Let \(\Omega \) be a bounded pseudoconvex domain in \(\mathbb {C}^n\) and \(L^2_{(0,q)}(\Omega )\) denote the space of square integrable (0, q) forms for \(0\le q\le n\). The complex Laplacian \(\Box =\overline{\partial }\overline{\partial }^{*}+\overline{\partial }^{*}\overline{\partial }\) is a densely defined, closed, self-adjoint linear operator on \(L^2_{(0,q)}(\Omega )\). Hörmander in [7] showed that when \(\Omega \) is bounded and pseudoconvex, \(\Box \) has a bounded solution operator \(N_q\), called the \(\overline{\partial }\)-Neumann operator, for all q. Kohn in [9] showed that the Bergman projection, denoted by \(\mathbf {B}\) below, is connected to the \(\overline{\partial }\)-Neumann operator via the following formula

$$\begin{aligned} \mathbf {B}=\mathbf {I}-\overline{\partial }^*N_1\overline{\partial }\end{aligned}$$

where \(\mathbf {I}\) denotes the identity operator. For more information about the \(\overline{\partial }\)-Neumann problem we refer the reader to two books [4, 15].

Let \(A^2(\Omega )\) denote the space of square integrable holomorphic functions on \(\Omega \) and \(\phi \in L^{\infty }(\Omega )\). The Hankel operator with symbol \(\phi , H_{\phi }: A^2(\Omega )\rightarrow L^2({\Omega })\) is defined by

$$\begin{aligned} H_{\phi }g=[\phi ,\mathbf {B}]g=\left( \mathbf {I}-\mathbf {B}\right) \left( \phi g\right) . \end{aligned}$$

Using Kohn’s formula one can immediately see that

$$\begin{aligned} H_{\phi }g=\overline{\partial }^*N_1( g\overline{\partial }\phi ) \end{aligned}$$

for \(\phi \in C^1(\overline{\Omega })\). It is clear that \(H_{\phi }\) is a bounded operator; however, its compactness depends on both the function theoretic properties of the symbol \(\phi \) as well as the geometry of the boundary of the domain \(\Omega \) (see [6]).

The following observation is relevant to our work here. Let \(\Omega \) be a bounded pseudoconvex domain in \(\mathbb {C}^n\) and \(\phi \in C(\overline{\Omega })\). If \(\overline{\partial }\)-Neumann operator \(N_1\) is compact on \(L^2_{(0,1)}(\Omega )\) then the Hankel operator \(H_{\phi }\) is compact (see [15, Proposition 4.1]).

We are interested in the converse of this observation. Namely,

Assume that \(\Omega \) is a bounded pseudoconvex domain in \(\mathbb {C}^n\) and \(H_{\phi }\) is compact on \(A^2(\Omega )\) for all symbols \(\phi \in C(\overline{\Omega })\). Then is the \(\overline{\partial }\)-Neumann operator \(N_1\) compact on \(L^2_{(0,1)}(\Omega )?\)

This is known as D’Angelo’s question and first appeared in [12, Remark 2].

The answer to D’Angelo’s question is still open in general but there are some partial results. Fu and Straube in [13] showed that the answer is yes if \( \Omega \) is convex. Çelik and the first author [2, Corollary 1] observed that if \(\Omega \) is not pseudoconvex then the answer to D’Angelo’s question may be no. Indeed, they constructed an annulus type domain \(\Omega \) where \(H_{\phi }\) is compact on \(A^2(\Omega )\) for all symbols \(\phi \in C(\overline{\Omega })\); yet, the \(\overline{\partial }\)-Neumann operator \(N_1\) is not compact on \(L^2_{(0,1)}(\Omega )\).

FormalPara Remark 1

One can extend the definition of Hankel operators from holomorphic functions to the \(\overline{\partial }\)-closed (0, q)-forms (denoted by \(K^2_{(0,q)}(\Omega )\)) and ask the analogous problem at the forms level. In this case, an affirmative answer was obtained in [3]. Namely, for \(1\le q\le n-1\) if \(H^q_{\phi }=[\phi , \mathbf {B}_q]\) is compact on \(K^2_{(0,q)}(\Omega )\) for all symbols \(\phi \in C^{\infty }(\overline{\Omega })\) then the \(\overline{\partial }\)-Neumann operator \(N_{q+1}\) is compact on \(L^2_{(0,q)}(\Omega )\).

In this paper, we provide an affirmative answer to D’Angelo’s question on smooth bounded pseudoconvex Hartogs domains in \(\mathbb {C}^2\).

FormalPara Theorem 1

Let \(\Omega \) be a smooth bounded pseudoconvex Hartogs domain in \(\mathbb {C}^2\). The \(\overline{\partial }\)-Neumann operator \(N_1\) is compact on \(L^2_{(0,1)}(\Omega )\) if and only if \(H_{\psi }\) is compact on \(A^2(\Omega )\) for all \(\psi \in C^{\infty }(\overline{\Omega })\).

As mentioned above, compactness of \(N_1\) implies that \(H_{\psi }\) is compact on any bounded pseudoconvex domain (see [12, 15, Proposition 4.4.1]). The key ingredient of our proof of the converse is the characterization of the compactness of \(N_1\) in terms of ground state energies of certain Schrödinger operators as previously explored in [5, 14].

We will need a few lemmas before we prove Theorem 1.

FormalPara Lemma 1

Let \(A(a,b)=\{z\in \mathbb {C}:a<|z|<b\}\) for \(0{<}a{<}b{<}\infty \) and \(d_{ab}(w)\) be the distance from w to the boundary of A(ab). Then there exists \(C{>}0\) such that

$$\begin{aligned} \int _{A(a,b)}(d_{ab}(w))^2|w|^{2n}dV(w)\le \frac{C}{n^2} \int _{A(a,b)}|w|^{2n}dV(w) \end{aligned}$$

for nonzero integer n.

FormalPara Proof

We will use the fact that \(d_{ab}(w)=\min \{b-|w|,|w|-a\}\) with polar coordinates to compute the first integral. One can compute that

$$\begin{aligned} \int _{A(a,b)}|w|^{2n}dV(w)= \frac{\pi }{n+1}\big (b^{2n+2}-a^{2n+2}\big ) \end{aligned}$$

for \(n\ne -1\). Let \(c=\frac{a+b}{2}\). Then

$$\begin{aligned} \int _{A(a,b)}(d_{ab}(w))^2|w|^{2n}dV(w)= & {} \int _{A(a,c)}(|w|-a)^2|w|^{2n}dV(w)\\&+\,\int _{A(c,b)}(b-|w|)^2|w|^{2n}dV(w)\\= & {} 2\pi \int _a^c\big (a^2\rho ^{2n+1}-2a\rho ^{2n+2}+\rho ^{2n+3}\big )d\rho \\&+\,2\pi \int _c^b\big (b^2\rho ^{2n+1}-2b\rho ^{2n+2}+\rho ^{2n+3}\big )d\rho \\= & {} 2\pi \Big (b^{2n+4}-a^{2n+4}\Big )\left( \frac{1}{2n+2}-\frac{2}{2n+3}+\frac{1}{2n+4}\right) \\&+\,2\pi (a^2-b^2)\frac{c^{2n+2}}{2n+2}+4\pi (b-a)\frac{c^{2n+3}}{2n+3}\\= & {} \frac{\pi (b^{2n+4}-a^{2n+4})}{(n+1)(n+2)(2n+3)}-\frac{\pi c^{2n+2}(b^2-a^2)}{(n+1)(2n+3)}. \end{aligned}$$

In the last equality we used the fact that \(c=\frac{a+b}{2}\). Then one can show that

$$\begin{aligned} \lim _{n\rightarrow \pm \infty }\frac{n^2\int _{A(a,b)}(d_{ab}(w))^2|w|^{2n}dV(w)}{\int _{A(a,b)}|w|^{2n}dV(w)} =\frac{b^2}{2}. \end{aligned}$$

Therefore, there exists \(C{>}0\) such that

$$\begin{aligned} \int _{A(a,b)}(d_{ab}(w))^2|w|^{2n}dV(w)\le \frac{C}{n^2} \int _{A(a,b)}|w|^{2n}dV(w) \end{aligned}$$

for nonzero integer n. \(\square \)

We note that throughout the paper \(\Vert .\Vert _{-1}\) denotes the Sobolev \(-1\) norm.

FormalPara Lemma 2

Let \(\Omega =\{(z,w)\in \mathbb {C}^2: z\in D \text { and } \phi _1(z)<|w|<\phi _2(z)\}\) be a bounded Hartogs domain. Then there exists \(C>0\) such that

$$\begin{aligned} \Vert g(z)w^n\Vert _{-1}\le \frac{C}{n}\Vert g(z)w^n\Vert \end{aligned}$$

for any \(g\in L^2(D)\) and nonzero integer n, as long as the right-hand side is finite.

FormalPara Proof

We will denote the distance from (zw) to the boundary of \(\Omega \) by \(d_{\Omega }(z,w)\). We note that \(W^{-1}(\Omega )\) is the dual of \(W^1_0(\Omega )\), the closure of \(C^{\infty }_0(\Omega )\) in \(W^1(\Omega )\). Furthermore,

$$\begin{aligned} \Vert f\Vert _{-1}=\sup \{|\langle f,\phi \rangle |:\phi \in C^{\infty }_0(\Omega ), \Vert \phi \Vert _1\le 1\} \end{aligned}$$

for \(f\in W^{-1}(\Omega )\). Then there exists \(C_1>0\) such that

$$\begin{aligned} \Vert f\Vert _{-1}\le \Vert d_{\Omega }f\Vert \sup \{\Vert \phi /d_{\Omega }\Vert :\phi \in C^{\infty }_0(\Omega ), \Vert \phi \Vert _1\le 1\} \le C_1\Vert d_{\Omega }f\Vert . \end{aligned}$$

In the second inequality above we used the fact that (see [4, Proof of Theorem C.3]) there exists \(C_1>0\) such that \(\Vert \phi /d_{\Omega }\Vert \le C_1\Vert \phi \Vert _1\) for all \(\phi \in W^1_0(\Omega )\).

Let \(d_z(w)\) denote the distance from w to the boundary of \(A(\phi _1(z),\phi _2(z))\). Then there exists \(C_1>0\) such that

$$\begin{aligned} \Vert g(z)w^n\Vert _{-1}^2\le&C_1\int _{\Omega }(d_{\Omega }(z,w))^2|g(z)|^2|w|^{2n}dV(z,w)\\ \le&C_1\int _D|g(z)|^2\int _{\phi _1(z)<|w|<\phi _2(z)}(d_z(w))^2|w|^{2n}dV(w). \end{aligned}$$

Lemma 1 and the assumption that \(\Omega \) is bounded imply that there exists \(C_2>0\) such that

$$\begin{aligned} \int _{\phi _1(z)<|w|<\phi _2(z)}(d_z(w))^2|w|^{2n}dV(w)\le \frac{C_2}{n^2}\int _{\phi _1(z)<|w|<\phi _2(z)}|w|^{2n}dV(w). \end{aligned}$$

Then

$$\begin{aligned}&\int _D|g(z)|^2\int _{\phi _1(z)<|w|<\phi _2(z)}(d_z(w))^2|w|^{2n}dV(w)\\&\quad \le \frac{C_2}{n^2}\int _D|g(z)|^2\int _{\phi _1(z)<|w|<\phi _2(z)}|w|^{2n}dV(w)\\&\quad =\frac{C_2}{n^2} \Vert g(z)w^n\Vert ^2. \end{aligned}$$

Therefore, for \(C=\sqrt{C_1C_2}\) we have \(\Vert g(z)w^n\Vert _{-1}\le \frac{C}{n}\Vert g(z)w^n\Vert \) for nonzero integer n. \(\square \)

FormalPara Lemma 3

Let \(\Omega \) be a bounded pseudoconvex domain in \(\mathbb {C}^n\) and \(\psi \in C^1(\overline{\Omega })\). Then \(H_{\psi }\) is compact if and only if for any \(\varepsilon >0\) there exists \(C_{\varepsilon }>0\) such that

$$\begin{aligned} \Vert H_{\psi }h\Vert ^2\le \varepsilon \Vert h\overline{\partial }\psi \Vert \Vert h\Vert +C_{\varepsilon }\Vert h\overline{\partial }\psi \Vert _{-1}\Vert h\Vert \end{aligned}$$
(1)

for \(h\in A^2(\Omega )\).

FormalPara Proof

First assume that \(H_{\psi }\) is compact. Then

$$\begin{aligned} \Vert H_{\psi }h\Vert ^2= \langle H^*_{\psi }H_{\psi } h,h\rangle \le \Vert H^*_{\psi }H_{\psi } h\Vert \Vert h\Vert \end{aligned}$$

for \(h\in A^2(\Omega )\). Compactness of \(H_{\psi }\) implies that \(H^*_{\psi }\) is compact. Now we apply the compactness estimate in [8, Proposition V.2.3] to \(H^*_{\psi }\). For \(\varepsilon >0\) there exists a compact operator \(K_{\varepsilon }\) such that

$$\begin{aligned} \Vert H^*_{\psi }H_{\psi } h\Vert \le&\frac{\varepsilon }{2\Vert \overline{\partial }^*N\Vert } \Vert H_{\psi } h\Vert + \Vert K_{\varepsilon }H_{\psi } h\Vert \\ \le&\frac{\varepsilon }{2} \Vert h\overline{\partial }\psi \Vert + \Vert K_{\varepsilon }H_{\psi } h\Vert . \end{aligned}$$

In the second inequality we used the fact that \(H_{\psi }h=\overline{\partial }^*N(h\overline{\partial }\psi )\). Since \(\Omega \) is bounded pseudoconvex \(\overline{\partial }^*N\) is bounded and hence \(K_{\varepsilon }\overline{\partial }^*N\) is compact. Now we use the fact that \(H_{\psi }h=\overline{\partial }^*N(h\overline{\partial }\psi )\) and [15, Lemma 4.3] for the compact operator \(K_{\varepsilon }\overline{\partial }^*N\) to conclude that there exists \(C_{\varepsilon }>0\) such that

$$\begin{aligned} \Vert K_{\varepsilon }H_{\psi } h\Vert \le \frac{\varepsilon }{2}\Vert h\overline{\partial }\psi \Vert +C_{\varepsilon }\Vert h\overline{\partial }\psi \Vert _{-1}. \end{aligned}$$

Therefore, for \(\varepsilon >0\) there exists \(C_{\varepsilon }>0\) such that

$$\begin{aligned} \Vert H_{\psi }h\Vert ^2\le \varepsilon \Vert h\overline{\partial }\psi \Vert \Vert h\Vert +C_{\varepsilon }\Vert h\overline{\partial }\psi \Vert _{-1}\Vert h\Vert \end{aligned}$$

for \(h\in A^2(\Omega )\).

To prove the converse assume (1) and choose \(\{h_j\}\) a sequence in \(A^2(\Omega )\) such that \(\{h_j\}\) converges to zero weakly. Then the sequence \(\{h_j\}\) is bounded and \(\Vert h_j\overline{\partial }\psi \Vert _{-1}\) converges to 0 (as the imbedding from \(L^2\) into Sobolev \(-1\) is compact). The inequality (1) implies that there exists \(C>0\) such that for every \(\varepsilon >0\) there exists J such that \(\Vert H_{\psi }h_j\Vert ^2 \le C\varepsilon \) for \( j\ge J\). That is, \(\{H_{\psi }h_j\}\) converges to 0. That is, \(H_{\psi }\) is compact. \(\square \)

The following lemma is contained in [10, Remark 1]. The superscripts on the Hankel operators are used to emphasize the domains.

FormalPara Lemma 4

([10]) Let \(\Omega _1\) be a bounded pseudoconvex domain in \(\mathbb {C}^n\) and \(\Omega _2\) be a bounded strongly pseudoconvex domain in \(\mathbb {C}^n\) with \(C^2\)-smooth boundary. Assume that \(U=\Omega _1\cap \Omega _2\) is connected, \(\phi \in C^1(\overline{\Omega }_1)\), and \(H^{\Omega _1}_{\phi }\) is compact on \(A^{2}(\Omega _1)\). Then \(H^{U}_{\phi }\) is compact on \(A^{2}(U)\).

Now we are ready to prove Theorem 1.

FormalPara Proof of Theorem 1

We present the proof of the nontrivial direction. That is, we assume that \(H_{\psi }\) is compact on \(A^2(\Omega )\) for all \(\psi \in C^{\infty }(\overline{\Omega })\) and prove that \(N_1\) is compact. Our proof is along the lines of the proof of [5, Theorem 1.1].

Let \(\rho (z,w)\) be a smooth defining function for \(\Omega \) that is invariant under rotations in w. That is, \(\rho (z,w)=\rho (z,|w|)\),

$$\begin{aligned} \Omega = \{(z, w) \in \mathbb {C}^2: \rho (z, w) < 0\}, \end{aligned}$$

and \(\nabla \rho \) is nonvanishing on \(b\Omega \). Let \(\Gamma _0 = \{(z, w) \in b\Omega : \rho _{|w|}(z, |w|)=0\}\) and

$$\begin{aligned} \Gamma _k = \{(z, w) \in b\Omega : |\rho _{|w|}(z, |w|)|\ge 1/k\} \end{aligned}$$

for \(k=1,2,\ldots \). We will show that \(\Gamma _k\) is B-regular for \(k=0,1,2,\ldots \) by establishing the estimates (2) and (3) below and invoking [5, Lemma 10.2]. Then

$$\begin{aligned} b\Omega =\bigcup _{k=0}^{\infty }\Gamma _k \end{aligned}$$

and [11, Proposition 1.9] implies that \(b\Omega \) is B-regular (satisfies Property (P) in Catlin’s terminology). This will be enough to conclude that \(N_1\) is compact on \(L^2_{(0,1)}(\Omega )\)

The proof of the fact that \(\Gamma _0\) is B-regular is essentially contained in [5, Lemma 10.1] together with the following fact: Let \(\Omega \) be a smooth bounded pseudoconvex domain in \(\mathbb {C}^2\). If \(H_{\overline{z}}\) and \(H_{\overline{w}}\) are compact on \(A^2(\Omega )\) then there is no analytic disc in \(b\Omega \) (see [6, Corollary 1]).

Now we will prove that \(\Gamma _k\) is B-regular for any fixed \(k\ge 1\). Let \((z_0,w_0)\in \Gamma _k\), we argue in two cases. The first case is when \(\rho _{|w|}(z_0,|w_0|)<0\) and the second case is \(\rho _{|w|}(z_0,|w_0|)>0\).

We continue with the first case. Assume that \(b\Omega \) near \((z_0,w_0)\) is given by \(|w|=e^{-\varphi (z)}\). Let \(D(z_0,r)\) denote the disc centered at \(z_0\) with radius r and

$$\begin{aligned} U_{a,b}=D(z_0,a)\times \{w\in \mathbb {C}:|w_0|-b<|w|<|w_0|+b\} \end{aligned}$$

for \(a,b>0\). Then let us choose \(a,a_1,b,b_1>0\) such that \(a_1>a,b_1>|w_0|+b\), the open sets

$$\begin{aligned} U=\Omega \cap U_{a,b}= \left\{ (z,w)\in \mathbb {C}^2:z\in D(z_0,a), ~e^{-\varphi (z)}<|w|<|w_0|+b\right\} \end{aligned}$$

and \(U_1=\Omega \cap U^{a_1,b_1}\) are connected where

$$\begin{aligned} U^{a_1,b_1}=\left\{ (z,w)\in \mathbb {C}^2:\frac{|z-z_0|^2}{a_1^2}+\frac{|w|^2}{b_1^2}<1\right\} , \end{aligned}$$

and finally \(\overline{U}\subset U_1\). Then

$$\begin{aligned} U_1=\left\{ (z,w)\in \mathbb {C}^2:z\in V_1, e^{-\varphi (z)}<|w|<e^{-\alpha (z)}\right\} \end{aligned}$$

where \(V_1\) is a domain in \(\mathbb {C}\) such that \(\overline{D(z_0,a)}\subset V_1\subset D(z_0,a_1)\) and

$$\begin{aligned} \alpha (z)=\log a_1-\log b_1-\frac{1}{2}\log \big (a_1^2-|z-z_0|^2\big ). \end{aligned}$$

One can check that \(\alpha \) is subharmonic on \(D(z_0,a_1)\), while pseudoconvexity of \(\Omega \) implies that the function \(\varphi \) is superharmonic on \(D(z_0,a_1)\). Furthermore, since B-regularity is invariant under holomorphic change of coordinates, by mapping under \((z,w)\rightarrow (z,\lambda w)\) for some \(\lambda >1\), we may assume that

$$\begin{aligned} U_1\subset D(z_0,a_1)\times \{w\in \mathbb {C}:|w|>1\}. \end{aligned}$$

For any \(\beta \in C^{\infty }_0(D(z_0,a))\) let us choose \(\psi \in C^{\infty }(\overline{V_1})\) such that \(\psi _{\overline{z}}=\beta \). Lemma 4 implies that the Hankel operator \(H^{U_1}_{\psi }\) (we use the superscript \(U_1\) to emphasize the domain) is compact on the Bergman space \(A^2(U_1)\).

Let

$$\begin{aligned} \lambda _n(z)=-\log \left( \frac{\pi }{n-1}\left( e^{(2n-2)\varphi (z)} -e^{(2n-2)\alpha (z)}\right) \right) \end{aligned}$$

for \(n=2,3,\ldots \). One can check that since \(\varphi \) is superharmonic and \(\alpha \) is subharmonic, the function \( \lambda _n\) is subharmonic. Let \(S^{V_1}_{\lambda _n}\) be the canonical solution operator for \(\overline{\partial }\) on \(L^2(V_1,\lambda _n)\). If \(f_n=H^{U_1}_{\psi }w^{-n}\) then we claim that

$$\begin{aligned} f_n(z,w)=g_n(z)w^{-n} \end{aligned}$$

where \(g_n=S^{V_1}_{\lambda _n}(\beta d\overline{z})\) and \(n=2,3,\ldots \). Clearly \(H^{U_1}_{\psi }w^{-n}=f_n\in L^2(U_1)\) and

$$\begin{aligned} \overline{\partial }g_n(z)w^{-n}=\beta (z)w^{-n}d\overline{z}. \end{aligned}$$

To prove the claim we will just need to show that \(g_n(z)w^{-n}\) is orthogonal to \(A^2(U_1)\). That is, we need to show that \(\langle g_n(z)w^{-n}, h(z)w^m\rangle _{U_1}=0\) for any \(h(z)\in A^2(V_1)\) and \(m\in \mathbb {Z}\). Then

$$\begin{aligned} \langle g_n(z)w^{-n}, h(z)w^m\rangle _{U_1}&=\int _{U_1}g_n(z)w^{-n} \overline{h(z)w^m}dV(z)dV(w)\\&=\int _{V_1}g_n(z)\overline{h(z)}dV(z) \int _{e^{-\varphi (z)}<|w|<e^{-\alpha (z)}}w^{-n}\overline{w^m}dV(w). \end{aligned}$$

Unless \(m=-n\) the integral \(\int _{e^{-\varphi (z)}<|w|<e^{-\alpha (z)}}w^{-n}\overline{w^m}dV(w)=0\). So let us assume that \(m=-n\). In that case we get

$$\begin{aligned} \int _{V_1}g_n(z)\overline{h(z)}dV(z) \int _{e^{-\varphi (z)}<|w|<e^{-\alpha (z)}}w^{-n}\overline{w^m}dV(w) =\int _{V_1}g_n(z)\overline{h(z)}e^{-\lambda _n(z)}dV(z). \end{aligned}$$

The integral on the right-hand side above is zero because \(g_n\) is orthogonal to \(A^2(V_1,\lambda _n)\). Therefore,

$$\begin{aligned} g_n(z)w^{-n}=H^{U_1}_{\psi }w^{-n}. \end{aligned}$$

The equality above implies that \(\frac{\partial g_n}{\partial \overline{z}}=\frac{\partial \psi }{\partial \overline{z}}=\beta \). Then the compactness estimate (1) implies that

$$\begin{aligned} \int _{D(z_0,a)}|g_n(z)|^2e^{-\lambda _n(z)}dV(z)\le & {} \Vert g_n(z)w^{-n}\Vert _{U_1}^2\\\le & {} \varepsilon \Vert \beta (z)w^{-n}\Vert _{U_1}\Vert w^{-n}\Vert _{U_1} \\&+\,C_{\varepsilon }\Vert \beta (z)w^{-n}\Vert _{W^{-1}(U_1)}\Vert w^{-n}\Vert _{U_1} \\= & {} \varepsilon \left( \int _{D(z_0,a)}|\beta (z)|^2e^{-\lambda _n(z)}dV(z)\right) ^{1/2}\\&\quad \times \, \left( \int _{V_1} e^{-\lambda _n(z)}dV(z)\right) ^{1/2} \\&+\, C_{\varepsilon } \Vert \beta (z)w^{-n}\Vert _{W^{-1}(U_1)} \left( \int _{V_1} e^{-\lambda _n(z)}\right) ^{1/2}. \end{aligned}$$

Then by Lemma 2 there exists \(C>0\) such that

$$\begin{aligned} \Vert \beta (z)w^{-n}\Vert _{W^{-1}({U_1})}\le \frac{C}{n}\Vert \beta (z)w^{-n}\Vert _{U_1} = \frac{C}{n}\Vert \beta \Vert _{L^2(D(z_0,a),\lambda _n)}. \end{aligned}$$

We note that to get the equality above we used the fact that \(\beta \) is supported in \(D(z_0,a)\). Hence we get

$$\begin{aligned} \Vert g_n\Vert ^2_{L^2(D(z_0,a),\lambda _n)} \le \left( \varepsilon +\frac{CC_{\varepsilon }}{n} \right) \Vert \beta \Vert _{L^2(D(z_0,a),\lambda _n)}\Vert 1\Vert _{L^2(V_1,\lambda _n)}. \end{aligned}$$

For any \(\varepsilon >0\) there exists an integer \(n_{\varepsilon }\) such that

$$\begin{aligned} \frac{CC_{\varepsilon }}{n}+ \frac{\pi a_1}{\sqrt{n-1}}\le \varepsilon \end{aligned}$$

for \(n\ge n_{\varepsilon }\). Then

$$\begin{aligned} \Vert g_n\Vert _{L^2(D(z_0,a),\lambda _n)}^2\le 2\varepsilon \Vert \beta \Vert _{L^2(D(z_0,a),\lambda _n)} \Vert 1\Vert _{L^2(V_1,\lambda _n)} \le 2\varepsilon ^2 \Vert \beta \Vert _{L^2(D(z_0,a),\lambda _n)} \end{aligned}$$

for \(n\ge n_{\varepsilon }\) because \(U\subset D(z_0,a)\times \{w\in \mathbb {C}:|w|>1\}\) and

$$\begin{aligned} \Vert 1\Vert _{L^2(V_1,\lambda _n)}&\le \Vert 1\Vert _{L^2(D(z_0,a_1),\lambda _n)}\\&=\left( \int _{D(z_0,a_1)}\frac{\pi }{n-1}\left( e^{(2n-2)\varphi (z)} -e^{(2n-2)\alpha (z)}\right) dV(z)\right) ^{1/2}\\&\le \left( \int _{D(z_0,a_1)}\frac{\pi }{n-1}dV(z)\right) ^{1/2}\\&= \frac{\pi a_1}{\sqrt{n-1}}. \end{aligned}$$

Let \(u\in C^{\infty }_0(D(z_0,a))\) and \(n\ge n_{\varepsilon }\). Then

$$\begin{aligned}&\int _{D(z_0,a)}|u(z)|^2e^{\lambda _n(z)}dV(z)\\ {}&\quad = \sup \left\{ |\langle u,\beta \rangle _{D(z_0,a)}|^2: \beta \in C^{\infty }_0(D(z_0,a)), \Vert \beta \Vert _{L^2(D(z_0,a),\lambda _n)}^2\le 1 \right\} \\&\quad \le \sup \left\{ |\langle u,(g_n)_{\overline{z}}\rangle _{D(z_0,a)}|^2: \Vert g_n\Vert _{L^2(D(z_0,a),\lambda _n)}^2\le 2\varepsilon ^2 \right\} \\&\quad =\sup \left\{ |\langle u_z,g_n \rangle _{D(z_0,a)}|^2: \Vert g_n\Vert _{L^2(D(z_0,a),\lambda _n)}^2\le 2\varepsilon ^2 \right\} \\&\quad \le 2\varepsilon ^2 \int _{D(z_0,a)}|u_z(z)|^2e^{\lambda _n(z)}dV(z). \end{aligned}$$

There exists \(0<c<1\) such that \(e^{-\varphi (z)}<c e^{-\alpha (z)}\) for \(z\in D(z_0,a)\). Then

$$\begin{aligned} \frac{\pi }{n-1} e^{(2n-2)\varphi (z)}\big (1-c^{2n-2}\big )<e^{-\lambda _n(z)}<\frac{\pi }{n-1} e^{(2n-2)\varphi (z)}. \end{aligned}$$

So for large n we have

$$\begin{aligned} \frac{\pi }{2(n-1)} e^{(2n-2)\varphi (z)}<e^{-\lambda _n(z)} <\frac{\pi }{n-1} e^{(2n-2)\varphi (z)} \end{aligned}$$

and

$$\begin{aligned}&\frac{n-1}{\pi }\int _{D(z_0,a)}|u(z)|^2e^{(2-2n)\varphi (z)}dV(z)\\&\quad <\int _{D(z_0,a)}|u(z)|^2e^{\lambda _n(z)}dV(z) \\&\quad \le 2\varepsilon ^2 \int _{D(z_0,a)}|u_z(z)|^2e^{\lambda _n(z)}dV(z)\\&\quad \le \frac{4\varepsilon ^2(n-1)}{\pi } \int _{D(z_0,a)}|u_z(z)|^2e^{(2-2n)\varphi (z)}dV(z). \end{aligned}$$

That is, for any \(\varepsilon >0\) and \(u\in C^{\infty }_0(D(z_0,a))\)

$$\begin{aligned} \int _{D(z_0,a)}|u(z)|^2e^{(2-2n)\varphi (z)}dV(z)\le 4\varepsilon ^2 \int _{D(z_0,a)}|u_z(z)|^2e^{(2-2n)\varphi (z)}dV(z) \end{aligned}$$
(2)

for large n.

The estimate in (2) is identical to the one in [5, p. 38, proof of Lemma 10.2]. That is \(\lambda ^m_{n\varphi }(D(z_0,a))\rightarrow \infty \) as \(n\rightarrow \infty \) (see [5, Definition 2.3]). Since \(\varphi \) is smooth and subharmonic, [5, Theorem 1.5] implies that \(\lambda ^e_{n\varphi }(D(z_0,a))\rightarrow \infty \) as \(n\rightarrow \infty \). We note that [5, Theorem 1.5] implies that if \(\lambda ^m_{n\varphi }(D(z_0,a))\rightarrow \infty \) as \(n\rightarrow \infty \) then \(\lambda ^e_{n\varphi }(D(z_0,a))\rightarrow \infty \) as \(n\rightarrow \infty \). This is enough to conclude that \(\Gamma _k\) is B-regular. This argument is contained in the proof of Proposition 9.1 converse of (1) in [5, p. 33]. We repeat the argument here for the convenience of the reader.

Let \(V=\{z\in D(z_0,a):\Delta \varphi (z)>0\}\) and \(K_0=\overline{D(z_0,a/2)}\setminus V\). Then V is open and \(K_0\) is a compact subset of \(D(z_0,a)\). Furthermore, \(\Delta \varphi =0\) on \(K_0\). If \(K_0\) has non-trivial fine interior then it supports a nonzero function \(f\in W^1(\mathbb {C})\) (see [15, Proposition 4.17]). Then

$$\begin{aligned} \lambda ^e_{n\varphi }(D(z_0,a))\le \frac{\Vert \nabla f\Vert ^2}{\Vert f\Vert ^2} <\infty \quad \text { for all }\quad n. \end{aligned}$$

Which is a contradiction. Hence \(K_0\) has empty fine interior which implies that \(K_0\) satisfies property (P) (see [15, Proposition 4.17] or [11, Proposition 1.11]). Therefore, for \(M>0\) there exists an open neighborhood \(O_M\) of \(K_0\) and \(b_M\in C^{\infty }_0(O_M)\) such that \(|b_M|\le 1/2\) on \(O_M\) and \(\Delta b_M>M\) on \(K_0\). Furthermore, using the assumption that \(|w|>0\) on \(\Gamma _k\) one can choose \(M_1\) such that the function \(g_{M_1}(z,w)=M_1(|w|^2e^{\varphi (z)}-1)+b_M(z)\) has the following properties: \( |g_{M_1}| \le 1\) and the complex Hessian \(H_{g_{M_1}}(W)\ge M\Vert W\Vert ^2\) on \(\Gamma _k\cap \overline{D(z_0,a)}\) where W is complex tangential direction. Then [1, Proposition 3.1.7] implies that \(\Gamma _k\cap \overline{D(z_0,a/2)}\) satisfies property (P) (hence it is B-regular). Therefore, [15, Corollary 4.13] implies that \(\Gamma _k\) is B-regular.

The computations in the second case (that is \(\rho _{|w|}(z_0,|w_0|)>0\)) are very similar. So we will just highlight the differences between the two cases. We define

$$\begin{aligned} U^{a_1,b_1}=\left\{ (z,w)\in \mathbb {C}^2: |w|>b_1|z-z_0|^2+a_1\right\} \end{aligned}$$

and

$$\begin{aligned} U_1=\Omega \cap U^{a_1,b_1} =\left\{ (z,w)\in \mathbb {C}^2:z\in V_1,e^{-\alpha (z)}<|w|<e^{-\varphi (z)}\right\} \end{aligned}$$

where \(V_1\) is a domain in \(\mathbb {C}\) and where \(\alpha (z)=-\log (b_1|z-z_0|^2+a_1)\) is a strictly superharmonic function. One can show that \(bU^{a_1,b_1}\) is strongly pseudoconvex. We choose \(a,a_1,b,b_1>0\) such that such that \(\overline{D(z_0,a)}\subset V_1\) and U is given by

$$\begin{aligned} U=\Omega \cap U_{a,b} = \left\{ (z,w)\in \mathbb {C}^2:z\in D(z_0,a), e^{-\alpha (z)}<|w|<e^{-\varphi (z)}\right\} \end{aligned}$$

where \(U_{a,b}=D(z_0,a)\times \{w\in \mathbb {C}:|w_0|-b<|w|<|w_0|+b\}\). Furthermore, we define

$$\begin{aligned} \lambda _n(z)=-\log \left( \frac{\pi }{n+1}\left( e^{-(2n+2)\varphi (z)} -e^{-(2n+2)\alpha (z)}\right) \right) \end{aligned}$$

for \(n=0,1,2,\ldots \) and by scaling \(U_1\) in w variable if necessary, we will assume that \(U_1\subset D(z_0,a_1)\times \{w\in \mathbb {C}:|w|<1\}\) so that \(\Vert 1\Vert _{L^2(D(z_0,a_1),\lambda _n)}\) goes to zero as \(n\rightarrow \infty \). One can check that \(\lambda _n\) is subharmonic for all n.

We take functions \(\beta \in C^{\infty }_0(D(z_0,a))\) and consider symbols \(\psi \in C^{\infty }(\overline{V_1})\) such that \(\psi _{\overline{z}}=\beta \). Then we consider the functions \(H_{\psi }w^n\) for \(n=0,1,2,\ldots \). Calculations similar to the ones in the previous case reveal that \(g_n(z)w^n=H_{\psi }w^n\) where \(g_n=S^{V_1}_{\lambda _n}(\beta d\overline{z})\). Using similar manipulations and again the compactness estimate (1) we conclude that for any \(\varepsilon >0\) there exists an integer \(n_{\varepsilon }\) such that for \(u\in C^{\infty }_0(D(z_0,a))\) and \(n\ge n_{\varepsilon }\) we have

$$\begin{aligned} \int _{D(z_0,a)}|u(z)|^2e^{(2n+2)\varphi (z)}dV(z)\le \varepsilon \int _{D(z_0,a)}|u_z(z)|^2e^{(2n+2)\varphi (z)}dV(z). \end{aligned}$$
(3)

Finally, an argument similar to the one right after (2) implies that \(\Gamma _k\) is B-regular. \(\square \)