1 Introduction and preliminaries

Let \(\mathcal {A}\) denote the class of functions of the form:

$$\begin{aligned} f(z)=z+\sum \limits _{n=2}^{\infty }a_{n}z^{n}, \end{aligned}$$
(1.1)

which are analytic in the open unit disk \(\mathbb {U}=\left\{ z:\left| z\right| <1\right\} \). Further, by \(\mathcal {S}\) we shall denote the class of all functions in \(\mathcal {A}\) which are univalent in \(\mathbb {U}\). It is well known that every function \(f\in \mathcal {S}\) has an inverse \(f^{-1}\), defined by

$$\begin{aligned} f^{-1}(f(z))=z\quad (z\in \mathbb {U}) \end{aligned}$$

and

$$\begin{aligned} f(f^{-1}(w))=w\qquad \left( \left| w\right| <r_{0}(f);\,r_{0} (f)\ge \frac{1}{4}\right) \end{aligned}$$

where

$$\begin{aligned} f^{-1}(w)=w-a_{2}w^{2}+(2a_{2}^{2}-a_{3})w^{3}-(5a_{2}^{3}-5a_{2}a_{3} +a_{4})w^{4}+\cdots . \end{aligned}$$

A function \(f\in \mathcal {A}\) is said to be in \(\Sigma \), the class of bi-univalent functions in \(\mathbb {U}\), if both f(z) and \(f^{-1}(z)\) are univalent in \(\mathbb {U}\). Lewin [9] showed that \(|a_{2}|<1.51\) for every function \(f\in \Sigma \) given by (1.1). Posteriorly, Brannan and Clunie [3] improved Lewin’s result and conjectured that \(|a_{2}|\le \sqrt{2}\) for every function \(f\in \Sigma \) given by (1.1). Later, Netanyahu [11] showed that \(\underset{f\in \Sigma }{\max }|a_{2}|=\frac{4}{3}\). The coefficient estimate problem for each of the following Taylor-Maclaurin coefficients:

$$\begin{aligned} |a_{n}|\quad \left( n\in \mathbb {N}=\{1,2,\dots \}; n\ge 4\right) \end{aligned}$$

is still an open problem (see, for details, [15]). Since then, many researchers (see [2, 5,6,7, 14, 16, 18, 19]) investigated several interesting subclasses of the class \(\Sigma \) and found non-sharp estimates on the first two Taylor-Maclaurin coefficients \(|a_{2}|\) and \(|a_{3}|\). In fact, its worth to mention that by making use of the Faber polynomial coefficient expansions Jahangiri and Hamidi [8] have obtained estimates for the general coefficients \(|a_{n}|\) for bi-univalent functions subject to certain gap series.

Let \(\mathcal {P}\) denote the class of function of p analytic in \(\mathbb {U}\) such that \(p(0)=1\) and \(\text{ Re }\left\{ p(z)\right\} >0,\) where

$$\begin{aligned}p(z)=1+p_1z +p_2z^2+\dots \quad (z\in \mathbb {U}).\end{aligned}$$

Now we recall the unified subordination due to Ma and Minda [10]:

Let \(\varphi \) be an analytic function with positive real part in the unit disk \(\mathbb {U}\) such that

$$\begin{aligned} \varphi (0)=1,\varphi ^{\prime }(0)>0 \end{aligned}$$

and \(\varphi (\mathbb {U})\) is symmetric with respect to the real axis and has a series expansion of the form:

$$\begin{aligned} \varphi (z)=1+B_{1}z+B_{2}z^{2}+B_{3}z^{3}+\cdots { \ \ \ }(B_{1} >0). \end{aligned}$$

Let u(z) and v(z) be two analytic functions in the unit disk \(\mathbb {U}\) with \(u(0)=v(0)=0,\)\(\left| u(z)\right|<1,\left| v(z)\right| <1,\) and suppose that

$$\begin{aligned} u(z)=b_{1}z+b_{2}z^{2}+b_{3}z^{3}+\cdots \text { and }v(w)=c_{1}w+c_{2} w^{2}+c_{3}w^{3}+\cdots . \end{aligned}$$
(1.2)

We observe that

$$\begin{aligned} \left| b_{1}\right| \le 1,\,\left| b_{2}\right| \le 1-\left| b_{1}\right| ^{2},\,\left| c_{1}\right| \le 1\text { and }\left| c_{2}\right| \le 1-\left| c_{1}\right| ^{2}. \end{aligned}$$
(1.3)

Further we have

$$\begin{aligned} \varphi (u(z))=1+B_{1}b_{1}z+(B_{1}b_{2}+B_{2}b_{1}^{2})z^{2}+\cdots \ \ \ (\left| z\right| <1) \end{aligned}$$
(1.4)

and

$$\begin{aligned} \ \ \varphi (v(w))=1+B_{1}c_{1}w+(B_{1}c_{2}+B_{2}c_{1}^{2})w^{2}+\cdots \ \ \ (\left| w\right| <1). \end{aligned}$$
(1.5)

Making use of the binomial series

$$\begin{aligned} (1-\gamma )^{m}=\sum \limits _{j=0}^{m}\left( {\begin{array}{c}m\\ j\end{array}}\right) (-1)^{j}\gamma ^{j} \ \ \ \ (m\in \mathbb {N}=\{1,2,\dots \},\quad j\in \mathbb {N}_{0}=\mathbb {N\cup \{}0\mathbb {\})}, \end{aligned}$$

recently for \(f\in \mathcal {A}\), Frasin [4] defined the differential operator \(D_{m,\lambda }^{\zeta }f(z)\) as follows:

$$\begin{aligned} D^{0}f(z)&=f(z),\nonumber \\ D_{m,\gamma }^{1}f(z)&=(1-\gamma )^{m}f(z)+(1-(1-\gamma )^{m})zf^{\prime }(z)=D_{m,\lambda }f(z),\,\gamma >0; m\in \mathbb {N},\nonumber \\ D_{m,\gamma }^{\zeta }f(z)&=D_{m,\gamma }(D^{\zeta -1}f(z))\nonumber \\&=z+\sum \limits _{n=2}^{\infty }\left[ 1+(n-1)C_{j}^{m}(\gamma )\right] ^{\zeta }a_{n}z^{n}; \zeta \in \mathbb {N}_0, \end{aligned}$$
(1.6)

where

$$\begin{aligned} C_{j}^{m}(\gamma )=\sum \limits _{j=1}^{m}\left( {\begin{array}{c}m\\ j\end{array}}\right) (-1)^{j+1}\gamma ^{j}. \end{aligned}$$

Using the relation (1.6), it is easily verified that

$$\begin{aligned} C_{j}^{m}(\gamma )z(D_{m,\gamma }^{\zeta }f(z))^{\prime }=D_{m,\gamma }^{\zeta +1}f(z)-(1-C_{j}^{m}(\gamma ))D_{m,\gamma }^{\zeta }f(z). \end{aligned}$$
(1.7)

By specializing the parameters we observe that, for \(m=1\), \(D_{1,\lambda }^{\zeta }\) defined by Al-Oboudi [1] and for \(m=\gamma =1\), \(D_{1,1}^{\zeta }\) defined by Sălăgean [13].

The main object of this paper is to introduce the following new subclasses of bi-univalent functions involving Frasin differential operator \(D_{m,\lambda }^{\zeta }\) [4] and to obtain bounds for the Taylor-Maclaurin coefficients \(|a_{2}|\) and \(|a_{3}|\). Further, we discuss Fekete–Szegö functional problems for functions in these new classes.

2 The function class \(\mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi )\)

Definition 2.1

A function \(f(z)\in \Sigma \) is said to be in the class \(\mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi )\) if and only if

$$\begin{aligned} (1-\lambda )\frac{D_{m,\gamma }^{\zeta }f(z)}{z}+\lambda (D_{m,\gamma }^{\zeta }f(z))^{\prime }\prec \varphi (z) \end{aligned}$$

and

$$\begin{aligned} (1-\lambda )\frac{D_{m,\gamma }^{\zeta }g(w)}{w}+\lambda (D_{m,\gamma }^{\zeta }g(w))^{\prime }\prec \varphi (w) \end{aligned}$$

where \(0\le \lambda \le 1\), \(z,w ~in~ \mathbb {U}\) and \(g(w)=f^{-1}(w).\)

For \(\lambda =1\), the class \(\mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi )\) reduces to the following class.

Definition 2.2

A function \(f(z)\in \Sigma \) is said to be in the class \(\mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ;\varphi )\) if and only if

$$\begin{aligned} (D_{m,\gamma }^{\zeta }f(z))^{\prime }\prec \varphi (z) \end{aligned}$$

and

$$\begin{aligned} (D_{m,\gamma }^{\zeta }g(w))^{\prime }\prec \varphi (w) \end{aligned}$$

where \(z,w ~in~ \mathbb {U}\) and \(g(w)=f^{-1}(w).\)

Remark 2.3

We note that \(\mathcal {B}_{\Sigma }^{0}(m,\gamma ,\lambda ;\varphi )=\mathcal {B} _{\Sigma }(\lambda ;\varphi )\) and \(\mathcal {B}_{\Sigma }^{0}(m,\gamma ;\varphi )=\mathcal {H}_{\Sigma }(\varphi )\), where the classes \(\mathcal {B} _{\Sigma }(\lambda ;\varphi )\) and \(\mathcal {H}_{\Sigma }(\varphi )\) were introduced and studied by Peng and Han [12].

In the following theorem we find estimates on the coefficients \(|a_{2}|\) and \(|a_{3}|\) for functions \(f\in \mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi ).\)

Theorem 2.4

If f(z) given by (1.1) is in the class \(\mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi )\). Then

$$\begin{aligned} \left| a_{2}\right| \le \frac{B_{1}\sqrt{B_{1}}}{\sqrt{\chi +B_{1}(1+\lambda )^{2}\left( 1+C_{j}^{m}(\gamma )\right) ^{2\zeta }}} \end{aligned}$$
(2.1)

and

$$\begin{aligned} \left| a_{3}\right| \le \left\{ \begin{array}[c]{c} \frac{B_{1}}{(1+2\lambda )\left( 1+2C_{j}^{m}(\gamma )\right) ^{\zeta }} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text { if }B_{1} <\frac{(1+\lambda )^{2}\left( 1+C_{j}^{m}(\gamma )\right) ^{2\zeta }}{(1+2\lambda )\left( 1+2C_{j}^{m}(\gamma )\right) ^{\zeta }}\\ \frac{\chi B_{1}+(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }B_{1}^{3} }{(1+2\lambda )\left( 1+2C_{j}^{m}(\gamma )\right) ^{\zeta }\left( \chi +(1+\lambda )^{2}\left( 1+C_{j}^{m}(\gamma )\right) ^{2\zeta }B_{1}\right) }\, \text { if }B_{1}\ge \frac{(1+\lambda )^{2}\left( 1+C_{j}^{m}(\gamma )\right) ^{2\zeta }}{(1+2\lambda )\left( 1+2C_{j} ^{m}(\gamma )\right) ^{\zeta }} \end{array} \right. , \end{aligned}$$
(2.2)

where

$$\begin{aligned} \chi =\left| B_{1}^{2}(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta } -B_{2}(1+\lambda )^{2}(1+C_{j}^{m}(\gamma ))^{2\zeta }\right| . \end{aligned}$$

Proof

Let \(f(z)\in \mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi )\). Then there are analytic functions u and v, with \(u(0)=v(0)=0,\)\(\left| u(z)\right|<1,\left| v(z)\right| <1,\) given by (1.2) and satisfying the following conditions:

$$\begin{aligned} (1-\lambda )\frac{D_{m,\gamma }^{\zeta }f(z)}{z}+\lambda (D_{m,\gamma }^{\zeta }f(z))^{\prime }=\varphi (u(z)) \end{aligned}$$
(2.3)

and

$$\begin{aligned} (1-\lambda )\frac{D_{m,\gamma }^{\zeta }g(w)}{w}+\lambda (D_{m,\gamma }^{\zeta }g(w))^{\prime }=\varphi (v(w)), \end{aligned}$$
(2.4)

where \(g(w)=f^{-1}(w)\). Since

$$\begin{aligned}&(1-\lambda )\frac{D_{m,\gamma }^{\zeta }f(z)}{z}+\lambda (D_{m,\gamma }^{\zeta }f(z))^{\prime }\nonumber \\&=1+(1+\lambda )(1+C_{j}^{m}(\gamma ))^{\zeta }a_{2}z+(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }a_{3}z^{2}+\cdots \end{aligned}$$
(2.5)

and

$$\begin{aligned}&(1-\lambda )\frac{D_{m,\gamma }^{\zeta }g(w)}{w}+\lambda (D_{m,\gamma }^{\zeta }g(w))^{\prime }\nonumber \\&=1-(1+\lambda )(1+C_{j}^{m}(\gamma ))^{\zeta }a_{2}w+(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }(2a_{2}^{2}-a_{3})w^{2}+\cdots , \end{aligned}$$
(2.6)

it follows from (1.4), (1.5), (2.5) and (2.6) that

$$\begin{aligned} (1+\lambda )\left( 1+C_{j}^{m}(\gamma )\right) ^{\zeta }a_{2}&=B_{1}b_{1}, \end{aligned}$$
(2.7)
$$\begin{aligned} (1+2\lambda )\left( 1+2C_{j}^{m}(\gamma )\right) ^{\zeta }a_{3}&=B_{1}b_{2}+B_{2}b_{1} ^{2}, \end{aligned}$$
(2.8)
$$\begin{aligned} -(1+\lambda )\left( 1+C_{j}^{m}(\gamma )\right) ^{\zeta }a_{2}&=B_{1}c_{1}, \end{aligned}$$
(2.9)

and

$$\begin{aligned} (1+2\lambda )\left( 1+2C_{j}^{m}(\gamma )\right) ^{\zeta }(2a_{2}^{2}-a_{3})=B_{1}c_{2} +B_{2}c_{1}^{2}. \end{aligned}$$
(2.10)

From (2.7) and (2.9), we get

$$\begin{aligned} c_{1}=-b_{1} \end{aligned}$$
(2.11)

and

$$\begin{aligned} 2\left[ \left( 1+C_{j}^{m}(\gamma )\right) ^{\zeta }(1+\lambda )\right] ^{2}a_{2}^{2}=B_{1}^{2}(b_{1} ^{2}+c_{1}^{2}). \end{aligned}$$
(2.12)

By adding (2.8) to (2.10), we have

$$\begin{aligned} 2(1+2C_{j}^{m}(\gamma ))^{\zeta }(1+2\lambda )a_{2}^{2}=B_{1}(b_{2}+c_{2} )+B_{2}(b_{1}^{2}+c_{1}^{2}). \end{aligned}$$
(2.13)

Therefore, from equalities (2.12) and (2.13) we find that

$$\begin{aligned}{}[2(1+2C_{j}^{m}(\gamma ))^{\zeta }(1+2\lambda )B_{1}^{2}-2B_{2}\left( (1+C_{j}^{m}(\gamma ))^{\zeta }(1+\lambda )\right) ^{2}]a_{2}^{2}=B_{1} ^{3}(b_{2}+c_{2}). \nonumber \\ \end{aligned}$$
(2.14)

Then, in view of (2.7), (2.11) and (1.3), we obtain

$$\begin{aligned}&\left| [2(1+2C_{j}^{m}(\gamma ))^{\zeta }(1+2\lambda )B_{1}^{2} -2B_{2}\left( (1+C_{j}^{m}(\gamma ))^{\zeta }(1+\lambda )\right) ^{2} ]\right| \left| a_{2}\right| ^{2} \\&\le B_{1}^{3}(\left| b_{2}\right| +\left| c_{2}\right| )\le 2B_{1}^{3}(1-\left| b_{1}\right| ^{2})=2B_{1}^{3}-2B_{1}\left( (1+C_{j}^{m}(\gamma ))^{\zeta }(1+\lambda )\right) ^{2}\left| a_{2} \right| ^{2}. \end{aligned}$$

Thus, we get

$$\begin{aligned} \left| a_{2}\right| \le \frac{B_{1}\sqrt{B_{1}}}{\sqrt{\chi +B_{1}(1+\lambda )^{2}(1+C_{j}^{m}(\gamma ))^{2\zeta }}}, \end{aligned}$$

where

$$\begin{aligned} \chi =\left| B_{1}^{2}(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta } -B_{2}(1+\lambda )^{2}(1+C_{j}^{m}(\gamma ))^{2\zeta }\right| . \end{aligned}$$

Next, in order to find the bound on \(\left| a_{3}\right| \), subtracting (2.10) from (2.8) and using (2.11), we get

$$\begin{aligned} 2(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }a_{3}=2(1+2\lambda )(1+2C_{j} ^{m}(\gamma ))^{\zeta }a_{2}^{2}+B_{1}(b_{2}-c_{2}). \end{aligned}$$
(2.15)

Then in view of (1.3) and (2.11), we have

$$\begin{aligned} 2(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }\left| a_{3}\right|&\le 2(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }\left| a_{2}\right| ^{2}+B_{1}(\left| b_{2}\right| +\left| c_{2}\right| )\\&\le 2(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }\left| a_{2}\right| ^{2}+2B_{1}(1-\left| b_{1}\right| ^{2}). \end{aligned}$$

From (2.7), we immediately have

$$\begin{aligned}&B_{1}(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }\left| a_{3}\right| \\&\le \left| B_{1}(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta } -(1+\lambda )^{2}(1+C_{j}^{m}(\gamma ))^{2\zeta }\right| \left| a_{2}\right| ^{2}+B_{1}^{2}. \end{aligned}$$

Now the assertion (2.2) follows from (2.1). This evidently completes the proof of Theorem 2.4. \(\square \)

By taking \(\lambda =1\) in Theorem 2.4, we have

Corollary 2.5

If f(z) given by (1.1) is in the class \(\mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ;\varphi )\). Then

$$\begin{aligned} \left| a_{2}\right| \le \frac{B_{1}\sqrt{B_{1}}}{\sqrt{\tau +4B_{1}(1+C_{j}^{m}(\gamma ))^{2\zeta }}} \end{aligned}$$
(2.16)

and

$$\begin{aligned} \left| a_{3}\right| \le \left\{ \begin{array}[c]{c} \frac{B_{1}}{3(1+2C_{j}^{m}(\gamma ))^{\zeta }} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text { if }B_{1} <\frac{4(1+C_{j}^{m}(\gamma ))^{2\zeta }}{3(1+2C_{j}^{m}(\gamma ))^{\zeta }}\\ \frac{\tau B_{1}+3(1+2C_{j}^{m}(\gamma ))^{\zeta }B_{1}^{3}}{3(1+2C_{j}^{m}(\gamma ))^{\zeta }\left( \tau +4(1+C_{j}^{m}(\gamma ))^{2\zeta }B_{1}\right) }\, \text { if }B_{1}\ge \frac{4(1+C_{j}^{m}(\gamma ))^{2\zeta }}{3(1+2C_{j}^{m}(\gamma ))^{\zeta }} \end{array}\right. , \end{aligned}$$
(2.17)

where

$$\begin{aligned} \tau =\left| 3B_{1}^{2}(1+2C_{j}^{m}(\gamma ))^{\zeta }-4B_{2}(1+C_{j} ^{m}(\gamma ))^{2\zeta }\right| . \end{aligned}$$

Putting \(\zeta =0\) in Theorem 2.4, we have

Corollary 2.6

[12] Let f(z) given by (1.1) be in the class \(\mathcal {B}_{\Sigma }(\lambda ;\varphi )\). Then

$$\begin{aligned} \left| a_{2}\right| \le \frac{B_{1}\sqrt{B_{1}}}{\sqrt{\left| B_{1}^{2}(1+2\lambda )-B_{2}(1+\lambda )^{2}\right| +B_{1}(1+\lambda )^{2}}} \end{aligned}$$
(2.18)

and

$$\begin{aligned} \left| a_{3}\right| \le \left\{ \begin{array}[c]{c} \frac{B_{1}}{(1+2\lambda )} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text { if } B_{1}<\frac{(1+\lambda )^{2}}{(1+2\lambda )}\\ \frac{\left| B_{1}^{2}(1+2\lambda )-B_{2}(1+\lambda )^{2}\right| B_{1}+(1+2\lambda )B_{1}^{3}}{(1+2\lambda )\left( \left| B_{1} ^{2}(1+2\lambda )-B_{2}(1+\lambda )^{2}\right| +(1+\lambda )^{2}\right) }\, \text { if }B_{1}\ge \frac{(1+\lambda )^{2}}{(1+2\lambda )} \end{array}\right. . \end{aligned}$$
(2.19)

Putting \(\zeta =0\) in Corollary 2.5, we have

Corollary 2.7

[12] If f(z) given by (1.1) is in the class \(\mathcal {H} _{\Sigma }(\varphi )\). Then

$$\begin{aligned} \left| a_{2}\right| \le \frac{B_{1}\sqrt{B_{1}}}{\sqrt{\left| 3B_{1}^{2}-4B_{2}\right| +4B_{1}}} \end{aligned}$$
(2.20)

and

$$\begin{aligned} \left| a_{3}\right| \le \left\{ \begin{array}[c]{c} \frac{B_{1}}{3} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text { if }B_{1}<\frac{4}{3} \\ \frac{\left| 3B_{1}^{2}-4B_{2}\right| B_{1}+3B_{1}^{3}}{3\left( \left| 3B_{1}^{2}-4B_{2}\right| +4B_{1}\right) }\,\text { if } B_{1}\ge \frac{4}{3} \end{array} \right. . \end{aligned}$$
(2.21)

Remark 2.8

If

$$\begin{aligned} \varphi (z)=\left( \frac{1+z}{1-z}\right) ^{\alpha }=1+2\alpha z+2\alpha ^{2}z^{2}+\cdots {\, }(0<\alpha \le 1) \end{aligned}$$
(2.22)

in Corollary 2.6, then we have Theorem 2.2 in [7].

If

$$\begin{aligned} \varphi (z)=\frac{1+(1-2\alpha )z}{1-z}=1+2(1-\alpha )z+2(1-\alpha )z^{2} +\cdots \ \ \ (0<\alpha \le 1), \end{aligned}$$
(2.23)

then we have Theorem 3.2 in [7].

Also, if \(\zeta =0\) and \(\lambda =1,\) we have Theorem 2.1 in [12].

3 Fekete–Szegö inequalities for the function class \(\mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi )\)

Now, we are ready to find the sharp bounds of Fekete–Szegö functional \(a_{3}-\delta a_{2}^{2}\) defined for \(f\in \mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi )\) given by (1.1).

Theorem 3.1

Let f(z) given by (1.1) be in the class \(\mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ,\lambda ;\varphi )\). Then

$$\begin{aligned} \left| a_{3}-\delta a_{2}^{2}\right| \le \left\{ \begin{array}[c]{c} \frac{B_{1}}{(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }} \ \ \ \ \ \ \ \text { for }\, 0\le \,\left| h(\delta )\right| <\frac{1}{2(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }}\\ 2B_{1}\left| h(\delta )\right| \ \ \ \ \ \ \ \text { for }\,\left| h(\delta )\right| \ge \frac{1}{2(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }} \end{array}\right. , \end{aligned}$$
(3.1)

where

$$\begin{aligned} h(\delta )=\frac{B_{1}^{2}(1-\delta )}{2B_{1}^{2}(1+2\lambda )(1+2C_{j} ^{m}(\gamma ))^{\zeta }-2B_{2}(1+\lambda )^{2}(1+C_{j}^{m}(\gamma ))^{2\zeta }}. \end{aligned}$$

Proof

From (2.14) and (2.15), we get

$$\begin{aligned} a_{2}^{2}=\frac{B_{1}^{3}(b_{2}+c_{2})}{2\left[ B_{1}^{2}(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }-B_{2}(1+\lambda )^{2}(1+C_{j}^{m} (\gamma ))^{2\zeta }\right] } \end{aligned}$$
(3.2)

and

$$\begin{aligned} a_{3}=\frac{2(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }a_{2}^{2}+B_{1} (b_{2}-c_{2})}{2(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }}. \end{aligned}$$
(3.3)

From the Eqs. (3.2) and (3.3), it follows that

$$\begin{aligned} a_{3}-\delta a_{2}^{2}&=B_{1}\left[ \left( h(\delta )+\frac{1}{2(1+2\lambda )(1+2C_{j}^{m}(\gamma ))^{\zeta }}\right) b_{2}\right. \\&\left. \ \ \ +\left( h(\delta )-\frac{1}{2(1+2\lambda )(1+2C_{j}^{m} (\gamma ))^{\zeta }}\right) c_{2}\right] , \end{aligned}$$

where

$$\begin{aligned} h(\delta )=\frac{B_{1}^{2}(1-\delta )}{2B_{1}^{2}(1+2\lambda )(1+2C_{j} ^{m}(\gamma ))^{\zeta }-2B_{2}(1+\lambda )^{2}(1+C_{j}^{m}(\gamma ))^{2\zeta }}. \end{aligned}$$

Since all \(B_{i}\) are real and \(B_{1}>0\), which implies the assertion (3.1). This completes the proof of Theorem 3.1. \(\square \)

By taking \(\lambda =1\) in Theorem 3.1, we have

Corollary 3.2

Let f(z) given by (1.1) be in the class \(\mathcal {B}_{\Sigma }^{\zeta }(m,\gamma ;\varphi )\). Then

$$\begin{aligned} \left| a_{3}-\delta a_{2}^{2}\right| \le \left\{ \begin{array}[c]{c} \frac{B_{1}}{3(1+2C_{j}^{m}(\gamma ))^{\zeta }} \ \ \ \ \ \ \ \ \ \ \ \ \text { for } \, 0\le \,\left| h(\delta )\right| <\frac{1}{6(1+2C_{j}^{m} (\gamma ))^{\zeta }} \\ 2B_{1}\left| h(\delta )\right| \ \ \ \ \ \ \ \text { for }\,\left| h(\delta )\right| \ge \frac{1}{6(1+2C_{j}^{m}(\gamma ))^{\zeta }} \end{array} \right. , \end{aligned}$$
(3.4)

where

$$\begin{aligned} h(\delta )=\frac{B_{1}^{2}(1-\delta )}{6B_{1}^{2}(1+2C_{j}^{m}(\gamma ))^{\zeta }-8B_{2}(1+C_{j}^{m}(\gamma ))^{2\zeta }}. \end{aligned}$$

Remark 3.3

Putting \(\zeta =0\) in Corollary 3.2, we get Corollary 4 in [17].

Putting \(\zeta =0\) in Theorem 3.1, we have

Corollary 3.4

Let f(z) given by (1.1) be in the class \(\mathcal {B}_{\Sigma }(\lambda ;\varphi )\). Then

$$\begin{aligned} \left| a_{3}-\delta a_{2}^{2}\right| \le \left\{ \begin{array}[c]{c} \frac{B_{1}}{1+2\lambda } \ \ \ \ \ \ \ \ \ \qquad \quad \text { for }\,0\le \,\left| h(\delta )\right| <\frac{1}{2(1+2\lambda )}\\ 2B_{1}\left| h(\delta )\right| \ \ \ \ \text { for }\left| h(\delta )\right| \ge \frac{1}{2(1+2\lambda )} \end{array} \right. , \end{aligned}$$

where

$$\begin{aligned} h(\delta )=\frac{B_{1}^{2}(1-\delta )}{2[B_{1}^{2}(1+2\lambda )-B_{2} (1+\lambda )^{2}]}. \end{aligned}$$

Remark 3.5

If \(\varphi (z)\) is given by (2.22) then by Corollary 3.4, we have

$$\begin{aligned} \left| a_{3}-\delta a_{2}^{2}\right| \le \left\{ \begin{array}[c]{c} \frac{2\alpha }{1+2\lambda } \ \ \ \ \ \ \ \text { for }0\le \,\left| h(\delta )\right| <\frac{1}{2(1+2\lambda )}\\ 4\alpha \left| h(\delta )\right| \ \text { for } \ \ \ \ \left| h(\delta )\right| \ge \frac{1}{2(1+2\lambda )} \end{array} \right. , \end{aligned}$$

where

$$\begin{aligned} h(\delta )=\frac{1-\delta }{1+2\lambda -\lambda ^{2}}. \end{aligned}$$

Also, if \(\varphi (z)\) is given by (2.23) then we have

$$\begin{aligned} \left| a_{3}-\delta a_{2}^{2}\right| \le \left\{ \begin{array}[c]{c} \frac{2(1-\alpha )}{(1+2\lambda )} \ \ \ \ \ \ \ \text { for }0\le \,\left| h(\delta )\right| <\frac{1}{2(1+2\lambda )}\\ 4(1-\alpha )\left| h(\delta )\right| \text { for } \ \ \left| h(\delta )\right| \ge \frac{1}{2(1+2\lambda )} \end{array} \right. , \end{aligned}$$

where \( h(\delta )=\frac{(1-\alpha )(1-\delta )}{2(1-\alpha )(1+2\lambda )-(1+\lambda )^{2}}.\)