1 Introduction and definitions

Let \(\mathcal {T}\) denote the class of functions of the form:

$$\begin{aligned} f(z)=z-\sum \limits _{n=2}^{\infty }a_{n}z^{n},\quad a_{n}\ge 0, \end{aligned}$$
(1.1)

which are analytic and univalent in the open unit disk \(\mathcal {U} =\{z:\vert z\vert <1\}.\) Let \(T^{*}(\alpha )\) and \(C(\alpha )\) denote the subclasses of \(\mathcal {T}\) consisting of starlike and convex functions of order \(\alpha (0\le \alpha <1),\) respectively [11].

A function f of the form (1.1) is in \(\mathcal {S}(k,\lambda )\) if it satisfies the condition

$$\begin{aligned} \left| \frac{\frac{zf^{\prime }(z)}{(1-\lambda )f(z)+\lambda zf^{\prime }(z)}-1}{\frac{zf^{\prime }(z)}{(1-\lambda )f(z)+\lambda zf^{\prime }(z)}+1} \right|<k,\;(0<k\le 1,\text { }0\le \lambda <1,z\in \mathcal {U}) \end{aligned}$$
(1.2)

and \(f\in \, \mathcal {C}(k,\lambda )\) if and only if \(zf^{\prime }\in \mathcal {S}(k,\lambda ).\)

We note that \(\mathcal {S}(k,0)=\mathcal {S}(k)\) and \(\mathcal {C}(k,0)= \mathcal {C}(k)\), where the classes \(\mathcal {S}(k)\) and \(\mathcal {C}(k)\) were introduced and studied by Padmanabhan [8] (see also, [4, 7]).

Let F(abcz) be the (Gaussian) hypergeometric function defined by

$$\begin{aligned} F(a,b;c;z)=\sum \limits _{n=0}^{\infty }\frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} z^{n}, \end{aligned}$$
(1.3)

where \(c\ne 0,{-1},{-2},\ldots ,\) and \((x)_{n}\) is the Pochhammer symbol defined by

$$\begin{aligned} (x)_{n}:=\frac{\Gamma (x+n)}{\Gamma (x)}=\left\{ \begin{array}{ll} 1, &{} n=0, \\ x(x+1)(x+2)\cdots (x+n-1), &{} n\in \mathbb {N}:\{1,2,\ldots \}. \end{array} \right. \end{aligned}$$
(1.4)

We note that F(abc; 1) converges for \(\mathrm {Re}(c-a-b)>0\) and is related to the Gamma function by

$$\begin{aligned} F(a,b;c;1)=\frac{\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}. \end{aligned}$$
(1.5)

The Gauss hypergeometric function F(abcz) is one of the most important special functions in complex analysis. Due to its three defining parameters, its structure is extremely rich and contains almost all special functions as a particular or limiting case. Important orthogonal polynomials such as Chebyshev, Legendre, Gegenbauer, and Jacobi polynomials, can all be expressed with the F(abcz) function, see [9].

Silverman [12] gave necessary and sufficient conditions for zF(abcz) to be in the classes \(T^{*}{(\alpha )}\) and \(C {(\alpha )}\), and also examined a linear operator acting on hypergeometric functions. For more details, see the works done in [1,2,3,4,5,6, 10, 13].

In the present paper, we determine necessary and sufficient conditions for zF(abcz) to be in our new classes \(\mathcal {S}(k,\lambda )\) and \( \mathcal {C}(k,\lambda ).~\)Furthermore, we consider an integral operator related to hypergeometric functions.

The proof of Lemma 1.1 below is much akin to that of Theorem 1 in [7], so we choose to omit the details involved.

Lemma 1.1

  1. (i)

    A function f of the form (1.1) is in \(\mathcal {S} (k,\lambda )\) if and only if it satisfies

    $$\begin{aligned} \sum \limits _{n=2}^{\infty }[n((1-\lambda )+k(1+\lambda ))-(1-\lambda )(1-k)]a_{n}\le 2k \end{aligned}$$
    (1.6)

    where \(0<k\le 1\) and \(0\le \lambda <1.\) The result is sharp.

  2. (ii)

    A function f of the form (1.1) is in \( \mathcal {C}(k,\lambda )\) if and only if it satisfies

    $$\begin{aligned} \sum \limits _{n=2}^{\infty }n[n((1-\lambda )+k(1+\lambda ))-(1-\lambda )(1-k)]a_{n}\le 2k \end{aligned}$$
    (1.7)

    where \(0<k\le 1\) and \(0\le \lambda <1.\) The result is sharp.

2 The necessary and sufficient conditions

Unless otherwise mentioned, we shall assume in this paper that \(0<k\le 1\) and \(\ 0\le \lambda <1.\)

Theorem 2.1

  1. (i)

    If \(a,b>-1\), \(c>0,\) and \(ab<0\), then zF(abcz) is in \( \mathcal {S}(k,\lambda )\) if and only if

    $$\begin{aligned} c\ge a+b+1-\frac{((1-\lambda )+k(1+\lambda ))ab}{2k}. \end{aligned}$$
    (2.1)
  2. (ii)

    If \(a,b>0\), \(c>a+b+1,\) then \( F_{1}(a,b;c;z)=z(2-F(a,b;c;z))\) is in \(\mathcal {S}(k,\lambda )\) if and only if

    $$\begin{aligned} \frac{\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}\left( 1+\frac{ ((1-\lambda )+k(1+\lambda ))ab}{2k(c-a-b-1)}\right) \le 2. \end{aligned}$$
    (2.2)

Proof

  1. (i)

    The function zF(abcz) can be written as

    $$\begin{aligned} zF(a,b;c;z)= & {} z+\frac{ab}{c}\sum \limits _{n=2}^{\infty }\frac{ (a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}}z^{n} \nonumber \\= & {} z-\left| \frac{ab}{c}\right| \sum \limits _{n=2}^{\infty }\frac{ (a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}}z^{n}. \end{aligned}$$
    (2.3)

    According to (1.6) of Lemma 1.1, we must show that

    $$\begin{aligned} \sum \limits _{n=2}^{\infty }[n((1-\lambda )+k(1+\lambda ))+(1-\lambda )(k-1)] \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}}\le \left| \frac{c}{ ab}\right| 2k. \end{aligned}$$
    (2.4)

    Noting that \((\tau )_{n}=\tau (\tau +1)_{n-1}\) and then applying (1.5), we have

    $$\begin{aligned}&\sum \limits _{n=0}^{\infty }[n((1-\lambda )+k(1+\lambda ))+(1-\lambda )(k-1)]\frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n+1}} \\&\quad =\ (1-\lambda )+k(1+\lambda )\sum \limits _{n=0}^{\infty }\frac{ (a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n}}+2k\frac{c}{ab}\sum \limits _{n=1}^{ \infty }\frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}\ \\&\quad =(1-\lambda )+k(1+\lambda )\frac{\Gamma (c)\Gamma (c-a-b-1)}{\Gamma (c-a)\Gamma (c-b)}+2k\frac{c}{ab}\left( \frac{\Gamma (c)\Gamma (c-a-b)}{ \Gamma (c-a)\Gamma (c-b)}-1\right) \!. \end{aligned}$$

    Hence, (2.4) is equivalent to

    $$\begin{aligned}&\frac{\Gamma (c)\Gamma (c-a-b-1)}{\Gamma (c-a)\Gamma (c-b)}\left( (1-\lambda )+k(1+\lambda )+2k\frac{c-a-b-1}{ab}\right) \nonumber \\&\quad \le 2k\left( \frac{c}{ \left| ab\right| }+\frac{c}{ab}\right) =0. \end{aligned}$$
    (2.5)

    Thus, (2.5) is valid if and only if \((1-\lambda )+k(1+\lambda )+2k\frac{ c-a-b-1}{ab}\le 0\) or, \(c\ge a+b+1-\frac{((1-\lambda )+k(1+\lambda ))ab}{2k }.\)

  2. (ii)

    Since

    $$\begin{aligned} F_{1}(a,b;c;z)=z-\sum \limits _{n=2}^{\infty }\frac{(a)_{n-1}(b)_{n-1}}{ (c)_{n-1}(1)_{n-1}}z^{n}, \end{aligned}$$

    from the condition (1.6), we need only to show that

    $$\begin{aligned} \sum \limits _{n=2}^{\infty }[n((1-\lambda )+k(1+\lambda ))-(1-\lambda )(1-k)] \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}}\le 2k. \end{aligned}$$

    Now,

    $$\begin{aligned}&\sum \limits _{n=2}^{\infty }[n((1-\lambda )+k(1+\lambda ))-(1-\lambda )(1-k)]\frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}} \\&\quad =(1-\lambda )+k(1+\lambda )\sum \limits _{n=1}^{\infty }\frac{n(a)_{n}(b)_{n} }{(c)_{n}(1)_{n}}+2k\sum \limits _{n=1}^{\infty }\frac{(a)_{n}(b)_{n}}{ (c)_{n}(1)_{n}} \\&\quad =\frac{((1-\lambda )+k(1+\lambda ))ab}{c}\sum \limits _{n=1}^{\infty }\frac{ (a+1)_{n-1}(b+1)_{n-1}}{(c+1)_{n-1}(1)_{n-1}}+2k\sum \limits _{n=1}^{\infty } \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} \\&\quad =\frac{\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}\left( \frac{ ((1-\lambda )+k(1+\lambda ))ab}{c-a-b-1}+2k\right) -2k. \end{aligned}$$

    But this last expression is bounded above by 2k if and only if (2.2) holds. \(\square \)

Theorem 2.2

  1. (i)

    If \(a,b>-1\), \(ab<0,\)\(c>a+b+2\), then zF(abcz) is in \( \mathcal {C}(k,\lambda )\) if and only if

    $$\begin{aligned} ((1-\lambda )+k(1+\lambda ))(a)_{2}(b)_{2}+2((1-\lambda )+k(2+\lambda ))ab(c-a-b-2)+2k(c-a-b-2)_{2}\ge 0. \end{aligned}$$
    (2.6)
  2. (ii)

    If \(a,b>0,\)\(c>a+b+2,\) then \( F_{1}(a,b;c;z)=z(2-F(a,b;c;z))\) is in \(\mathcal {C}(k,\lambda )\) if and only if

    $$\begin{aligned}&\frac{\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}\left( \frac{ ((1-\lambda )+k(1+\lambda ))(a)_{2}(b)_{2}}{2k(c-a-b-2)_{2}}\nonumber \right. \\&\quad \left. +\left( \frac{ 1-\lambda +k(2+\lambda )}{k}\right) \left( \frac{ab}{c-a-b-1}\right) +1\right) \le 2. \end{aligned}$$
    (2.7)

Proof

  1. (i)

    From (2.3) and (1.7) it follows that

    $$\begin{aligned} \sum \limits _{n=2}^{\infty }n[n((1-\lambda )+k(1+\lambda ))-(1-\lambda )(1-k)] \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n-1}}\le \frac{2ck}{ \left| ab\right| }. \end{aligned}$$

    Writing

    $$\begin{aligned}&(n+2)[(n+2)((1-\lambda )+k(1+\lambda ))-(1-\lambda )(1-k)] \\&\quad =((1-\lambda )+k(1+\lambda ))(n+1)^{2}+((1-\lambda )+k(3+\lambda ))(n+1)+2k, \end{aligned}$$

    we see that

    $$\begin{aligned}&\sum \limits _{n=0}^{\infty }(n+2)[(n+2)((1-\lambda )+k(1+\lambda ))-(1-\lambda )(1-k)]\frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n+1}}\\&\quad =((1-\lambda )+k(1+\lambda ))\sum \limits _{n=0}^{\infty }(n+1)\frac{ (a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n}} \\&\qquad +\,((1-\lambda )+k(3-\lambda ))\sum \limits _{n=0}^{\infty }\frac{ (a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n}}+2k\sum \limits _{n=0}^{\infty }\frac{ (a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n+1}}\ \ \\&\quad =\ \frac{((1-\lambda )+k(1+\lambda ))(a+1)(b+1)}{c+1} \sum \limits _{n=0}^{\infty }\frac{(a+2)_{n}(b+2)_{n}}{(c+2)_{n}(1)_{n}} \\&\qquad +\,2[(1-\lambda )+k(2+\lambda )]\sum \limits _{n=0}^{\infty }\frac{ (a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n}}+\frac{2kc}{ab}\sum \limits _{n=0}^{ \infty }\frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}\ \\&\quad =\frac{\Gamma (c+1)\Gamma (c-a-b-2)}{\Gamma (c-a)\Gamma (c-b)}\left( \phantom {\frac{2k}{ab}} ((1-\lambda )+k(1+\lambda ))(a+1)(b+1)\right. \\&\qquad \left. +\,2[(1-\lambda )+k(2+\lambda )]\left( c-a-b-2\right) +\frac{2k}{ab} \left( c-a-b-2\right) _{2}\right) -\frac{2kc}{ab}. \end{aligned}$$

    This last expression is bounded above by \(2ck/\left| ab\right| ~\)if and only if 

    $$\begin{aligned}&((1-\lambda )+k(1+\lambda ))(a+1)(b+1)+2((1-\lambda )+k(2+\lambda ))\left( c-a-b-2\right) \\&\quad +\,\frac{2k}{ab}\left( c-a-b-2\right) _{2} \\&\quad \le 0, \end{aligned}$$

    which is equivalent to (2.6).

  2. (ii)

    In view of (1.7), we need only to show that

    $$\begin{aligned} \sum \limits _{n=2}^{\infty }n[n((1-\lambda )+k(1+\lambda ))-(1-\lambda )(1-k)] \frac{(a)_{n-1}(b)_{n-1}}{(c)_{n-1}(1)_{n-1}}\le 2k. \end{aligned}$$

    Now,

    $$\begin{aligned}&\sum \limits _{n=0}^{\infty }(n+2)[(n+2)((1-\lambda )+k(1+\lambda ))-(1-\lambda )(1-k)]\frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}}\nonumber \\&\quad =((1-\lambda )+k(1+\lambda ))\sum \limits _{n=0}^{\infty }(n+2)^{2}\frac{ (a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}}\nonumber \\&\qquad -\,(1-\lambda )(1-k)\sum \limits _{n=0}^{\infty }(n+2)\frac{(a)_{n+1}(b)_{n+1}}{ (c)_{n+1}(1)_{n+1}}. \end{aligned}$$
    (2.8)

    Writing \(n+2=(n+1)+1,\) we have

    $$\begin{aligned}&\sum \limits _{n=0}^{\infty }(n+2)\frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} =\sum \limits _{n=0}^{\infty }\frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n}} +\sum \limits _{n=0}^{\infty }\frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}},\nonumber \\&\sum \limits _{n=0}^{\infty }(n+2)^{2}\frac{(a)_{n+1}(b)_{n+1}}{ (c)_{n+1}(1)_{n+1}}\nonumber \\&\quad =\sum \limits _{n=0}^{\infty }(n+1)\frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n} }+2\sum \limits _{n=0}^{\infty }\frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n}} +\sum \limits _{n=0}^{\infty }\frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} \nonumber \\&\quad =\sum \limits _{n=1}^{\infty }\frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n-1}} +3\sum \limits _{n=0}^{\infty }\frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n}} +\sum \limits _{n=1}^{\infty }\frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}}. \end{aligned}$$
    (2.9)

    Substituting (2.9) into the right-hand side of (2.8), we obtain

    $$\begin{aligned}&((1-\lambda )+k(1+\lambda ))\sum \limits _{n=0}^{\infty }\frac{ (a)_{n+2}(b)_{n+2}}{(c)_{n+2}(1)_{n}}+2((1-\lambda )+k(2+\lambda ))\sum \limits _{n=0}^{\infty }\frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n}} \nonumber \\&\quad +\,2k\sum \limits _{n=0}^{\infty }\frac{(a)_{n+1}(b)_{n+1}}{(c)_{n+1}(1)_{n+1}} . \end{aligned}$$
    (2.10)

    Since \((a)_{n+j}=(a)_{j}(a+k)_{n},\ \)we write (2.10) as

    $$\begin{aligned}&\frac{((1-\lambda )+k(1+\lambda ))(a)_{2}(b)_{2}}{(c)_{2}}\frac{\Gamma (c+2)\Gamma (c-a-b-2)}{\Gamma (c-a)\Gamma (c-b)} \\&\quad +\,2((1-\lambda )+k(2+\lambda )){\frac{ab}{c}}{\frac{\Gamma (c+1)\Gamma (c-a-b-1)}{\Gamma (c-a)\Gamma (c-b)}} \\&\quad +\,2k\left( \frac{\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)} -1\right) . \end{aligned}$$

    By simplification, we see that the last expression is bounded above by \( (1-\alpha )\) if and only if (3.6) holds. \(\square \)

3 An integral operator

In the next theorems, we obtain similar-type in connections with a particular integral operator G(abcz) acting on F(abcz) as follows:

$$\begin{aligned} G(a,b;c;z)=\int \limits _{0}^{z}F(a,b;c;t)dt. \end{aligned}$$
(3.1)

Theorem 3.1

Let \(a,b>-1\), \(ab<0,\) and \(c>\max \{0,a+b\}.\) Then, G(abcz) defined by (3.1) is in \(\mathcal {S}(k,\lambda )\) if and only if

$$\begin{aligned}&\frac{\Gamma (c+1)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}\left( \frac{ ((1-\lambda )+k(1+\lambda ))}{ab}-\frac{(1-\lambda )(1-k)(c-a-b)}{ (a-1)_{2}(b-1)_{2}}\right) \nonumber \\&\quad +\,\frac{(1-\lambda )(1-k)(c-1)_{2}}{(a-1)_{2}(b-1)_{2}}\le 0. \end{aligned}$$
(3.2)

Proof

Since

$$\begin{aligned} G(a,b;c;z)=z-\frac{\left| ab\right| }{c}\sum \limits _{n=2}^{\infty } \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n}}z^{n}, \end{aligned}$$

by (1.6), we need to show that

$$\begin{aligned} \sum \limits _{n=2}^{\infty }[n((1-\lambda )+k(1+\lambda ))-(1-\lambda )(1-k)] \frac{(a+1)_{n-2}(b+1)_{n-2}}{(c+1)_{n-2}(1)_{n}}\le \frac{2kc}{\left| ab\right| }. \end{aligned}$$

Now,

$$\begin{aligned}&\sum \limits _{n=0}^{\infty }[n((1-\lambda )+k(1+\lambda ))-(1-\lambda )(1-k)] \frac{(a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n+2}}\\&\quad =((1-\lambda )+k(1+\lambda ))\sum \limits _{n=0}^{\infty }\frac{ (a+1)_{n}(b+1)_{n}}{(c+1)_{n}(1)_{n+1}}-(1-\lambda )(1-k)\frac{c}{ab} \sum \limits _{n=1}^{\infty }\frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n+1}} \\&\quad =\frac{\Gamma (c+1)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}\left( \frac{ (1-\lambda )+k(1+\lambda )}{ab}-\frac{(1-\lambda )(1-k)(c-a-b)}{ (a-1)_{2}(b-1)_{2}}\right) \\&\qquad +\,\frac{(1-\lambda )(1-k)(c-1)_{2}}{(a-1)_{2}(b-1)_{2}}-\frac{2kc}{ab}\le \frac{2kc}{\left| ab\right| }, \end{aligned}$$

which is equivalent to (3.2). \(\square \)

Now, we observe that \(G(a,b;c;z)\in \mathcal {C}(k,\lambda )\) if and only if \( zF(a,b;c;z)\in \mathcal {S}(k,\lambda ).\) Thus, any result of functions belonging to the class \(\mathcal {S}(k,\lambda )\) about zF leads to that of functions belonging to the class \(\mathcal {C}(k,\lambda )\). Hence, we obtain the following analogues to Theorem 2.1.

Theorem 3.2

Let \(a,b>-1\), \(ab<0,\) and \(c>a+b+2.\) Then, G(abcz) defined by (3.1) is in \(\mathcal {C}(k,\lambda )\) if and only if

$$\begin{aligned} c\ge a+b+1-\frac{((1-\lambda )+k(1+\lambda ))ab}{2k}. \end{aligned}$$

Letting \(\lambda =0\) in Theorems 2.12.23.1 and , we obtain the following corollaries.

Corollary 3.3

  1. (i)

    If \(a,b>-1\), \(c>0,\) and \(ab<0,\) then zF(abcz) is in \(\mathcal {S}(k)\) if and only if

    $$\begin{aligned} c\ge a+b+1-\frac{(1+k)ab}{2k}. \end{aligned}$$
    (3.3)
  2. (ii)

     If \(a,b>0\), \(c>a+b+1,\) then \( F_{1}(a,b;c;z)=z(2-F(a,b;c;z))\) is in \(\mathcal {S}(k)\) if and only if

    $$\begin{aligned} \frac{\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}\left( 1+\frac{ (1+k)ab}{2k(c-a-b-1)}\right) \le 2. \end{aligned}$$
    (3.4)

Corollary 3.4

  1. (i)

    If \(a,b>-1\), \(ab<0,\)\(c>a+b+2,\) then zF(abcz) is in \(\mathcal {C}(k)\) if and only if

    $$\begin{aligned} (1+k)(a)_{2}(b)_{2}+2(1+2k)ab(c-a-b-2)+2k(c-a-b-2)_{2}\ge 0. \end{aligned}$$
    (3.5)
  2. (ii)

     If \(a,b>0\), \(c>a+b+2,\) then \( F_{1}(a,b;c;z)=z(2-F(a,b;c;z))\) is in \(\mathcal {C}(k,\lambda )\) if and only if

    $$\begin{aligned} \frac{\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}\left( \frac{ (1+k)(a)_{2}(b)_{2}}{2k(c-a-b-2)_{2}}+\left( \frac{1+2k}{k}\right) \left( \frac{ab}{c-a-b-1}\right) +1\right) \le 2. \end{aligned}$$
    (3.6)

Corollary 3.5

Let \(a,b>-1\), \(ab<0,\) and \(c>\max \{0,a+b\}.\) Then, G(abcz) defined by (3.1) is in \(\mathcal {S}(k)\) if and only if

$$\begin{aligned} \frac{\Gamma (c+1)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}\left( \frac{(1+k) }{ab}-\frac{(1-k)(c-a-b)}{(a-1)_{2}(b-1)_{2}}\right) +\frac{(1-k)(c-1)_{2}}{ (a-1)_{2}(b-1)_{2}}\le 0. \end{aligned}$$
(3.7)

Let \(a,b>-1\), \(ab<0,\) and \(c>a+b+2.\) Then, G(abcz) defined by (3.1 ) is in \(\mathcal {C}(k)\) if and only if

$$\begin{aligned} c\ge a+b+1-\frac{(1+k)ab}{2k}. \end{aligned}$$