1 Introduction

During the last few decades, there have appeared a lot of papers on fixed points of multifunctions with different methods (see for example [19]). One of the most interesting methods is due to Suzuki for fixed points of mappings and multifunctions (see [10] and [11]). Recently, Samet, Vetro and Vetro have introduced the notion of \(\alpha \)-\(\psi \)-contractive type mappings [12]. Denote by \(\Psi \) the family of nondecreasing functions \(\psi :[0,\infty )\rightarrow [0,\infty )\) such that \(\sum _{\textit{n}=1}^\infty \psi ^n(t)<\infty \) for all \(t>0\), where \( \psi ^n\) is the \(n\)th iterate of \(\psi \). It is known that \(\psi (t)<t\) for all \(t>0\) and \(\psi \in \Psi \) [12]. Also, there are a lot of sublinear mappings in \(\Psi \) [13]. Let \((X,d)\) be a metric space and \(T\) a selfmap on \(X\). Then \(T\) is called a \(\alpha \)-\(\psi \)-contraction mapping whenever there exist \(\psi \in \Psi \) and \(\alpha :X\times X\rightarrow [0,\infty )\) such that \(\alpha (x,y)d(Tx,Ty)\le \psi (d(x,y))\) for all \(x,y\in X\) [12]. Also, we say that \(T\) is \(\alpha \)-admissible whenever \(\alpha (x,y)\ge 1\) implies \(\alpha (Tx,Ty)\ge 1\) [12]. Also, we say that \(X\) has the property (B) respect to \(\alpha \) if \(\{x_n\}\) is a sequence in \(X\) such that \(\alpha (x_{n},x_{n+1})\ge 1\) for all \(n\ge 1\) and \(x_{n}\rightarrow x\), then \(\alpha (x_{n},x)\ge 1\) for all \(n\ge 1\) [12].

Let \((X,d)\) be a complete metric space and \(T\) a \(\alpha \)-admissible \(\alpha \)-\(\psi \)-contractive mapping on \(X\). Suppose that there exists \(x_{0}\in X\) such that \(\alpha (x_{0},Tx_{0})\ge 1\). If \(T\) is continuous or \(X\) has the property (B) respect to \(\alpha \), then \(T\) has a fixed point ([12]; Theorems 2.1 and 2.2). Finally, we say that \(X\) has the property (H) whenever for each \(x,y\in X\) there exists \(z\in X\) such that \(\alpha (x,z)\ge 1\) and \(\alpha (y,z)\ge 1\). If \(X\) has the property (H) in the Theorems 2.1 and 2.2, then \(T\) has a unique fixed point ([12]; Theorem 2.3). It is considerable that the results of Samet, Vetro and Vetro generalize similar ordered results in the literature (see the results of the third section in [12]). Now, by using the main idea of [14], we introduce a new notion. We say that \(T\) is a generalized \(\alpha \)-\(\psi \)-contractive mapping whenever \(\alpha (x,y)d(Tx,Ty)\le \psi (M(x,y))\) for all \(x,y\in X\), where \(M(x,y)=\max \{d(x,y),d(x,Tx),d(y,Ty),\frac{1}{2}\max \{d(x,Ty),d(y,Tx)\}\}\). Throughout the paper, we suppose that \(\psi \in \Psi \) is sublinear and \(\alpha :X\times X\rightarrow [0,\infty )\) is a mapping.

2 Main results

Now, we are ready to state and prove our main results.

Theorem 2.1

Let \((X,d)\) be a complete metric space and \(T\) a continuous generalized \(\alpha \)-\(\psi \)-contractive and \(\alpha \)-admissible selfmap on \(X\). If there exists \(x_0\in X\) such that \(\alpha (x_0,Tx_0)\ge 1\), then \(T\) has a fixed point.

Proof

Take \(x_0\in X\) such that \(\alpha (x_0,Tx_0)\ge 1\). Define the sequence \(\{x_n\}_{n\ge 0}\) in \(X\) by \(x_{n+1}=Tx_n\) for all \(n\ge 0\). If \(x_n=x_{n+1}\) for some \(n\ge 0\), then \(x^*=x_n\) is a fixed point for \(T\). Assume that \(x_n\ne x_{n+1}\) for all \(n\ge 0\). Since \(T\) is \(\alpha \)-admissible, we get \(\alpha (x_n,x_{n+1})\ge 1\) for all \(n\ge 1\). But, we have

$$\begin{aligned} d(x_1,x_2)=d(Tx_0,Tx_1)\le \alpha (x_0,x_1)d(Tx_0,Tx_1)\le \psi (M(x_0,x_1)), \end{aligned}$$

where

$$\begin{aligned} M(x_0,x_1)&= \max \{d(x_0,x_1),d(x_0,Tx_0),d(x_1,Tx_1),\frac{1}{2}\max \{d(x_0,Tx_1),d(x_1,Tx_0)\}\} \\&= \max \{d(x_0,x_1),d(x_1,x_2),\frac{1}{2}d(x_0,x_2)\}. \end{aligned}$$

Note that, \(M(x_0,x_1)\ne d(x_1,x_2)\) because if \(M(x_0,x_1)=d(x_1,x_2)\), then we have \(d(x_1,x_2)\!\le \!\psi (d(x_1,x_2))\!<\!d(x_1,x_2)\) which is a contradiction. Thus,

$$\begin{aligned} M(x_0,x_1)=\max \left\{ d(x_0,x_1),\frac{1}{2}d(x_0,x_2)\right\} . \end{aligned}$$

If \(M(x_0,x_1)=d(x_0,x_1)\), then \(d(x_1,x_2)\le \psi (d(x_0,x_1))\) and if \(M(x_0,x_1)=\frac{1}{2}d(x_0,x_2)\), then

$$\begin{aligned} d(x_1,x_2)\le \psi \left( \frac{d(x_0,x_2)}{2}\right) \le \frac{\psi (d(x_0,x_1))+\psi (d(x_1,x_2))}{2} <\frac{1}{2}\psi (d(x_0,x_1))+\frac{1}{2}d(x_1,x_2) \end{aligned}$$

because \(\psi \) is sublinear. Hence, \(d(x_1,x_2)\le \psi (d(x_0,x_1))\). Now by using induction, we obtain \(d(x_n,x_{n+1})\le {\psi }^n(d(x_0,x_1))\) for all \(n\). Fix \(\varepsilon >0\) and choose \(n(\varepsilon )\ge 1\) such that \(\sum \nolimits _{n\ge n(\varepsilon )}{\psi }^n(d(x_0,x_1))<\varepsilon \). Let \(m>n>n(\varepsilon )\). By using the triangular inequality, we obtain \(d(x_n,x_m)\le \sum \nolimits _{k=n}^{m-1}d(x_k,x_{k+1})\le \sum \nolimits _{k=n}^{m-1}{\psi }^k(d(x_0,x_1)) \le \sum \nolimits _{n\ge n(\varepsilon )}{\psi }^n(d(x_0,x_1))<\varepsilon \). Thus, \(\{x_n\}_{n\ge 0}\) is a Cauchy sequence. Therefore, there exists \(x^*\in X\) such that \(x_n\rightarrow x^*\). Thus, \(x_{n+1}=Tx_n\rightarrow Tx^*\) and so \(x^*\) is a fixed point of \(T\). \(\square \)

Example 2.1

Let \(X=[0,+\infty )\) and \(d(x,y)=|x-y|\) for all \(x,y\in X\). Define the selfmap \(T\) on \(X\) by \(Tx=x+8\) whenever \(0\le x\le 1\) and \(Tx=9\) whenever \(x>1\), and

$$\begin{aligned} \alpha (x,y)= \left\{ \begin{array}{ll} 2 &{}\quad x,y\in [0,1] \,or\, x,y\in [8n,8n+1], for\, some\, n\ge 1,\\ 1 &{}\quad x\in [0,1]\, and\, y\in [8,9],\\ 0 &{}\quad otherwise. \end{array} \right. \end{aligned}$$

If we define \(\psi (t)=\frac{t}{2}\) for all \(t\ge 0\), then it is easy to check that \(T\) is a generalized \(\alpha \)-\(\psi \)-contractive mapping. In fact, for each \(x,y\in [0,1]\) with \(x\le y\) we have

$$\begin{aligned} 2\times |x-y|=\alpha (x,y)d(Tx,Ty)\le \psi (M(x,y))=\frac{1}{2}\times 8=4. \end{aligned}$$

For \(x\in [0,1]\) and \(y\in \left( 1,\frac{81}{19}\right) \) we have

$$\begin{aligned} 0\times |x-9|=\alpha (x,y)d(Tx,Ty)\le \psi (M(x,y))=\frac{1}{2}\times |y-9|. \end{aligned}$$

For \(x\in [0,1]\) and \(y\ge \frac{81}{19}\) we have

$$\begin{aligned} 0\times |x-9|=\alpha (x,y)d(Tx,Ty)\le \psi (M(x,y))=\frac{1}{2}|x-y|. \end{aligned}$$

Let \(x,y\in [8(n-1),8n]\) for some \(n\ge 1\) and \(x\le y\). Then

$$\begin{aligned} 2\times 0=\alpha (x,y)d(Tx,Ty)\le \psi (M(x,y))=\frac{1}{2}\times |x-9|. \end{aligned}$$

If \(x\in [0,1]\) and \(y\in [8,9]\), then

$$\begin{aligned} 1\times |x-1|=\alpha (x,y)d(Tx,Ty)\le \psi (M(x,y))=\frac{1}{2}\max \{|x-y|,8\}. \end{aligned}$$

Also, for \(x_0=0\) we have \(\alpha (0,T0)=\alpha (0,8)=1\). Obviously \(T\) is continuous and so it remains to show that \(T\) is \(\alpha \)-admissible. If \(x,y\in [0,1]\) or \(x,y\in [8n,8n+1]\) for some \(n\ge 1\), then \(\alpha (x,y)=\alpha (Tx,Ty)=2\). If \(x\in [0,1]\) and \(y\in [8,9]\), then \(\alpha (x,y)=1\) and \(\alpha (Tx,Ty)=2\). Hence, \(T\) is \(\alpha \)-admissible. Now, note that \(T\) has the fixed point \(x_0=9\). Finally, note that \(\alpha (x,y)d(Tx,Ty)\nleq \psi (d(x,y))\) for all \(x,y\in [0,1]\). Thus, the last result is a generalization of Theorem 2.1 in [12].

Now, we state multifunction version of our results. For \(A, B \in CB(X)\), let

$$\begin{aligned} H(A, B) = \max \left\{ \mathop {\sup }\limits _{x \in A} \,d(x, B), \,\mathop {\sup }\limits _{y \in B} \,d(y, A)\right\} , \end{aligned}$$

where \(d(x, B) = \inf _{y \in B} d(x, y)\). It is well known that \(H\) is a metric on \(CB(X)\). Such a map \(H\) is called Hausdorff metric induced by \(d\). Similar to mapping case, we say that the multifunction \(T:X\rightarrow CB(X)\) on a metric space \(X\) is a generalized \(\alpha \)-\(\psi \)-contraction whenever \(\alpha (x,y)H(Tx,Ty)\le \psi (M(x,y))\) for all \(x,y\in X\), where \(M(x,y)=\max \{d(x,y),d(x,\) \(Tx), d(y,Ty),\frac{1}{2}\max \{d(x,Ty),d(y,Tx)\}\}\).

Theorem 2.2

Let \((X,d)\) be a complete metric space, \(\alpha :X\times X\rightarrow [0,+\infty )\) a mapping, \(\psi \in \Psi \) and \(T:X\rightarrow CB(X)\) a generalized \(\alpha \)-\(\psi \)-contractive multifunction such that \(\alpha (x,y)\ge 1\) implies \(\alpha (u,v)\ge 1\) for all \(u\in Tx\) and \(v\in Ty\). Suppose that there exists \(x_0\in X\) and \(x_1\in Tx_0\) such that \(\alpha (x_0,x_1)\ge 1\). If \(X\) has the property (B) respect to \(\alpha \), then, \(T\) has a fixed point.

Proof

Take \(x_0\in X\) and \(x_1\in Tx_0\) such that \(\alpha (x_0,x_1)\ge 1\). If \(x_0=x_1\), then \(x_0\) is a fixed point for \(T\). Let \(x_0\ne x_1\). Then,

$$\begin{aligned} H(Tx_0,Tx_1)\le \alpha (x_0,x_1)H(Tx_0,Tx_1)\le \psi (M(x_0,x_1)), \end{aligned}$$

where \(M(x_0,x_1)=\max \{d(x_0,x_1),d(x_1,Tx_1),\frac{1}{2}d(x_0,Tx_1)\}\) because \(x_1\in Tx_0\). Let \(x_1\notin Tx_1\). Then \(M(x_0,x_1)\ne d(x_1,Tx_1)\). Thus, \(M(x_0,x_1)=\max \{d(x_0,x_1),\frac{1}{2}d(x_0,Tx_1)\}\). If \(M(x_0,x_1)=d(x_0,x_1)\), then \(d(x_1,Tx_1)\le \psi (d(x_0,x_1))\). If \(M(x_0,x_1)=\frac{1}{2}d(x_0,Tx_1)\), then \(d(x_1,Tx_1)\le \psi (\frac{1}{2}d(x_0,Tx_1))\le \frac{1}{2}\psi (d(x_0,x_1))+\frac{1}{2}\psi (d(x_1,Tx_1))\) and so

$$\begin{aligned} d(x_1,Tx_1)<\frac{1}{2}\psi (d(x_0,x_1))+\frac{1}{2}d(x_1,Tx_1)\Rightarrow d(x_1,Tx_1)\le \psi (d(x_0,x_1)) \end{aligned}$$

because \(\psi \) is sublinear. Thus there exists \(x_2\in Tx_1\) such that \(d(x_1,x_2)\!\le \!\psi (d(x_0,x_1))\). Let \(x_1\!\ne \! x_2\). Then, \(H(Tx_1,Tx_2)\!\le \!\alpha (x_1,x_2)H(Tx_1,Tx_2)\!\le \!\psi (M(x_1,x_2))\) and \(\alpha (x_1,x_2)\ge 1\), where \(M(x_1,x_2)=\max \{d(x_1,x_2),d(x_2,Tx_2),\frac{1}{2}d(x_1,Tx_2)\}\) because \(x_2\in Tx_1\). Let \(x_2\notin Tx_2\). Thus, \(M(x_1,x_2)=\max \{d(x_1,x_2),\frac{1}{2}d(x_1,Tx_2)\}\). If \(M(x_1,x_2)=d(x_1,x_2)\), then \(d(x_2,Tx_2)\le \psi (d(x_1,x_2))\). If \(M(x_1,x_2)\!=\!\frac{1}{2}d(x_1,Tx_2)\), then \(d(x_2,Tx_2)\!<\!\frac{1}{2}\psi (d(x_1,x_2))\!+\!\frac{1}{2}d(x_2,Tx_2)\) because \(\psi \) is sublinear. Thus, we get \(d(x_2,Tx_2)\le \psi (d(x_1,x_2))\). This implies that there exists \(x_3\!\in \! Tx_2\) such that \(d(x_2,x_3)\!\le \!\psi (d(x_1,x_2))\) and so \(d(x_2,x_3)\!\le \!{\psi }^2(d(x_0,x_1))\). By continuing this steps, we obtain a sequence \(\{x_n\}_{n\!\ge \! 0}\) in \(X\) such that \(x_{n+1}\in Tx_n\), \(\alpha (x_n,x_{n+1})\ge 1\) and \(d(x_n,x_{n+1})\le {\psi }^n(d(x_0,x_1))\) for all \(n\ge 0\). Fix \(\varepsilon >0\) and choose \(n(\varepsilon )\ge 1\) such that \(\sum \nolimits _{n\ge n(\varepsilon )}{\psi }^n(d(x_0,x_1))<\varepsilon \). Let \(m>n>n(\varepsilon )\). By using the triangular inequality, we obtain

$$\begin{aligned} d(x_n,x_m)\le \sum \limits _{k=n}^{m-1}d(x_k,x_{k+1})\le \sum \limits _{k=n}^{m-1}{\psi }^k(d(x_0,x_1)) \le \sum \limits _{n\ge n(\varepsilon )}{\psi }^n(d(x_0,x_1))<\varepsilon . \end{aligned}$$

Thus, \(\{x_n\}_{n\ge 0}\) is a Cauchy sequence. Hence, there exists \(x^*\in X\) such that \(x_n\rightarrow x^*\). Note that, \(\alpha (x_n,x^*)\ge 1\) for all \(n\). Moreover, we have

$$\begin{aligned} H(Tx_n,Tx^*)\le \alpha (x_n,x^*)H(Tx_n,Tx^*)\le \psi (M(x_n,x^*)) \end{aligned}$$

for all \(n\), where

$$\begin{aligned} M(x_n,x^*)=\max \{d(x_n,x^*),d(x_n,Tx_n),d(x^*,Tx^*),\frac{1}{2}\max \{d(x_n,Tx^*),d(x^*,Tx_n)\}\}. \end{aligned}$$

If \(M(x_n,x^*)=d(x_n,x^*)\), then \(d(x_{n+1},Tx^*)\le H(Tx_n,Tx^*)\le \psi (d(x_n,x^*))\). In the case \(M(x_n,x^*)=d(x_n,Tx_n)\), we have

$$\begin{aligned} d(x_{n+1},Tx^*)\le H(Tx_n,Tx^*)\le \psi (d(x_n,Tx_n))\le \psi (d(x_n,x_{n+1})). \end{aligned}$$

If \(M(x_n,x^*)=d(x^*,Tx^*)\), then \(x^*\in Tx^*\). In fact, if \(x^*\notin Tx^*\), then \(d(x^*,Tx^*)>0\) and so \(d(x_{n+1},Tx^*)\le H(Tx_n,Tx^*)\le \psi (d(x^*,Tx^*))\). Hence,

$$\begin{aligned} d(x^*,Tx^*)=\lim \limits _{n\rightarrow +\infty }d(x_{n+1},Tx^*)\le \psi (d(x^*,Tx^*))<d(x^*,Tx^*) \end{aligned}$$

which is a contradiction. If \(M(x_n,x^*)=\frac{1}{2}d(x_n,Tx^*)\), then

$$\begin{aligned} d(x_{n+1},Tx^*)\le H(Tx_n,Tx^*)\le \psi \left( \frac{1}{2}d(x_n,Tx^*)\right) \le \frac{1}{2}d(x_n,Tx^*). \end{aligned}$$

If \(M(x_n,x^*)=\frac{1}{2}d(x^*,Tx_n)\), then we have

$$\begin{aligned} d(x_{n+1},Tx^*)\le H(Tx_n,Tx^*)\le \psi \left( \frac{1}{2}d(x^*,Tx_n)\right) \le \frac{1}{2}\psi (d(x^*,x_{n+1})). \end{aligned}$$

Since \(\psi \) is continuous at \(t=0\), we get \(d(x^*,Tx^*)=0\) and so \(x^*\in Tx^*\). \(\square \)

Example 2.2

Let \(X=[-2,-1]\cup \{0\}\cup [1,\frac{5}{2}]\) and \(d(x,y)=|x-y|\) for all \(x,y\in X\). Define the multivalued \(T:X\rightarrow CB(X)\) by

$$\begin{aligned} Tx=\left\{ \begin{array}{ll} [-\frac{x}{4}+2,\frac{5}{2}] &{}\quad x\in [-2,-\frac{3}{2})\\ \{0\} &{}\quad x\in \{-1,0,1\}\cup (2,\frac{5}{2}]\cup [-\frac{3}{2},-1)\\ \left[ -{\frac{3}{2}}, - {\frac{x}{4}}-1\right] &{}\quad x \in (1,2], \end{array} \right. \end{aligned}$$

\(\psi (t)=\frac{4t}{5}\) for all \(t\ge 0\) and \(\alpha :X\times X\rightarrow [0,+\infty )\) by

$$\begin{aligned} \alpha (x,y)=\left\{ \begin{array}{ll} 2 &{}\quad x,y\in \Big [-2,-\frac{3}{2}\Big ) \text{ or } x,y \in (1,2] \\ 1 &{}\quad x\in \Big [-2,-\frac{3}{2}\Big )\cup (1,2]~and~y\in \{-1,0,1\}\cup \Big (2,\frac{5}{2}\Big ]\cup \Big [-\frac{3}{2},-1\Big )\\ \frac{3}{2} &{}\quad x,y\in \{-1,0,1\}\cup \Big (2,\frac{5}{2}\Big ]\cup \Big [-\frac{3}{2},-1\Big )\\ \frac{1}{2} &{}\quad x\in \Big [-2,-\frac{3}{2}\Big )~and~y\in (1,2]\\ \end{array} \right. \end{aligned}$$

with \(\alpha (x,y)=\alpha (y,x)\) for all \(x,y\in X\). One can check that \((X,d)\) is a complete metric space, \(X\) has the property (B) respect to \(\alpha \) and \(T\) is a closed and bounded valued generalized \(\alpha \)-\(\psi \)-contractive multifunction on \(X\). Note that, for \(x_0=-2\) we have \(Tx_0=\{\frac{5}{2}\}\) and \(\alpha \left( -2,\frac{5}{2}\right) =1\). Therefore, \(T\) satisfies the conditions Theorem 2.2.

Now by mixing our idea with the Suzuki’s idea, we give the following result. We say that the multifunction \(T:X\rightarrow CB(X)\) on a metric spaces \(X\) is a Suzuki-generalized \(\alpha \)-\(\psi \)-contraction if \(\theta (r)d(x,Tx)\le d(x,y)\) implies \(\alpha (x,y)H(Tx,Ty)\le \psi (M(x,y))\) for all \(x,y\in X\), where \(M(x,y)=\max \{d(x,y),\frac{1}{2}\max \{d(x,Tx),d(y,Ty)\},\frac{d(x,Ty)+d(y,Tx)}{2}\}\) and

$$\begin{aligned} \theta (r)=\left\{ \begin{array}{ll} \frac{1}{2} &{}\quad 0\le r\le \frac{1}{2}(\sqrt{5}-1),\\ \frac{1-r}{2r^2} &{}\quad \frac{1}{2}(\sqrt{5}-1)\le r\le \frac{1}{\sqrt{2}},\\ \frac{1}{1+2r} &{}\quad \frac{1}{\sqrt{2}}\le r<1. \end{array} \right. \end{aligned}$$

Finally, we say that \(X\) has the property (C) respect to \(\alpha \) whenever for each sequence \(\{x_n\}\) in \(X\) and \(x\in X\) such that \(\alpha (x_n,x)\ge 1\) for all \(n\) and \(x_n\rightarrow x^*\in X\) we have \(\alpha (x^*,x)\ge 1\).

Theorem 2.3

Let \((X,d)\) be a complete metric space, \(\alpha :X\times X\rightarrow [0,+\infty )\) a mapping, \(\psi \in \Psi \) and \(T:X\rightarrow CB(X)\) a Suzuki-generalized \(\alpha \)-\(\psi \)-contractive multifunction such that \(\alpha (x,y)\ge 1\) implies \(\alpha (u,v)\ge 1\) for all \(u\in Tx\) and \(v\in Ty\). Suppose that there exists \(x_0\in X\) and \(x_1\in Tx_0\) such that \(\alpha (x_0,x_1)\ge 1\). If \(X\) has the property (C) respect to \(\alpha \), then \(T\) has a fixed point.

Proof

Take \(x_0\in X\) and \(x_1\in Tx_0\) such that \(\alpha (x_0,x_1)\ge 1\). If \(x_0=x_1\), then \(x_0\) is a fixed point of \(T\). Let \(x_1\ne x_0\). Since \(\theta (r)\le 1\), \(\theta (r)d(x_0,Tx_0)\le d(x_0,Tx_0)\le d(x_0,x_1)\) and so \(d(x_1,Tx_1)\le H(Tx_0,Tx_1)\le \alpha (x_0,x_1)H(Tx_0,Tx_1)\le \psi (M(x_0,x_1))\), where \(M(x_0,x_1)=\max \{d(x_0,x_1),\frac{1}{2}d(x_1,Tx_1),\frac{1}{2}d(x_0,Tx_1)\}\) because \(x_1\in Tx_0\). Now, let \(x_1\notin Tx_1\). Then \(M(x_0,x_1)\ne \frac{1}{2}d(x_1,Tx_1)\). If \(M(x_0,x_1)=d(x_0,x_1)\), then \(d(x_1,Tx_1)\le H(Tx_0,Tx_1)\le \psi (d(x_0,x_1))\). If \(M(x_0,x_1)=\frac{1}{2}d(x_0,Tx_1)\), then

$$\begin{aligned} d(x_1,Tx_1)\le H(Tx_0,Tx_1)\le \psi (\frac{1}{2}d(x_0,Tx_1))\le \frac{1}{2}\psi (d(x_0,x_1))+\frac{1}{2}\psi (d(x_1,Tx_1)) \end{aligned}$$

and so \(d(x_1,Tx_1)<\frac{1}{2}\psi (d(x_0,x_1))+\frac{1}{2}d(x_1,Tx_1)\). Hence, \(d(x_1,Tx_1)\le \psi (d(x_0,x_1))\). Thus, there exists \(x_2\in Tx_1\) such that \(d(x_1,x_2)\le \psi (d(x_0,x_1))\). By continuing this process, we obtain a sequence \(\{x_n\}_{n\ge 0}\) in \(X\) such that \(x_{n+1}\in Tx_n\), \(\alpha (x_n,x_{n+1})\ge 1\) and \(d(x_n,x_{n+1})\!\le \! {\psi }^n(d(x_0,x_1))\) for all \(n\!\ge \! 0\). Fix \(\varepsilon >0\) and choose \(n(\varepsilon )\!\ge \!1\) such that \(\sum \nolimits _{n\ge n(\varepsilon )}{\psi }^n(d(x_0,x_1))<\varepsilon \). Let \(m>n>n(\varepsilon )\). By using the triangular inequality, we obtain

$$\begin{aligned} d(x_n,x_m)\le \sum \limits _{k=n}^{m-1}d(x_k,x_{k+1})\le \sum \limits _{k=n}^{m-1}{\psi }^k(d(x_0,x_1)) \le \sum \limits _{n\ge n(\varepsilon )}{\psi }^n(d(x_0,x_1))<\varepsilon . \end{aligned}$$

Thus, \(\{x_n\}_{n\ge 0}\) is a Cauchy sequence. Therefore, there exists \(x^*\in X\) such that \(x_n\rightarrow x^*\). By using the assumption, we get \(\alpha (x_n,x^*)\ge 1\) for all \(n\). Now, we show that \(d(x^*,Tx)\le \psi (d(x^*,x))\) for all \(x\in X\setminus \{x^*\}\) with \(\alpha (x_n,x)\ge 1\) for all \(n\). Suppose that \(x\in X\setminus \{x^*\}\) with \(\alpha (x_n,x)\ge 1\) for all \(n\). Since \(x_n\rightarrow x^*\), there exists \(n_0\in N\) such that \(d(x_n,x^*)\le \frac{1}{3}d(x,x^*)\) for all \(n\ge n_0\). Then,

$$\begin{aligned} \theta (r)d(x_n,Tx_n)&\le d(x_n,Tx_n)\le d(x_n,x_{n+1})\le d(x_n,x^*)+d(x^*,x_{n+1})\\&= d(x_n,x^*)+d(x^*,x_{n+1})\le \frac{2}{3}d(x,x^*)=d(x,x^*)-\frac{1}{3}d(x,x^*)\\&\le d(x,x^*)-d(x^*,x_n)\le d(x,x_n) \quad (*) \end{aligned}$$

and so \(H(Tx_n,Tx)\le \alpha (x_n,x)H(Tx_n,Tx)\le \psi (M(x_n,x))\), where

$$\begin{aligned} M(x_n,x)=\max \Big \{d(x_n,x),\frac{1}{2}\max \{d(x_n,Tx_n),d(x,Tx)\},\frac{d(x,Tx_n)+d(x_n,Tx)}{2}\Big \}. \end{aligned}$$

Thus, \(d(x_{n+1},Tx)\le \psi (M(x_n,x))\) for all \(n\ge n_0\). Therefore, if \(M(x_n,x)=d(x_n,x)\) or \(M(x_n,x)=\frac{1}{2}d(x_n,Tx_n)\), then by using (*) we have \(d(x_{n+1},Tx)\le \psi (d(x_n,x))\) and so \(\lim \nolimits _{n\rightarrow \infty }d(x_{n+1},Tx)\le \lim \nolimits _{n\rightarrow \infty }\psi (d(x_n,x))\Rightarrow d(x^*,Tx)\le \psi (d(x^*,x))\). Now, note that if \(M(x_n,x)=\frac{1}{2}d(x,Tx)\), then \(d(x_{n+1},Tx)\le \psi (\frac{1}{2}d(x,Tx))\le \frac{1}{2}\psi (d(x,x_n))+\frac{1}{2}d(x_n,Tx)\) and so \(\lim \nolimits _{n\rightarrow \infty }d(x_{n+1},Tx)\le \frac{1}{2}\lim \nolimits _{n\rightarrow \infty }\psi (d(x,x_n))+\frac{1}{2} \lim \nolimits _{n\rightarrow \infty }d(x_n,Tx)\). Hence, we obtain \(d(x^*,Tx)\le \psi (d(x^*,x))\). If \(M(x_n,x)=\frac{d(x,Tx_n)+d(x_n,Tx)}{2}\), then

$$\begin{aligned} d(x_{n+1},Tx)\le \psi \left( \frac{d(x,Tx_n)+d(x_n,Tx)}{2}\right) \le \frac{1}{2}\psi (d(x,x_{n+1}))+\frac{1}{2}d(x_n,Tx) \end{aligned}$$

and so \(d(x^*,Tx)\le \psi (d(x^*,x))\). Therefore, we prove the claim. Again by using the assumption, we get \(\alpha (x,x^*)\ge 1\) and so \(H(Tx,Tx^*)\le \alpha (x,x^*)H(Tx,Tx^*)\). Now, we show that \(H(Tx,Tx^*)\le \psi (M(x,x^*))\). If \(x\ne x^*\), then we get three cases. First, suppose that \(0\le r\le \frac{1}{2}(\sqrt{5}-1)\). Then, \(\theta (r)=\frac{1}{2}\) and

$$\begin{aligned} d(x,Tx)\le d(x,x^*)+d(x^*,Tx)\le d(x,x^*)+\psi (d(x^*,x))<2d(x,x^*) \end{aligned}$$

Hence, \(\theta (r)d(x,Tx)\le d(x,x^*)\) and so \(H(Tx,Tx^*)\le \psi (M(x,x^*))\). Now, suppose that \(\frac{1}{2}(\sqrt{5}-1)\le r\le \frac{1}{\sqrt{2}}\). Then, \(\theta (r)=\frac{1-r}{2r^2}\). In this case, for each \(n\ge 1\) there exists \(y_n\in Tx\) such that \(d(x^*,y_n)\le d(x^*,Tx)+ \frac{1}{n} d(x^*,x)\). Thus,

$$\begin{aligned} d(x,Tx)\le d(x,y_n)&\le d(x,x^*)+d(x^*,y_n)\le d(x,x^*)+d(x^*,Tx)+\frac{1}{n} d(x^*,x)\\&\le d(x,x^*)+ \psi (d(x,x^*))+\frac{1}{n}d(x^*,x)< \left( 2+\frac{1}{n}\right) d(x^*,x) \end{aligned}$$

for all \(n\ge 1\) and so

$$\begin{aligned} \theta (r)d(x,Tx) = \frac{1}{2}d(x,Tx)\le d(x^*,x)\Rightarrow H(Tx,Tx^*)\le \psi (M(x,x^*)). \end{aligned}$$

Finally, suppose that \(\frac{1}{\sqrt{2}}\le r<1\). Then, \(\theta (r)=\frac{1}{1+2r}\). For each \(n\ge 1\), there exists \(z_{n} \in Tx\) such that \(d(x^{*}, z_{n})\le d(x^{*}, Tx)+ \left( \frac{1}{4}+\frac{1}{n}\right) d(x^{*}, x)\). Hence,

$$\begin{aligned} d(x,Tx)&\le d(x,z_{n})\le d(x,x^*)+d(x^{*},z_{n}) \le d(x, x^*)+ d(x^{*},Tx)\!+\! \left( \frac{1}{4}\!+\!\frac{1}{n}\right) d(x^*,x)\\&\le d(x,x^*) + \psi (d(x,x^*)) \!+\!\left( \frac{1}{4}\!+\!\frac{1}{n}\right) d(x^{*},x) < \left( 2+\left( \frac{1}{4}\!+\!\frac{1}{n}\right) \right) d(x^*,x) \end{aligned}$$

for all \(n\). Thus, \(d(x,Tx)\le \left( 2+\frac{1}{4}\right) d(x^*,x)=\frac{9}{4} d(x^*,x)\). This implies that

$$\begin{aligned} \theta (r) d(x,Tx)= \frac{1}{1+2r}d(x,Tx) \le \frac{4}{9}d(x,Tx) \le d(x^*,x) \end{aligned}$$

and   so \(H(Tx,Tx^{*})\le \psi (M(x,x^{*}))\). Thus, \(d(x^*,Tx^*)=\lim \nolimits _{n\rightarrow \infty }d(x_{n+1},Tx^*)\le \lim \nolimits _{n\rightarrow \infty } H(Tx_n,Tx^*)\le \lim \nolimits _{n\rightarrow \infty } \psi (M(x_n,x^*))\). If \(M(x_n,x^*)=d(x_n,x^*)\), then \(d(x^*,Tx^*)\le \lim \nolimits _{n\rightarrow \infty }\psi (d(x_n,x^*))=0\) and so we get \(d(x^*,Tx^*)=0\). If \(M(x_n,x^*)=\frac{1}{2}d(x_n,Tx_n)\), then

$$\begin{aligned} d(x^*,Tx^*)\le \lim \limits _{n\rightarrow \infty }\psi \left( \frac{1}{2}d(x_n,Tx_n)\right) \le \lim \limits _{n\rightarrow \infty }\psi (d(x_n,x_{n+1}))=0. \end{aligned}$$

If \(M(x_n,x^*)=\frac{1}{2}d(x^*,Tx^*)\), then \(d(x^*,Tx^*)\le \lim \nolimits _{n\rightarrow \infty }\psi (\frac{1}{2}d(x^*,Tx^*))<\frac{1}{2}d(x^*,Tx^*)\) which is a contradiction. If \(M(x_n,x^*)=\frac{d(x_n,Tx^*)+d(x^*,Tx_n)}{2}\), then

$$\begin{aligned}&d(x^*,Tx^*)\le \lim \limits _{n\rightarrow \infty }\psi \left( \frac{d(x_n,Tx^*)+d(x^*,Tx_n)}{2}\right) \le \frac{1}{2} \lim \limits _{n\rightarrow \infty } \psi (d(x_{n},x^*))\\&\quad +\frac{1}{2} \lim \limits _{n\rightarrow \infty } \psi (d(x^*,Tx^*)) +\frac{1}{2} \lim \limits _{n\rightarrow \infty } \psi (d(x^*,x_{n+1}))\le \frac{1}{2} \psi (d(x^*,Tx^*)). \end{aligned}$$

Therefore, \(d(x^*,Tx^*)=0\) and so \(x^*\in Tx^*\). \(\square \)