + \alpha _{0} )(\lambda + \alpha _{0} + \beta _{1} )(\lambda + \alpha _{0} + \theta + \beta )(\lambda + \alpha _{0} + \eta + \beta )]}} \end{aligned}$$
(14)

5 Busy period analysis for server due to preventive maintenance

(a) Let \(B_{i}^{p} (t)\) be the probability that the server is busy in preventive maintenance of the unit at an instant ‘t’ given that system entered state i at t = 0. The recursive relations for \(B_{i}^{p} (t)\) are as follows

$$B_{0}^{P} (t) = q_{0,1} (t) \oplus B_{1}^{P} (t) + q_{0,2} (t) \oplus B_{2}^{P} (t)$$
$$\begin{aligned} B_{1}^{P} (t) & = W_{1}^{P} (t) + q_{1,0} (t) \oplus B_{0}^{P} (t) + [q_{1,1;10} (t) + q_{1,1;10(11,12)} (t)] \oplus B_{1}^{P} (t) \\ & \quad + [q_{1,2;9} (t) + q_{1,2;9(8,7)} (t)] \oplus B_{2}^{P} (t) + q_{1,3} (t) \oplus B_{3}^{P} (t) \\ \end{aligned}$$
$$\begin{aligned} B_{2}^{P} (t) & = W_{2}^{P} (t) + q_{20} (t) \oplus B_{0}^{P} (t) + [q_{2,2;23} (t) + q_{2,2;23(24,25)} (t) + q_{2,2;28} (t) + q_{2,2;28,31} (t) + q_{2,2;28(29,30)} (t) \\ & \quad + q_{2,2;28(29,30)31} (t) + q_{2,2;28,31(32,33)} (t) + q_{2,2;28(29,30)31(32,33)} ] \oplus B_{2}^{P} (t) + q_{2,4} (t) \oplus B_{4}^{P} (t) \\ & \quad + q_{2,6} (t) \oplus B_{6}^{P} (t) \\ B_{3}^{P} (t) & = W_{3}^{P} (t) + [q_{3,1} (t) + q_{3,1;(13,14)} (t)] \oplus B_{1}^{P} (t) + q_{3,2;(15,16)} (t) \oplus B_{2}^{P} (t) \\ \end{aligned}$$
$$\begin{aligned} B_{4}^{P} (t) & = q_{4,0} (t) \oplus B_{0}^{P} (t)(t) + [q_{4,1;20} (t) + q_{4,1;20(21,22)} (t)] \oplus B_{1}^{P} (t) \\ & \quad + [q_{4,2;17} (t) + q_{4,2;17(18,19)} (t)] \oplus B_{2}^{P} (t) + q_{4,5} (t) \oplus B_{5}^{P} (t) \\ \end{aligned}$$
$$B_{5}^{P} (t) = [q_{5,1;(34,35)} (t)] \oplus B_{1}^{P} (t) + [q_{5,2;(32,33)} (t)] \oplus B_{2}^{P} (t) + q_{5,4} (t) \oplus B_{4}^{P} (t)$$
$$\begin{aligned} B_{6}^{P} (t) & = W_{6}^{P} (t) + [ \, q_{6,2} (t) + q_{6,2;(24,25)} (t) + \,q_{6,2;(26,27)} (t) + q_{6,2;(26,27)31} (t) \\ & \quad + \, q_{6,2;(26,27)31(32,33)} ] \oplus B_{2}^{P} (t), \\ \end{aligned}$$
(15)

where \(W_{i} (t)\) be the probability that the server is busy in state Si for preventive maintenance up to time ‘t’ without making any transition to any other regenerative state or before returning to the same via one or more non-regenerative states and \(\;\;\;\;\mathop {\lim }\limits_{s \to 0} W_{1}^{P*} (s) = \frac{{(\alpha_{0} + \lambda + \theta )}}{{\theta (\alpha_{0} + \lambda + \theta + \beta )}}\;\), \(\;\;\;\;\mathop {\lim }\limits_{s \to 0} W_{2}^{P*} (s) = \frac{{(\alpha_{0} )}}{{\theta (\alpha_{0} + \lambda + \eta + \beta )}}\;\)

$$\mathop {\lim }\limits_{s \to 0} W_{3}^{P*} (s) = \frac{{(\alpha_{0} + \lambda )}}{{\theta (\alpha_{0} + \lambda + \beta_{1} )}},\;\mathop {\lim }\limits_{s \to 0} W_{6}^{P*} (s) = \frac{{\alpha_{0} }}{{\theta (\alpha_{0} + \lambda + \beta_{1} )}}$$
(16)

Solving for \(B_{0}^{p*} (s)\), the time for which server is busy due to preventive maintenance is given by

$$B_{0}^{p} (\infty ) = \mathop {\lim }\limits_{s \to 0} \,\,sB_{0}^{*p} (s) = \mathop {\lim }\limits_{s \to 0} \frac{{M_{1}^{p*} }}{{D_{0}^{\prime *} }} = \frac{{M_{1}^{P} }}{{D^{\prime}_{0} }}$$
(17)

where

$$M_{1}^{P} = \mathop {\lim }\limits_{s \to 0} M_{1}^{P*} (s)\;{\text{and}}\;D^{\prime}_{0} = \mathop {\lim }\limits_{s \to 0} D_{0}^{\prime *} (s)$$
(18)
$$M_{1}^{P} (t) = \frac{\begin{aligned} \;[\alpha_{0} \{ (\theta + \lambda + \beta + \alpha_{0} )(\lambda + \beta_{1} + \alpha_{0} ) - \beta \beta_{1} \} \{ (\phi + \lambda + \beta + \alpha_{0} )(\lambda + \beta_{1} + \alpha_{0} ) - \beta \beta_{1} \} \hfill \\ \{ (\eta + \lambda )(\lambda + \beta_{1} + \alpha_{0} ) + \beta \lambda \} ] \hfill \\ \end{aligned} }{{[\theta (\lambda + \alpha_{0} )(\theta + \lambda + \beta + \alpha_{0} )(\phi + \lambda + \beta + \alpha_{0} )(\eta + \lambda + \beta + \alpha_{0} )(\lambda + \beta_{1} + \alpha_{0} )^{3} ]}}$$
(19)

and \(D^{\prime}_{0}\) has already been defined in (13)

6 Busy period analyses for server due to inspection and repair

Let \(B_{i}^{R} (t)\) be the probability that the server is busy in inspection or repair of the unit at an instant ‘t’ given that system entered state Si at t = 0. The recursive relations for \(B_{i}^{R} (t)\) is as follows

$$B_{0}^{R} (t) = q_{0,1} (t) \oplus B_{1}^{R} (t) + q_{0,2} (t) \oplus B_{2}^{R} (t)$$
$$\begin{aligned} B_{1}^{R} (t) & = q_{1,0} (t) \oplus B_{0}^{R} (t) + [q_{1,1;10} (t) + q_{1,1;10(11,12)} (t)] \oplus B_{1}^{R} (t) \\ & \quad + [q_{1,2;9} (t) + q_{1,2;9(8,7)} (t)] \oplus B_{2}^{R} (t) + q_{1,3} (t) \oplus B_{3}^{R} (t) \\ \end{aligned}$$
$$\begin{aligned} B_{2}^{R} (t) & = W_{2}^{R} (t) + q_{20} (t) \oplus B_{0}^{R} (t) + [q_{2,2;23} (t) + q_{2,2;23(24,25)} (t) + q_{2,2;28} (t) + q_{2,2;28,31} (t) + q_{2,2;28(29,30)} (t) \\ & \quad + q_{2,2;28(29,30)31} (t) + q_{2,2;28,31(32,33)} (t) + q_{2,2;28(29,30)31(32,33)} ] \oplus B_{2}^{R} (t) + q_{2,4} (t) \oplus B_{4}^{R} (t) \\ \, & \quad + q_{2,6} (t) \oplus B_{6}^{R} (t) \\ B_{3}^{R} (t) & = [q_{3,1} (t) + q_{3,1;(13,14)} (t)] \oplus B_{1}^{R} (t) + q_{3,2;(15,16)} (t) \oplus B_{2}^{R} (t) \\ \end{aligned}$$
$$\begin{aligned} B_{4}^{R} (t) & = W_{4}^{R} (t)(t) + q_{4,0} (t) \oplus B_{0}^{P} (t) + [q_{4,1;20} (t) + q_{4,1;20(21,22)} (t)] \oplus B_{1}^{R} (t) \\ & \quad + [q_{4,2;17} (t) + q_{4,2;17(18,19)} (t)] \oplus B_{2}^{R} (t) + q_{4,5} (t) \oplus B_{5}^{R} (t)\, \\ \end{aligned}$$
$$\begin{aligned} B_{5}^{R} (t) & = W_{5}^{R} (t) + [q_{{5,1;(34,35)}} (t)] \oplus B_{1}^{P} (t) + [q_{{5,2;(32,33)}} (t)] \oplus B_{2}^{P} (t) + q_{{5,4}} (t) \oplus B_{4}^{P} (t) \\ B_{6}^{R} (t) & = W_{6}^{R} (t) + [{\text{ }}q_{{6,2}} (t) + q_{{6,2;(24,25)}} (t) + \,q_{{6,2;(26,27)}} (t) + q_{{6,2;(26,27)31}} (t) \\ & \quad + {\text{ }}q_{{6,2;(26,27)31(32,33)}} ] \oplus B_{2}^{R} (t) \\ \end{aligned}$$
(20)

where \(W_{i}^{R} (t)\) be the probability that the server is busy in state Si due to repair up to time ‘t’ without making any transition to any other regenerative state or before returning to the same via one or more non-regenerative states and \(\mathop {\lim }\limits_{s \to 0} \,W_{2}^{R*} (s) = \frac{{\phi \eta (\beta + \eta )(\beta + \phi ) + \lambda \{ a\eta^{2} (\beta + \phi ) + \beta \phi (\beta + \phi ) + a\eta \beta^{2} \} }}{{\phi \eta (\beta + \eta )(\beta + \phi )(\alpha_{0} + \lambda + \eta + \beta )}}\)

$$\begin{aligned} \mathop {\lim }\limits_{s \to 0} W_{4}^{R*} (s) & = \frac{{(\alpha_{0} + \lambda + \phi )}}{{\phi (\alpha_{0} + \lambda + \beta + \phi )}},\;\mathop {\lim }\limits_{s \to 0} W_{5}^{R*} (s) = \frac{{(\alpha_{0} + \lambda )}}{{\phi (\alpha_{0} + \lambda + \beta_{1} )}} \\ \mathop {\lim }\limits_{s \to 0} W_{6}^{R*} (s) & = \frac{\lambda (\phi + a\eta )}{{\phi (\alpha_{0} + \lambda + \beta_{1} )}} \\ \end{aligned}$$
(21)

Solving for \(B_{0}^{R*} (s)\), the time for which server is busy due to preventive maintenance is given by

$$B_{0}^{R} (\infty ) = \mathop {\lim }\limits_{s \to 0} \,\,sB_{0}^{R*} (s) = \mathop {\lim }\limits_{s \to 0} \frac{{M_{2}^{R*} }}{{D_{0}^{\prime *} }} = \frac{{M_{2}^{R} }}{{D^{\prime}_{0} }}$$
(22)
$$M_{2}^{R} = \mathop {\lim }\limits_{s \to 0} M_{2}^{R*} (s)\;{\text{and}}\;D^{\prime}_{0} = \mathop {\lim }\limits_{s \to 0} D_{0}^{\prime *} (s)$$
(23)

Using relations (21) and (22) into (23)

$$M_{1}^{R} = GH$$

where \(G = \frac{{\left[ {\lambda [\{ (\theta + \lambda + \beta + \alpha_{0} )(\lambda + \beta_{1} + \alpha_{0} ) - \beta \beta_{1} \} ]} \right]}}{{[(\theta + \lambda + \beta + \alpha_{0} )(\lambda + \beta_{1} + \alpha_{0} )(\lambda + \alpha_{0} )]}}\)

$$H = \frac{{\left[ \begin{aligned} (\phi + \alpha_{0} + \lambda + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta_{1} \beta \} [\{ (\lambda + \beta_{1} + \alpha_{0} )\eta + \lambda \beta \} (\beta + \eta )(\beta + \phi )(\phi + a\eta ) + \hfill \\ \lambda (\lambda + \beta_{1} + \alpha_{0} )\{ (a\eta^{2} + \beta \phi )(\beta + \phi ) + a\eta \beta^{2} \} ] \hfill \\ \end{aligned} \right]}}{{\phi \eta (\beta + \eta )(\beta + \phi )(\lambda + \beta + \eta + \alpha_{0} )(\lambda + \beta + \phi + \alpha_{0} )(\lambda + \beta_{1} + \alpha_{0} )^{2} }}$$
(24)

and \(D^{\prime}_{0}\) has already been defined in (13).

7 Expected number of visits by the server due to preventive maintenance and due to inspection, repair

Let \(N_{i}^{P} (t)\) be the expected number of preventive maintenance and repair of unit by the server in (0, t] given that the system entered the regenerative state i at t = 0. The recursive relations for \(N_{i}^{P} (t)\) are given by

$$N_{0}^{P} (t) = Q_{0,1} (t) \oplus (N_{1}^{P} (t) + \delta_{PK} ) + Q_{0,2} (t) \oplus (N_{2}^{P} (t) + \delta_{RK} )$$
$$\begin{aligned} N_{1}^{P} (t) & = \,Q_{1,0} (t) \oplus N_{0}^{P} (t) + [Q_{1,1;10} (t) + q_{1,1;10(11,12)} (t)] \oplus N_{1}^{P} (t) + [Q_{1,2;9} (t) + Q_{1,2;9(8,7)} (t)] \oplus N_{2}^{P} (t) \\ & \quad + Q_{1,3} (t) \oplus N_{3}^{P} (t) \\ \end{aligned}$$
$$\begin{aligned} N_{2}^{P} (t) & = q_{20} (t) \oplus N_{0}^{P} (t) + [q_{2,2;23} (t) + q_{2,2;23(24,25)} (t) + q_{2,2;28} (t) + q_{2,2;28,31} (t) + q_{2,2;28(29,30)} (t) \\ & \quad + q_{2,2;28(29,30)31} (t) + q_{2,2;28,31(32,33)} (t) + q_{2,2;28(29,30)31(32,33)} ] \oplus N_{2}^{P} (t) + q_{2,4} (t) \oplus N_{4}^{P} (t) \\ & \quad + \;q_{2,6} (t) \oplus N_{6}^{P} (t) \\ \end{aligned}$$
$$N_{3}^{P} (t) = [q_{3,1} (t) + q_{3,1;(13,14)} (t)] \oplus N_{1}^{P} (t) + q_{3,2;(15,16)} (t) \oplus N_{2}^{P} (t)$$
$$\begin{aligned} N_{4}^{P} (t) & = q_{4,0} (t) \oplus N_{0}^{P} (t) + [q_{4,1;20} (t) + q_{4,1;20(21,22)} (t)] \oplus N_{1}^{P} (t) \\ & \quad + [q_{4,2;17} (t) + q_{4,2;17(18,19)} (t)] \oplus N_{2}^{P} (t) + q_{4,5} (t) \oplus N_{5}^{P} (t)\, \\ \end{aligned}$$
$$N_{5}^{P} (t) = [q_{5,1;(34,35)} (t)] \oplus N_{1}^{P} (t) + [q_{5,2;(32,33)} (t)] \oplus N_{2}^{P} (t) + q_{5,4} (t) \oplus N_{4}^{P} (t)$$
$$\begin{aligned} N_{6}^{P} (t) & = [{\text{ }}q_{{6,2}} (t) + q_{{6,2;(24,25)}} (t) + \,q_{{6,2;(26,27)}} (t) + q_{{6,2;(26,27)31}} (t) \\ & \quad + {\text{ }}q_{{6,2;(26,27)31(32,33)}} ] \oplus N_{2}^{P} (t) \\ \end{aligned}$$
(25)

(K = P, for preventive maintenance; K = R, for inspection and repair of the units).

Solving for \(\tilde{N}_{0}^{p} (s)\). The expected no of preventive maintenance per unit time are, respectively, of given by

$$N_{0}^{P} (\infty ) = \mathop {\lim }\limits_{s \to 0} s\tilde{N}_{0}^{P} (s) = \frac{{\tilde{M}_{3}^{P} }}{{\tilde{D^{\prime}}_{0} }} = \frac{{M_{3} }}{{D^{\prime}_{0} }}$$
(26)
$$M_{3} = \mathop {\lim }\limits_{{s \to 0}} \,\tilde{M}_{3}^{p} (s) = \frac{{\left[ \begin{array}{l} [\eta \alpha _{0} \{ (\phi + \lambda + \alpha _{0} + \beta _{1} )(\lambda + \alpha _{0} + \beta _{1} ) - \beta \beta _{1} \} [\{ (\theta + \lambda + \alpha _{0} + \beta )(\lambda + \alpha _{0} + \beta _{1} ) - \beta \beta _{1} \} \\ - \{ \alpha _{0} (\alpha _{0} + \lambda + \beta + \beta _{1} )\} ] - [a\eta \lambda \{ (\theta + \lambda + \alpha _{0} + \beta )(\lambda + \alpha _{0} + \beta _{1} ) - \beta \beta _{1} \} \\ {\text{ }}(\alpha _{0} + \lambda + \beta + \beta _{1} )] \\ \end{array} \right]}}{{(\lambda + \alpha _{0} )(\lambda + \alpha _{0} + \beta _{1} )^{2} (\lambda + \alpha _{0} + \theta + \beta )(\lambda + \alpha _{0} + \phi + \beta )(\eta + \alpha _{0} + \phi + \beta )}}$$
(27)

and \(D^{\prime}_{0}\) has already been defined in (13).

Solving for \(\tilde{N}_{0}^{R} (s)\). The expected no of inspection and repair per unit time are, respectively, given by

$$N_{0}^{R} (\infty ) = \mathop {\lim }\limits_{s \to 0} s\tilde{N}_{0}^{R} (s) = \frac{{\tilde{M}_{4}^{R} }}{{\tilde{D^{\prime}}_{0} }} = \frac{{M_{4} }}{{D^{\prime}_{0} }}$$
(28)

where

$$M_{4} = \mathop {\lim }\limits_{s \to 0} \tilde{M}_{4}^{R} (s) = \frac{{\left[ \begin{array}{l} [\eta \lambda \{ (\phi + \lambda + \alpha_{0} + \beta_{1} )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} [\{ (\theta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} \\ - \{ \alpha_{0} (\alpha_{0} + \lambda + \beta + \beta_{1} )\} ] - [a\eta \lambda \{ (\theta + \lambda + \alpha_{0} + \beta )(\lambda + \alpha_{0} + \beta_{1} ) - \beta \beta_{1} \} \\ \, (\alpha_{0} + \lambda + \beta + \beta_{1} )] \\ \end{array} \right]}}{{(\lambda + \alpha_{0} )(\lambda + \alpha_{0} + \beta_{1} )^{2} (\lambda + \alpha_{0} + \theta + \beta )(\lambda + \alpha_{0} + \phi + \beta )(\eta + \alpha_{0} + \phi + \beta )}}$$

and \(D^{\prime}_{0}\) has already been defined in (13).

8 Profit analysis

The profit incurred to the system model in steady state can be obtained as

$$P = K_{0} A_{0} - K_{1} B_{0}^{R} - K_{2} B_{0}^{P} - K_{3} N_{0}^{R} - K_{4} N_{0}^{P}$$
(29)

Let K0 = (5000): revenue per unit up-time of the system,

K1 = (400): cost per unit time for which server is busy due preventive maintenance,

K2 = (500): cost per unit time for which server is busy due to repair and inspection,

K3 = (350): cost per visit per unit time repair and inspection, and K4 = (300): cost per visit per unit time preventive maintenance.

9 Discussion

To verify whether the cold standby system with priority to preventive maintenance over inspection is profitable or not, the numerical and graphical behavior of mean time to system failure, availability and profit function has been studied in Figs. 2, 3, 4, respectively. The application of this model in the industry as well as in the water supply system by taking particular values to the parameters like (α0, β, β1, λ, ϕ, η and θ).

Fig. 2
figure 2

Preventive maintenance rate (θ)

Fig. 3
figure 3

Preventive maintenance rate (θ)

Fig. 4
figure 4

Preventive maintenance rate (θ)

Figure 2 is constructed to depict the graphical behavior of the MTSF (mean time to system failure).Thus, mean time to system failure increases swiftly with the increase of preventive maintenance rate θ. The curve L2 indicated when the rate by which the unit goes for preventive maintenance after completions of pre-specific maximum operation time α0 changes from 5 to 7 the MTSF declined sharply, but in increasing manner as preventive maintenance rate θ increasing.

Figure 3 highlights graphical behavior of availability of the system Vs preventive maintenance rate θ. There is relatively steep rise in values of availability against parameter β1 in comparison to other parameters. Second line L2 of this table shows the when the rate α0 change from 5 to 7 then the value of availability of the system rapidly declined from the range (0.48–0.72) to (0.33–0.63) The curve name L1(α0 = 5, β = .45, β1 = .55, λ = .01, ϕ = 2.5, η = 1.5) L5(α0 = .5, β = .45, β1 = .55, λ = .03, ϕ = 2.5, η = 1.5) L6(α0 = .5, β = .45, β1 = .55, λ = .03 and ϕ = 3.5, η = 1.5) and the curve L7(α0 = .5, β = .45, β1 = .55, λ = .01 and ϕ = 3.5, η = 2) overlapping showing the similar impact of failure rate λ and repair rate ϕ and inspection rate η, on availability of system.

Figure 4 depicts the graphical behavior of the profit Vs preventive maintenance rate θ. The effect of different parameters can be observed easily from the graph. The system is more profitable if it works in controlled weather condition. The curve namely curve L2 (α0 = 7, β = .45, β1 = .55, λ = .01, ϕ = 2.5, η = 1.5) indicates that the rate of the specific operation time α0 increase 5–7 then there is steep fall in values of profit in comparison to other parameter. The curves L5(α0 = .5, β = .45, β1 = .55, λ = .03, ϕ = 2.5, η = 1.5) L6(α0 = .5, β = .45, β1 = .55, λ = .03, ϕ = 3.5, η = 1.5) and the curve L7(α0 = .5, β = .45, β1 = .55, λ = .03, ϕ = 2.5, η = 2) are coinciding curves showing the similar impact of failure rate λ and repair rate ϕ inspection rate η on profit of system.

10 Conclusion

It is concluded that the present model can be made the water supply system more available/beneficial by enhancing the inspection rate of system. Furthermore, by increasing preventive maintenance rate, a considerable profit can be obtained from system. In normal and abnormal weather conditions it is inferred that the system becomes productive when the preventive maintenance rate increases. Consequently, modifying maintenance mechanism adapted by the server followed by prioritizing preventive maintenance over inspection does wonders to the system.