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Abstract In this paper, we introduce generalized α-ψ-contractive mappings and multifunc-
tions and give some results about fixed points of the mappings and multifunctions.
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1 Introduction

During the last few decades, there have appeared a lot of papers on fixed points of multi-
functions with different methods (see for example [1–9]). One of the most interesting meth-
ods is due to Suzuki for fixed points of mappings and multifunctions (see [10] and [11]).
Recently, Samet, Vetro and Vetro have introduced the notion of α-ψ-contractive type map-
pings [12]. Denote by � the family of nondecreasing functions ψ : [0,∞) → [0,∞) such
that

∑∞
n=1 ψ

n(t) < ∞ for all t > 0, whereψn is the nth iterate ofψ . It is known thatψ(t) < t
for all t > 0 andψ ∈ � [12]. Also, there are a lot of sublinear mappings in� [13]. Let (X, d)
be a metric space and T a selfmap on X . Then T is called a α-ψ-contraction mapping when-
ever there exist ψ ∈ � and α : X × X → [0,∞) such that α(x, y)d(T x, T y) ≤ ψ(d(x, y))
for all x, y ∈ X [12]. Also, we say that T is α-admissible whenever α(x, y) ≥ 1 implies
α(T x, T y) ≥ 1 [12]. Also, we say that X has the property (B) respect to α if {xn} is a
sequence in X such that α(xn, xn+1) ≥ 1 for all n ≥ 1 and xn → x , then α(xn, x) ≥ 1 for
all n ≥ 1 [12].

Let (X, d) be a complete metric space and T a α-admissible α-ψ-contractive mapping on
X . Suppose that there exists x0 ∈ X such that α(x0, T x0) ≥ 1. If T is continuous or X has the
property (B) respect toα, then T has a fixed point ([12]; Theorems 2.1 and 2.2). Finally, we say
that X has the property (H) whenever for each x, y ∈ X there exists z ∈ X such thatα(x, z) ≥
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1 and α(y, z) ≥ 1. If X has the property (H) in the Theorems 2.1 and 2.2, then T has a unique
fixed point ([12]; Theorem 2.3). It is considerable that the results of Samet, Vetro and Vetro
generalize similar ordered results in the literature (see the results of the third section in [12]).
Now, by using the main idea of [14], we introduce a new notion. We say that T is a generalized
α-ψ-contractive mapping whenever α(x, y)d(T x, T y) ≤ ψ(M(x, y)) for all x, y ∈ X ,
where M(x, y) = max{d(x, y), d(x, T x), d(y, T y), 1

2 max{d(x, T y), d(y, T x)}}. Through-
out the paper, we suppose that ψ ∈ � is sublinear and α : X × X → [0,∞) is a mapping.

2 Main results

Now, we are ready to state and prove our main results.

Theorem 2.1 Let (X, d) be a complete metric space and T a continuous generalized α-ψ-
contractive and α-admissible selfmap on X. If there exists x0 ∈ X such that α(x0, T x0) ≥ 1,
then T has a fixed point.

Proof Take x0 ∈ X such that α(x0, T x0) ≥ 1. Define the sequence {xn}n≥0 in X by xn+1 =
T xn for all n ≥ 0. If xn = xn+1 for some n ≥ 0, then x∗ = xn is a fixed point for T . Assume
that xn �= xn+1 for all n ≥ 0. Since T is α-admissible, we get α(xn, xn+1) ≥ 1 for all n ≥ 1.
But, we have

d(x1, x2) = d(T x0, T x1) ≤ α(x0, x1)d(T x0, T x1) ≤ ψ(M(x0, x1)),

where

M(x0, x1) = max{d(x0, x1), d(x0, T x0), d(x1, T x1),
1

2
max{d(x0, T x1), d(x1, T x0)}}

= max{d(x0, x1), d(x1, x2),
1

2
d(x0, x2)}.

Note that, M(x0, x1) �= d(x1, x2)because if M(x0, x1) = d(x1, x2), then we have d(x1, x2)≤
ψ(d(x1, x2))<d(x1, x2) which is a contradiction. Thus,

M(x0, x1) = max

{

d(x0, x1),
1

2
d(x0, x2)

}

.

If M(x0, x1) = d(x0, x1), then d(x1, x2) ≤ ψ(d(x0, x1)) and if M(x0, x1) = 1
2 d(x0, x2),

then

d(x1, x2) ≤ ψ

(
d(x0, x2)

2

)

≤ ψ(d(x0, x1))+ ψ(d(x1, x2))

2
<

1

2
ψ(d(x0, x1))+ 1

2
d(x1, x2)

because ψ is sublinear. Hence, d(x1, x2) ≤ ψ(d(x0, x1)). Now by using induction, we
obtain d(xn, xn+1) ≤ ψn(d(x0, x1)) for all n. Fix ε > 0 and choose n(ε) ≥ 1 such that∑

n≥n(ε) ψ
n(d(x0, x1)) < ε. Let m > n > n(ε). By using the triangular inequality, we obtain

d(xn, xm) ≤ ∑m−1
k=n d(xk, xk+1) ≤ ∑m−1

k=n ψ
k(d(x0, x1)) ≤ ∑

n≥n(ε) ψ
n(d(x0, x1)) < ε.

Thus, {xn}n≥0 is a Cauchy sequence. Therefore, there exists x∗ ∈ X such that xn → x∗.
Thus, xn+1 = T xn → T x∗ and so x∗ is a fixed point of T . 	

Example 2.1 Let X = [0,+∞) and d(x, y) = |x − y| for all x, y ∈ X . Define the selfmap
T on X by T x = x + 8 whenever 0 ≤ x ≤ 1 and T x = 9 whenever x > 1, and

α(x, y) =
⎧
⎨

⎩

2 x, y ∈ [0, 1] or x, y ∈ [8n, 8n + 1], f or some n ≥ 1,
1 x ∈ [0, 1] and y ∈ [8, 9],
0 otherwise.
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If we define ψ(t) = t
2 for all t ≥ 0, then it is easy to check that T is a generalized

α-ψ-contractive mapping. In fact, for each x, y ∈ [0, 1] with x ≤ y we have

2 × |x − y| = α(x, y)d(T x, T y) ≤ ψ(M(x, y)) = 1

2
× 8 = 4.

For x ∈ [0, 1] and y ∈ (
1, 81

19

)
we have

0 × |x − 9| = α(x, y)d(T x, T y) ≤ ψ(M(x, y)) = 1

2
× |y − 9|.

For x ∈ [0, 1] and y ≥ 81
19 we have

0 × |x − 9| = α(x, y)d(T x, T y) ≤ ψ(M(x, y)) = 1

2
|x − y|.

Let x, y ∈ [8(n − 1), 8n] for some n ≥ 1 and x ≤ y. Then

2 × 0 = α(x, y)d(T x, T y) ≤ ψ(M(x, y)) = 1

2
× |x − 9|.

If x ∈ [0, 1] and y ∈ [8, 9], then

1 × |x − 1| = α(x, y)d(T x, T y) ≤ ψ(M(x, y)) = 1

2
max{|x − y|, 8}.

Also, for x0 = 0 we have α(0, T 0) = α(0, 8) = 1. Obviously T is continuous and so it
remains to show that T is α-admissible. If x, y ∈ [0, 1] or x, y ∈ [8n, 8n + 1] for some
n ≥ 1, then α(x, y) = α(T x, T y) = 2. If x ∈ [0, 1] and y ∈ [8, 9], then α(x, y) = 1 and
α(T x, T y) = 2. Hence, T is α-admissible. Now, note that T has the fixed point x0 = 9.
Finally, note that α(x, y)d(T x, T y) � ψ(d(x, y)) for all x, y ∈ [0, 1]. Thus, the last result
is a generalization of Theorem 2.1 in [12].

Now, we state multifunction version of our results. For A, B ∈ C B(X), let

H(A, B) = max

{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)

}

,

where d(x, B) = inf y∈B d(x, y). It is well known that H is a metric on C B(X). Such a map
H is called Hausdorff metric induced by d . Similar to mapping case, we say that the multi-
function T : X → C B(X) on a metric space X is a generalized α-ψ-contraction whenever
α(x, y)H(T x, T y) ≤ ψ(M(x, y)) for all x, y ∈ X , where M(x, y) = max{d(x, y), d(x,
T x), d(y, T y), 1

2 max{d(x, T y), d(y, T x)}}.
Theorem 2.2 Let (X, d) be a complete metric space, α : X × X → [0,+∞) a mapping,
ψ ∈ � and T : X → C B(X) a generalized α-ψ-contractive multifunction such that
α(x, y) ≥ 1 implies α(u, v) ≥ 1 for all u ∈ T x and v ∈ T y. Suppose that there exists
x0 ∈ X and x1 ∈ T x0 such that α(x0, x1) ≥ 1. If X has the property (B) respect to α, then,
T has a fixed point.

Proof Take x0 ∈ X and x1 ∈ T x0 such that α(x0, x1) ≥ 1. If x0 = x1, then x0 is a fixed
point for T . Let x0 �= x1. Then,

H(T x0, T x1) ≤ α(x0, x1)H(T x0, T x1) ≤ ψ(M(x0, x1)),

where M(x0, x1) = max{d(x0, x1), d(x1, T x1),
1
2 d(x0, T x1)} because x1 ∈ T x0. Let x1 /∈

T x1. Then M(x0, x1) �= d(x1, T x1). Thus, M(x0, x1) = max{d(x0, x1),
1
2 d(x0, T x1)}. If
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M(x0, x1) = d(x0, x1), then d(x1, T x1) ≤ ψ(d(x0, x1)). If M(x0, x1) = 1
2 d(x0, T x1), then

d(x1, T x1) ≤ ψ( 1
2 d(x0, T x1)) ≤ 1

2ψ(d(x0, x1))+ 1
2ψ(d(x1, T x1)) and so

d(x1, T x1) <
1

2
ψ(d(x0, x1))+ 1

2
d(x1, T x1) ⇒ d(x1, T x1) ≤ ψ(d(x0, x1))

because ψ is sublinear. Thus there exists x2 ∈ T x1 such that d(x1, x2) ≤ ψ(d(x0, x1)).
Let x1 �= x2. Then, H(T x1, T x2) ≤ α(x1, x2)H(T x1, T x2) ≤ ψ(M(x1, x2)) and α(x1, x2)

≥ 1, where M(x1, x2) = max{d(x1, x2), d(x2, T x2),
1
2 d(x1, T x2)} because x2 ∈ T x1. Let

x2 /∈ T x2. Thus, M(x1, x2) = max{d(x1, x2),
1
2 d(x1, T x2)}. If M(x1, x2) = d(x1, x2), then

d(x2, T x2) ≤ ψ(d(x1, x2)). If M(x1, x2)= 1
2 d(x1, T x2), then d(x2, T x2)<

1
2ψ(d(x1, x2))+

1
2 d(x2, T x2) because ψ is sublinear. Thus, we get d(x2, T x2) ≤ ψ(d(x1, x2)). This implies
that there exists x3 ∈T x2 such that d(x2, x3)≤ψ(d(x1, x2)) and so d(x2, x3)≤ψ2(d(x0, x1)).
By continuing this steps, we obtain a sequence {xn}n≥0 in X such that xn+1 ∈ T xn ,α(xn, xn+1)

≥ 1 and d(xn, xn+1) ≤ ψn(d(x0, x1)) for all n ≥ 0. Fix ε > 0 and choose n(ε) ≥ 1 such
that

∑
n≥n(ε) ψ

n(d(x0, x1)) < ε. Let m > n > n(ε). By using the triangular inequality, we
obtain

d(xn, xm) ≤
m−1∑

k=n

d(xk, xk+1) ≤
m−1∑

k=n

ψk(d(x0, x1)) ≤
∑

n≥n(ε)

ψn(d(x0, x1)) < ε.

Thus, {xn}n≥0 is a Cauchy sequence. Hence, there exists x∗ ∈ X such that xn → x∗. Note
that, α(xn, x∗) ≥ 1 for all n. Moreover, we have

H(T xn, T x∗) ≤ α(xn, x∗)H(T xn, T x∗) ≤ ψ(M(xn, x∗))

for all n, where

M(xn, x∗) = max{d(xn, x∗), d(xn, T xn), d(x∗, T x∗), 1

2
max{d(xn, T x∗), d(x∗, T xn)}}.

If M(xn, x∗) = d(xn, x∗), then d(xn+1, T x∗) ≤ H(T xn, T x∗) ≤ ψ(d(xn, x∗)). In the case
M(xn, x∗) = d(xn, T xn), we have

d(xn+1, T x∗) ≤ H(T xn, T x∗) ≤ ψ(d(xn, T xn)) ≤ ψ(d(xn, xn+1)).

If M(xn, x∗) = d(x∗, T x∗), then x∗ ∈ T x∗. In fact, if x∗ /∈ T x∗, then d(x∗, T x∗) > 0 and
so d(xn+1, T x∗) ≤ H(T xn, T x∗) ≤ ψ(d(x∗, T x∗)). Hence,

d(x∗, T x∗) = lim
n→+∞ d(xn+1, T x∗) ≤ ψ(d(x∗, T x∗)) < d(x∗, T x∗)

which is a contradiction. If M(xn, x∗) = 1
2 d(xn, T x∗), then

d(xn+1, T x∗) ≤ H(T xn, T x∗) ≤ ψ

(
1

2
d(xn, T x∗)

)

≤ 1

2
d(xn, T x∗).

If M(xn, x∗) = 1
2 d(x∗, T xn), then we have

d(xn+1, T x∗) ≤ H(T xn, T x∗) ≤ ψ

(
1

2
d(x∗, T xn)

)

≤ 1

2
ψ(d(x∗, xn+1)).

Since ψ is continuous at t = 0, we get d(x∗, T x∗) = 0 and so x∗ ∈ T x∗. 	
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Example 2.2 Let X = [−2,−1]∪{0}∪[1, 5
2 ] and d(x, y) = |x − y| for all x, y ∈ X . Define

the multivalued T : X → C B(X) by

T x =
⎧
⎨

⎩

[− x
4 + 2, 5

2 ] x ∈ [−2,− 3
2 )

{0} x ∈ {−1, 0, 1} ∪ (2, 5
2 ] ∪ [− 3

2 ,−1)[− 3
2 ,− x

4 − 1
]

x ∈ (1, 2],
ψ(t) = 4t

5 for all t ≥ 0 and α : X × X → [0,+∞) by

α(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 x, y ∈
[

− 2,− 3
2

)
or x, y ∈ (1, 2]

1 x ∈
[

− 2,− 3
2

)
∪ (1, 2] and y ∈ {−1, 0, 1} ∪

(
2, 5

2

]
∪

[
− 3

2 ,−1
)

3
2 x, y ∈ {−1, 0, 1} ∪

(
2, 5

2

]
∪

[
− 3

2 ,−1
)

1
2 x ∈

[
− 2,− 3

2

)
and y ∈ (1, 2]

with α(x, y) = α(y, x) for all x, y ∈ X . One can check that (X, d) is a complete metric
space, X has the property (B) respect to α and T is a closed and bounded valued generalized
α-ψ-contractive multifunction on X . Note that, for x0 = −2 we have T x0 = { 5

2 } and

α
(
−2, 5

2

)
= 1. Therefore, T satisfies the conditions Theorem 2.2.

Now by mixing our idea with the Suzuki’s idea, we give the following result. We say
that the multifunction T : X → C B(X) on a metric spaces X is a Suzuki-generalized
α-ψ-contraction if θ(r)d(x, T x) ≤ d(x, y) implies α(x, y)H(T x, T y) ≤ ψ(M(x, y)) for
all x, y ∈ X , where M(x, y) = max{d(x, y), 1

2 max{d(x, T x), d(y, T y)}, d(x,T y)+d(y,T x)
2 }

and

θ(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2 0 ≤ r ≤ 1

2 (
√

5 − 1),

1−r
2r2

1
2 (

√
5 − 1) ≤ r ≤ 1√

2
,

1
1+2r

1√
2

≤ r < 1.

Finally, we say that X has the property (C) respect to α whenever for each sequence {xn} in
X and x ∈ X such that α(xn, x) ≥ 1 for all n and xn → x∗ ∈ X we have α(x∗, x) ≥ 1.

Theorem 2.3 Let (X, d) be a complete metric space, α : X × X → [0,+∞) a mapping,
ψ ∈ � and T : X → C B(X) a Suzuki-generalized α-ψ-contractive multifunction such that
α(x, y) ≥ 1 implies α(u, v) ≥ 1 for all u ∈ T x and v ∈ T y. Suppose that there exists
x0 ∈ X and x1 ∈ T x0 such that α(x0, x1) ≥ 1. If X has the property (C) respect to α, then
T has a fixed point.

Proof Take x0 ∈ X and x1 ∈ T x0 such that α(x0, x1) ≥ 1. If x0 = x1, then x0 is
a fixed point of T . Let x1 �= x0. Since θ(r) ≤ 1, θ(r)d(x0, T x0) ≤ d(x0, T x0) ≤
d(x0, x1) and so d(x1, T x1) ≤ H(T x0, T x1) ≤ α(x0, x1)H(T x0, T x1) ≤ ψ(M(x0, x1)),
where M(x0, x1) = max{d(x0, x1),

1
2 d(x1, T x1),

1
2 d(x0, T x1)} because x1 ∈ T x0. Now, let

x1 /∈ T x1. Then M(x0, x1) �= 1
2 d(x1, T x1). If M(x0, x1) = d(x0, x1), then d(x1, T x1) ≤

H(T x0, T x1) ≤ ψ(d(x0, x1)). If M(x0, x1) = 1
2 d(x0, T x1), then

d(x1, T x1) ≤ H(T x0, T x1) ≤ ψ(
1

2
d(x0, T x1)) ≤ 1

2
ψ(d(x0, x1))+ 1

2
ψ(d(x1, T x1))
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and so d(x1, T x1) <
1
2ψ(d(x0, x1)) + 1

2 d(x1, T x1). Hence, d(x1, T x1) ≤ ψ(d(x0, x1)).
Thus, there exists x2 ∈ T x1 such that d(x1, x2) ≤ ψ(d(x0, x1)). By continuing this process,
we obtain a sequence {xn}n≥0 in X such that xn+1 ∈ T xn ,α(xn, xn+1) ≥ 1 and d(xn, xn+1)≤
ψn(d(x0, x1)) for all n ≥0. Fix ε > 0 and choose n(ε)≥1 such that

∑
n≥n(ε) ψ

n(d(x0, x1)) <

ε. Let m > n > n(ε). By using the triangular inequality, we obtain

d(xn, xm) ≤
m−1∑

k=n

d(xk, xk+1) ≤
m−1∑

k=n

ψk(d(x0, x1)) ≤
∑

n≥n(ε)

ψn(d(x0, x1)) < ε.

Thus, {xn}n≥0 is a Cauchy sequence. Therefore, there exists x∗ ∈ X such that xn → x∗.
By using the assumption, we get α(xn, x∗) ≥ 1 for all n. Now, we show that d(x∗, T x) ≤
ψ(d(x∗, x)) for all x ∈ X \ {x∗} with α(xn, x) ≥ 1 for all n. Suppose that x ∈ X \ {x∗} with
α(xn, x) ≥ 1 for all n. Since xn → x∗, there exists n0 ∈ N such that d(xn, x∗) ≤ 1

3 d(x, x∗)
for all n ≥ n0. Then,

θ(r)d(xn, T xn) ≤ d(xn, T xn) ≤ d(xn, xn+1) ≤ d(xn, x∗)+ d(x∗, xn+1)

= d(xn, x∗)+ d(x∗, xn+1) ≤ 2

3
d(x, x∗) = d(x, x∗)− 1

3
d(x, x∗)

≤ d(x, x∗)− d(x∗, xn) ≤ d(x, xn) (∗)
and so H(T xn, T x) ≤ α(xn, x)H(T xn, T x) ≤ ψ(M(xn, x)), where

M(xn, x) = max
{

d(xn, x),
1

2
max{d(xn, T xn), d(x, T x)}, d(x, T xn)+ d(xn, T x)

2

}
.

Thus, d(xn+1, T x) ≤ ψ(M(xn, x)) for all n ≥ n0. Therefore, if M(xn, x) = d(xn, x) or
M(xn, x) = 1

2 d(xn, T xn), then by using (*) we have d(xn+1, T x) ≤ ψ(d(xn, x)) and so
limn→∞ d(xn+1, T x) ≤ limn→∞ ψ(d(xn, x)) ⇒ d(x∗, T x) ≤ ψ(d(x∗, x)). Now, note
that if M(xn, x) = 1

2 d(x, T x), then d(xn+1, T x) ≤ ψ( 1
2 d(x, T x)) ≤ 1

2ψ(d(x, xn)) +
1
2 d(xn, T x) and so limn→∞ d(xn+1, T x) ≤ 1

2 limn→∞ ψ(d(x, xn))+ 1
2 limn→∞ d(xn, T x).

Hence, we obtain d(x∗, T x) ≤ ψ(d(x∗, x)). If M(xn, x) = d(x,T xn)+d(xn ,T x)
2 , then

d(xn+1, T x) ≤ ψ

(
d(x, T xn)+ d(xn, T x)

2

)

≤ 1

2
ψ(d(x, xn+1))+ 1

2
d(xn, T x)

and so d(x∗, T x) ≤ ψ(d(x∗, x)). Therefore, we prove the claim. Again by using the as-
sumption, we get α(x, x∗) ≥ 1 and so H(T x, T x∗) ≤ α(x, x∗)H(T x, T x∗). Now, we show
that H(T x, T x∗) ≤ ψ(M(x, x∗)). If x �= x∗, then we get three cases. First, suppose that
0 ≤ r ≤ 1

2 (
√

5 − 1). Then, θ(r) = 1
2 and

d(x, T x) ≤ d(x, x∗)+ d(x∗, T x) ≤ d(x, x∗)+ ψ(d(x∗, x)) < 2d(x, x∗)

Hence, θ(r)d(x, T x) ≤ d(x, x∗) and so H(T x, T x∗) ≤ ψ(M(x, x∗)). Now, suppose that
1
2 (

√
5 − 1) ≤ r ≤ 1√

2
. Then, θ(r) = 1−r

2r2 . In this case, for each n ≥ 1 there exists yn ∈ T x

such that d(x∗, yn) ≤ d(x∗, T x)+ 1
n d(x∗, x). Thus,

d(x, T x) ≤ d(x, yn) ≤ d(x, x∗)+ d(x∗, yn) ≤ d(x, x∗)+ d(x∗, T x)+ 1

n
d(x∗, x)

≤ d(x, x∗)+ ψ(d(x, x∗))+ 1

n
d(x∗, x) <

(

2 + 1

n

)

d(x∗, x)
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for all n ≥ 1 and so

θ(r)d(x, T x) = 1

2
d(x, T x) ≤ d(x∗, x) ⇒ H(T x, T x∗) ≤ ψ(M(x, x∗)).

Finally, suppose that 1√
2

≤ r < 1. Then, θ(r) = 1
1+2r . For each n ≥ 1, there exists zn ∈ T x

such that d(x∗, zn) ≤ d(x∗, T x)+ ( 1
4 + 1

n

)
d(x∗, x). Hence,

d(x, T x) ≤ d(x, zn) ≤ d(x, x∗)+ d(x∗, zn) ≤ d(x, x∗)+ d(x∗, T x)+
(

1

4
+ 1

n

)

d(x∗, x)

≤ d(x, x∗)+ ψ(d(x, x∗))+
(

1

4
+ 1

n

)

d(x∗, x) <

(

2 +
(

1

4
+ 1

n

))

d(x∗, x)

for all n. Thus, d(x, T x) ≤ (
2 + 1

4

)
d(x∗, x) = 9

4 d(x∗, x). This implies that

θ(r)d(x, T x) = 1

1 + 2r
d(x, T x) ≤ 4

9
d(x, T x) ≤ d(x∗, x)

and so H(T x, T x∗) ≤ ψ(M(x, x∗)). Thus, d(x∗, T x∗) = limn→∞ d(xn+1, T x∗) ≤ limn→∞
H(T xn, T x∗) ≤ limn→∞ ψ(M(xn, x∗)). If M(xn, x∗) = d(xn, x∗), then d(x∗, T x∗) ≤
limn→∞ ψ(d(xn, x∗)) = 0 and so we get d(x∗, T x∗) = 0. If M(xn, x∗) = 1

2 d(xn, T xn),
then

d(x∗, T x∗) ≤ lim
n→∞ψ

(
1

2
d(xn, T xn)

)

≤ lim
n→∞ψ(d(xn, xn+1)) = 0.

If M(xn, x∗) = 1
2 d(x∗, T x∗), then d(x∗, T x∗) ≤ limn→∞ ψ( 1

2 d(x∗, T x∗)) < 1
2 d(x∗, T x∗)

which is a contradiction. If M(xn, x∗) = d(xn ,T x∗)+d(x∗,T xn)
2 , then

d(x∗, T x∗) ≤ lim
n→∞ψ

(
d(xn, T x∗)+ d(x∗, T xn)

2

)

≤ 1

2
lim

n→∞ψ(d(xn, x∗))

+1

2
lim

n→∞ψ(d(x
∗, T x∗))+ 1

2
lim

n→∞ψ(d(x
∗, xn+1)) ≤ 1

2
ψ(d(x∗, T x∗)).

Therefore, d(x∗, T x∗) = 0 and so x∗ ∈ T x∗. 	


Acknowledgments The authors are grateful to the reviewers for their useful comments. Research of the first
and second authors was supported by Azarbaidjan Shahid Madani University.

References

1. Kilm, D., Wardowski, D.: Dynamic processes and fixed points of set-valued nonlinear contractions in
cone metric spaces. Nonlinear Anal. 71, 5170–5175 (2009)

2. Balaj, M.: A unified generalization of two Halpern’s fixed point theorems and applications. Num. Funct.
Anal. Optim. 23(1–2), 105–111 (2002)

3. Halpern, B.: Fixed point theorems for set-valued maps in infinite dimensional spaces. Math. Ann.
189, 87–98 (1970)

4. Rezapour, Sh, Amiri, P.: Fixed point of multivalued operators on ordered generalized metric spaces. Fixed
Point Theory 13(1), 173–178 (2012)

5. Rezapour, Sh, Amiri, P.: Some fixed point results for multivalued operators in generalized metric spaces.
Comput. Math. Appl. 61, 2661–2666 (2011)

6. Rezapour, Sh, Khandani, H., Vaezpour, S.M.: Efficacy of cones on topological vector spaces and appli-
cation to common fixed points of multifunctions. Rend. Circ. Mat. Palermo 59, 185–197 (2010)



526 P. Amiri et al.

7. Rezapour, Sh, Haghi, R.H.: Fixed point of multifunctions on cone metric spaces. Num. Func. Anal. Optim.
30(7–8), 825–832 (2009)

8. Rezapour, Sh, Haghi, R.H.: Two results about fixed points of multifunctions. Bull. Iranian Math. Soc.
36(2), 279–287 (2010)

9. Aleomraninejad, S.M.A., Rezapour, Sh, Shahzad, N.: Fixed points of hemi-convex multifunctions. Topol.
Methods Nonlinear Anal. 37(2), 383–389 (2011)

10. Kikkawa, M., Suzuki, T.: Three fixed point theorems for generalized contractions with constants in
complete metric spaces. Nonlinear Anal. 69, 2942–2949 (2008)

11. Suzuki, T.: A generalized Banach contraction principle that characterizes metric completeness. Proc.
Amer. Math. Soc. 136, 1861–1869 (2008)

12. Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal.
75, 2154–2165 (2012)

13. Rezapour, Sh, Haghi, R.H., Rhoades, B.E.: Some results about T-stability and almost T-stability. Fixed
Point Theory 12(1), 179–186 (2011)

14. B. Djafari Rouhani, S. Moradi, Common fixed point of multivalued generalized ϕ-weak contractive
mappings, Fixed Point Theory Appl. Article ID 708984, 13 pages (2010)


	Fixed points of generalized α-ψ-contractions
	Abstract
	1 Introduction
	2 Main results
	Acknowledgments
	References


