

On Compactness of Hankel and the $\overline{\partial}$ -Neumann Operators on Hartogs Domains in \mathbb{C}^2

Sönmez Şahutoğlu¹ · Yunus E. Zeytuncu²

Received: 27 October 2015 / Published online: 23 June 2016 © Mathematica Josephina, Inc. 2016

Abstract We prove that on smooth bounded pseudoconvex Hartogs domains in \mathbb{C}^2 compactness of the $\overline{\partial}$ -Neumann operator is equivalent to compactness of all Hankel operators with symbols smooth on the closure of the domain.

Keywords Hankel operators $\cdot \overline{\partial}$ -Neumann problem \cdot Hartogs domains

Mathematics Subject Classification Primary 32W05 · Secondary 47B35

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n and $L^2_{(0,q)}(\Omega)$ denote the space of square integrable (0, q) forms for $0 \le q \le n$. The complex Laplacian $\Box = \overline{\partial}\overline{\partial}^* + \overline{\partial}^*\overline{\partial}$ is a densely defined, closed, self-adjoint linear operator on $L^2_{(0,q)}(\Omega)$. Hörmander in [7] showed that when Ω is bounded and pseudoconvex, \Box has a bounded solution operator N_q , called the $\overline{\partial}$ -Neumann operator, for all q. Kohn in [9] showed that the Bergman projection, denoted by **B** below, is connected to the $\overline{\partial}$ -Neumann operator via the following formula

$$\mathbf{B} = \mathbf{I} - \overline{\partial}^* N_1 \overline{\partial}$$

where I denotes the identity operator. For more information about the $\overline{\partial}$ -Neumann problem we refer the reader to two books [4,15].

 Yunus E. Zeytuncu zeytuncu@umich.edu
Sönmez Şahutoğlu Sonmez.Sahutoglu@utoledo.edu

¹ Department of Mathematics & Statistics, University of Toledo, Toledo, OH 43606, USA

² Department of Mathematics & Statistics, University of Michigan–Dearborn, Dearborn, MI 48128, USA

Let $A^2(\Omega)$ denote the space of square integrable holomorphic functions on Ω and $\phi \in L^{\infty}(\Omega)$. The Hankel operator with symbol ϕ , $H_{\phi} : A^2(\Omega) \to L^2(\Omega)$ is defined by

$$H_{\phi}g = [\phi, \mathbf{B}]g = (\mathbf{I} - \mathbf{B})(\phi g).$$

Using Kohn's formula one can immediately see that

$$H_{\phi}g = \overline{\partial}^* N_1(g\overline{\partial}\phi)$$

for $\phi \in C^1(\overline{\Omega})$. It is clear that H_{ϕ} is a bounded operator; however, its compactness depends on both the function theoretic properties of the symbol ϕ as well as the geometry of the boundary of the domain Ω (see [6]).

The following observation is relevant to our work here. Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n and $\phi \in C(\overline{\Omega})$. If $\overline{\partial}$ -Neumann operator N_1 is compact on $L^2_{(0,1)}(\Omega)$ then the Hankel operator H_{ϕ} is compact (see [15, Proposition 4.1]).

We are interested in the converse of this observation. Namely,

Assume that Ω is a bounded pseudoconvex domain in \mathbb{C}^n and H_{ϕ} is compact on $A^2(\Omega)$ for all symbols $\phi \in C(\overline{\Omega})$. Then is the $\overline{\partial}$ -Neumann operator N_1 compact on $L^2_{(\Omega,1)}(\Omega)$?

This is known as D'Angelo's question and first appeared in [12, Remark 2].

The answer to D'Angelo's question is still open in general but there are some partial results. Fu and Straube in [13] showed that the answer is yes if Ω is convex. Çelik and the first author [2, Corollary 1] observed that if Ω is not pseudoconvex then the answer to D'Angelo's question may be no. Indeed, they constructed an annulus type domain Ω where H_{ϕ} is compact on $A^2(\Omega)$ for all symbols $\phi \in C(\overline{\Omega})$; yet, the $\overline{\partial}$ -Neumann operator N_1 is not compact on $L^2_{(0,1)}(\Omega)$.

Remark 1 One can extend the definition of Hankel operators from holomorphic functions to the $\overline{\partial}$ -closed (0, q)-forms (denoted by $K^2_{(0,q)}(\Omega)$) and ask the analogous problem at the forms level. In this case, an affirmative answer was obtained in [3]. Namely, for $1 \le q \le n - 1$ if $H^q_{\phi} = [\phi, \mathbf{B}_q]$ is compact on $K^2_{(0,q)}(\Omega)$ for all symbols $\phi \in C^{\infty}(\overline{\Omega})$ then the $\overline{\partial}$ -Neumann operator N_{q+1} is compact on $L^2_{(0,q)}(\Omega)$.

In this paper, we provide an affirmative answer to D'Angelo's question on smooth bounded pseudoconvex Hartogs domains in \mathbb{C}^2 .

Theorem 1 Let Ω be a smooth bounded pseudoconvex Hartogs domain in \mathbb{C}^2 . The $\overline{\partial}$ -Neumann operator N_1 is compact on $L^2_{(0,1)}(\Omega)$ if and only if H_{ψ} is compact on $A^2(\Omega)$ for all $\psi \in C^{\infty}(\overline{\Omega})$.

As mentioned above, compactness of N_1 implies that H_{ψ} is compact on any bounded pseudoconvex domain (see [12, 15, Proposition 4.4.1]). The key ingredient of our proof of the converse is the characterization of the compactness of N_1 in terms of ground state energies of certain Schrödinger operators as previously explored in [5, 14].

We will need a few lemmas before we prove Theorem 1.

Lemma 1 Let $A(a, b) = \{z \in \mathbb{C} : a < |z| < b\}$ for $0 < a < b < \infty$ and $d_{ab}(w)$ be the distance from w to the boundary of A(a, b). Then there exists C > 0 such that

$$\int_{A(a,b)} (d_{ab}(w))^2 |w|^{2n} dV(w) \le \frac{C}{n^2} \int_{A(a,b)} |w|^{2n} dV(w)$$

for nonzero integer n.

Proof We will use the fact that $d_{ab}(w) = \min\{b - |w|, |w| - a\}$ with polar coordinates to compute the first integral. One can compute that

$$\int_{A(a,b)} |w|^{2n} dV(w) = \frac{\pi}{n+1} \left(b^{2n+2} - a^{2n+2} \right)$$

for $n \neq -1$. Let $c = \frac{a+b}{2}$. Then

$$\begin{split} \int_{A(a,b)} (d_{ab}(w))^2 |w|^{2n} dV(w) &= \int_{A(a,c)} (|w| - a)^2 |w|^{2n} dV(w) \\ &+ \int_{A(c,b)} (b - |w|)^2 |w|^{2n} dV(w) \\ &= 2\pi \int_a^c \left(a^2 \rho^{2n+1} - 2a \rho^{2n+2} + \rho^{2n+3}\right) d\rho \\ &+ 2\pi \int_c^b \left(b^2 \rho^{2n+1} - 2b \rho^{2n+2} + \rho^{2n+3}\right) d\rho \\ &= 2\pi \left(b^{2n+4} - a^{2n+4}\right) \left(\frac{1}{2n+2} - \frac{2}{2n+3} + \frac{1}{2n+4}\right) \\ &+ 2\pi (a^2 - b^2) \frac{c^{2n+2}}{2n+2} + 4\pi (b - a) \frac{c^{2n+3}}{2n+3} \\ &= \frac{\pi (b^{2n+4} - a^{2n+4})}{(n+1)(n+2)(2n+3)} - \frac{\pi c^{2n+2} (b^2 - a^2)}{(n+1)(2n+3)}. \end{split}$$

In the last equality we used the fact that $c = \frac{a+b}{2}$. Then one can show that

$$\lim_{n \to \pm \infty} \frac{n^2 \int_{A(a,b)} (d_{ab}(w))^2 |w|^{2n} dV(w)}{\int_{A(a,b)} |w|^{2n} dV(w)} = \frac{b^2}{2}.$$

Therefore, there exists C > 0 such that

$$\int_{A(a,b)} (d_{ab}(w))^2 |w|^{2n} dV(w) \le \frac{C}{n^2} \int_{A(a,b)} |w|^{2n} dV(w)$$

for nonzero integer n.

We note that throughout the paper $\|.\|_{-1}$ denotes the Sobolev -1 norm.

Lemma 2 Let $\Omega = \{(z, w) \in \mathbb{C}^2 : z \in D \text{ and } \phi_1(z) < |w| < \phi_2(z)\}$ be a bounded Hartogs domain. Then there exists C > 0 such that

$$||g(z)w^{n}||_{-1} \le \frac{C}{n} ||g(z)w^{n}||$$

for any $g \in L^2(D)$ and nonzero integer n, as long as the right-hand side is finite.

Proof We will denote the distance from (z, w) to the boundary of Ω by $d_{\Omega}(z, w)$. We note that $W^{-1}(\Omega)$ is the dual of $W_0^1(\Omega)$, the closure of $C_0^{\infty}(\Omega)$ in $W^1(\Omega)$. Furthermore,

$$||f||_{-1} = \sup\{|\langle f, \phi \rangle| : \phi \in C_0^{\infty}(\Omega), ||\phi||_1 \le 1\}$$

for $f \in W^{-1}(\Omega)$. Then there exists $C_1 > 0$ such that

$$||f||_{-1} \le ||d_{\Omega}f|| \sup\{||\phi/d_{\Omega}|| : \phi \in C_0^{\infty}(\Omega), ||\phi||_1 \le 1\} \le C_1 ||d_{\Omega}f||.$$

In the second inequality above we used the fact that (see [4, Proof of Theorem C.3]) there exists $C_1 > 0$ such that $\|\phi/d_{\Omega}\| \le C_1 \|\phi\|_1$ for all $\phi \in W_0^1(\Omega)$.

Let $d_z(w)$ denote the distance from w to the boundary of $A(\phi_1(z), \phi_2(z))$. Then there exists $C_1 > 0$ such that

$$\begin{split} \|g(z)w^{n}\|_{-1}^{2} &\leq C_{1} \int_{\Omega} (d_{\Omega}(z,w))^{2} |g(z)|^{2} |w|^{2n} dV(z,w) \\ &\leq C_{1} \int_{D} |g(z)|^{2} \int_{\phi_{1}(z) < |w| < \phi_{2}(z)} (d_{z}(w))^{2} |w|^{2n} dV(w). \end{split}$$

Lemma 1 and the assumption that Ω is bounded imply that there exists $C_2 > 0$ such that

$$\int_{\phi_1(z) < |w| < \phi_2(z)} (d_z(w))^2 |w|^{2n} dV(w) \le \frac{C_2}{n^2} \int_{\phi_1(z) < |w| < \phi_2(z)} |w|^{2n} dV(w).$$

Then

$$\begin{split} &\int_{D} |g(z)|^{2} \int_{\phi_{1}(z) < |w| < \phi_{2}(z)} (d_{z}(w))^{2} |w|^{2n} dV(w) \\ &\leq \frac{C_{2}}{n^{2}} \int_{D} |g(z)|^{2} \int_{\phi_{1}(z) < |w| < \phi_{2}(z)} |w|^{2n} dV(w) \\ &= \frac{C_{2}}{n^{2}} \|g(z)w^{n}\|^{2}. \end{split}$$

Therefore, for $C = \sqrt{C_1 C_2}$ we have $||g(z)w^n||_{-1} \le \frac{C}{n} ||g(z)w^n||$ for nonzero integer *n*.

🖄 Springer

Lemma 3 Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n and $\psi \in C^1(\overline{\Omega})$. Then H_{ψ} is compact if and only if for any $\varepsilon > 0$ there exists $C_{\varepsilon} > 0$ such that

$$\|H_{\psi}h\|^{2} \leq \varepsilon \|h\overline{\partial}\psi\|\|h\| + C_{\varepsilon}\|h\overline{\partial}\psi\|_{-1}\|h\|$$
(1)

for $h \in A^2(\Omega)$.

Proof First assume that H_{ψ} is compact. Then

$$||H_{\psi}h||^{2} = \langle H_{\psi}^{*}H_{\psi}h,h\rangle \leq ||H_{\psi}^{*}H_{\psi}h|||h||$$

for $h \in A^2(\Omega)$. Compactness of H_{ψ} implies that H_{ψ}^* is compact. Now we apply the compactness estimate in [8, Proposition V.2.3] to H_{ψ}^* . For $\varepsilon > 0$ there exists a compact operator K_{ε} such that

$$\begin{split} \|H_{\psi}^{*}H_{\psi}h\| &\leq \frac{\varepsilon}{2\|\overline{\partial}^{*}N\|} \|H_{\psi}h\| + \|K_{\varepsilon}H_{\psi}h\| \\ &\leq \frac{\varepsilon}{2}\|h\overline{\partial}\psi\| + \|K_{\varepsilon}H_{\psi}h\|. \end{split}$$

In the second inequality we used the fact that $H_{\psi}h = \overline{\partial}^* N(h\overline{\partial}\psi)$. Since Ω is bounded pseudoconvex $\overline{\partial}^* N$ is bounded and hence $K_{\varepsilon}\overline{\partial}^* N$ is compact. Now we use the fact that $H_{\psi}h = \overline{\partial}^* N(h\overline{\partial}\psi)$ and [15, Lemma 4.3] for the compact operator $K_{\varepsilon}\overline{\partial}^* N$ to conclude that there exists $C_{\varepsilon} > 0$ such that

$$\|K_{\varepsilon}H_{\psi}h\| \leq \frac{\varepsilon}{2}\|h\overline{\partial}\psi\| + C_{\varepsilon}\|h\overline{\partial}\psi\|_{-1}.$$

Therefore, for $\varepsilon > 0$ there exists $C_{\varepsilon} > 0$ such that

$$\|H_{\psi}h\|^{2} \leq \varepsilon \|h\overline{\partial}\psi\|\|h\| + C_{\varepsilon}\|h\overline{\partial}\psi\|_{-1}\|h\|$$

for $h \in A^2(\Omega)$.

To prove the converse assume (1) and choose $\{h_j\}$ a sequence in $A^2(\Omega)$ such that $\{h_j\}$ converges to zero weakly. Then the sequence $\{h_j\}$ is bounded and $\|h_j\overline{\partial}\psi\|_{-1}$ converges to 0 (as the imbedding from L^2 into Sobolev -1 is compact). The inequality (1) implies that there exists C > 0 such that for every $\varepsilon > 0$ there exists J such that $\|H_{\psi}h_j\|^2 \leq C\varepsilon$ for $j \geq J$. That is, $\{H_{\psi}h_j\}$ converges to 0. That is, H_{ψ} is compact. \Box

The following lemma is contained in [10, Remark 1]. The superscripts on the Hankel operators are used to emphasize the domains.

Lemma 4 ([10]) Let Ω_1 be a bounded pseudoconvex domain in \mathbb{C}^n and Ω_2 be a bounded strongly pseudoconvex domain in \mathbb{C}^n with C^2 -smooth boundary. Assume that $U = \Omega_1 \cap \Omega_2$ is connected, $\phi \in C^1(\overline{\Omega}_1)$, and $H_{\phi}^{\Omega_1}$ is compact on $A^2(\Omega_1)$. Then H_{ϕ}^U is compact on $A^2(U)$.

Now we are ready to prove Theorem 1.

Proof of Theorem 1 We present the proof of the nontrivial direction. That is, we assume that H_{ψ} is compact on $A^2(\Omega)$ for all $\psi \in C^{\infty}(\overline{\Omega})$ and prove that N_1 is compact. Our proof is along the lines of the proof of [5, Theorem 1.1].

Let $\rho(z, w)$ be a smooth defining function for Ω that is invariant under rotations in w. That is, $\rho(z, w) = \rho(z, |w|)$,

$$\Omega = \{ (z, w) \in \mathbb{C}^2 : \rho(z, w) < 0 \},\$$

and $\nabla \rho$ is nonvanishing on $b\Omega$. Let $\Gamma_0 = \{(z, w) \in b\Omega : \rho_{|w|}(z, |w|) = 0\}$ and

$$\Gamma_k = \{(z, w) \in b\Omega : |\rho_{|w|}(z, |w|)| \ge 1/k\}$$

for k = 1, 2, ... We will show that Γ_k is *B*-regular for k = 0, 1, 2, ... by establishing the estimates (2) and (3) below and invoking [5, Lemma 10.2]. Then

$$b\Omega = \bigcup_{k=0}^{\infty} \Gamma_k$$

and [11, Proposition 1.9] implies that $b\Omega$ is *B*-regular (satisfies Property (*P*) in Catlin's terminology). This will be enough to conclude that N_1 is compact on $L^2_{(0,1)}(\Omega)$

The proof of the fact that Γ_0 is *B*-regular is essentially contained in [5, Lemma 10.1] together with the following fact: Let Ω be a smooth bounded pseudoconvex domain in \mathbb{C}^2 . If $H_{\overline{z}}$ and $H_{\overline{w}}$ are compact on $A^2(\Omega)$ then there is no analytic disc in $b\Omega$ (see [6, Corollary 1]).

Now we will prove that Γ_k is *B*-regular for any fixed $k \ge 1$. Let $(z_0, w_0) \in \Gamma_k$, we argue in two cases. The first case is when $\rho_{|w|}(z_0, |w_0|) < 0$ and the second case is $\rho_{|w|}(z_0, |w_0|) > 0$.

We continue with the first case. Assume that $b\Omega$ near (z_0, w_0) is given by $|w| = e^{-\varphi(z)}$. Let $D(z_0, r)$ denote the disc centered at z_0 with radius r and

$$U_{a,b} = D(z_0, a) \times \{ w \in \mathbb{C} : |w_0| - b < |w| < |w_0| + b \}$$

for a, b > 0. Then let us choose $a, a_1, b, b_1 > 0$ such that $a_1 > a, b_1 > |w_0| + b$, the open sets

$$U = \Omega \cap U_{a,b} = \left\{ (z, w) \in \mathbb{C}^2 : z \in D(z_0, a), \ e^{-\varphi(z)} < |w| < |w_0| + b \right\}$$

and $U_1 = \Omega \cap U^{a_1,b_1}$ are connected where

$$U^{a_1,b_1} = \left\{ (z,w) \in \mathbb{C}^2 : \frac{|z-z_0|^2}{a_1^2} + \frac{|w|^2}{b_1^2} < 1 \right\},\$$

and finally $\overline{U} \subset U_1$. Then

$$U_1 = \left\{ (z, w) \in \mathbb{C}^2 : z \in V_1, e^{-\varphi(z)} < |w| < e^{-\alpha(z)} \right\}$$

where V_1 is a domain in \mathbb{C} such that $\overline{D(z_0, a)} \subset V_1 \subset D(z_0, a_1)$ and

$$\alpha(z) = \log a_1 - \log b_1 - \frac{1}{2} \log \left(a_1^2 - |z - z_0|^2 \right).$$

One can check that α is subharmonic on $D(z_0, a_1)$, while pseudoconvexity of Ω implies that the function φ is superharmonic on $D(z_0, a_1)$. Furthermore, since *B*-regularity is invariant under holomorphic change of coordinates, by mapping under $(z, w) \rightarrow (z, \lambda w)$ for some $\lambda > 1$, we may assume that

$$U_1 \subset D(z_0, a_1) \times \{ w \in \mathbb{C} : |w| > 1 \}.$$

For any $\beta \in C_0^{\infty}(D(z_0, a))$ let us choose $\psi \in C^{\infty}(\overline{V_1})$ such that $\psi_{\overline{z}} = \beta$. Lemma 4 implies that the Hankel operator $H_{\psi}^{U_1}$ (we use the superscript U_1 to emphasize the domain) is compact on the Bergman space $A^2(U_1)$.

Let

$$\lambda_n(z) = -\log\left(\frac{\pi}{n-1}\left(e^{(2n-2)\varphi(z)} - e^{(2n-2)\alpha(z)}\right)\right)$$

for n = 2, 3, ... One can check that since φ is superharmonic and α is subharmonic, the function λ_n is subharmonic. Let $S_{\lambda_n}^{V_1}$ be the canonical solution operator for $\overline{\partial}$ on $L^2(V_1, \lambda_n)$. If $f_n = H_{\psi}^{U_1} w^{-n}$ then we claim that

$$f_n(z, w) = g_n(z)w^{-n}$$

where $g_n = S_{\lambda_n}^{V_1}(\beta d\overline{z})$ and $n = 2, 3, \dots$ Clearly $H_{\psi}^{U_1} w^{-n} = f_n \in L^2(U_1)$ and

$$\overline{\partial}g_n(z)w^{-n} = \beta(z)w^{-n}d\overline{z}.$$

To prove the claim we will just need to show that $g_n(z)w^{-n}$ is orthogonal to $A^2(U_1)$. That is, we need to show that $\langle g_n(z)w^{-n}, h(z)w^m \rangle_{U_1} = 0$ for any $h(z) \in A^2(V_1)$ and $m \in \mathbb{Z}$. Then

$$\begin{aligned} \langle g_n(z)w^{-n}, h(z)w^m \rangle_{U_1} &= \int_{U_1} g_n(z)w^{-n}\overline{h(z)w^m}dV(z)dV(w) \\ &= \int_{V_1} g_n(z)\overline{h(z)}dV(z)\int_{e^{-\varphi(z)} < |w| < e^{-\alpha(z)}} w^{-n}\overline{w^m}dV(w). \end{aligned}$$

Unless m = -n the integral $\int_{e^{-\varphi(z)} < |w| < e^{-\alpha(z)}} w^{-n} \overline{w^m} dV(w) = 0$. So let us assume that m = -n. In that case we get

$$\int_{V_1} g_n(z)\overline{h(z)}dV(z) \int_{e^{-\varphi(z)} < |w| < e^{-\alpha(z)}} w^{-n}\overline{w^m}dV(w) = \int_{V_1} g_n(z)\overline{h(z)}e^{-\lambda_n(z)}dV(z).$$

The integral on the right-hand side above is zero because g_n is orthogonal to $A^2(V_1, \lambda_n)$. Therefore,

$$g_n(z)w^{-n} = H_{\psi}^{U_1}w^{-n}.$$

The equality above implies that $\frac{\partial g_n}{\partial \overline{z}} = \frac{\partial \psi}{\partial \overline{z}} = \beta$. Then the compactness estimate (1) implies that

$$\begin{split} \int_{D(z_0,a)} |g_n(z)|^2 e^{-\lambda_n(z)} dV(z) &\leq \|g_n(z)w^{-n}\|_{U_1}^2 \\ &\leq \varepsilon \|\beta(z)w^{-n}\|_{U_1} \|w^{-n}\|_{U_1} \\ &+ C_\varepsilon \|\beta(z)w^{-n}\|_{W^{-1}(U_1)} \|w^{-n}\|_{U_1} \\ &= \varepsilon \left(\int_{D(z_0,a)} |\beta(z)|^2 e^{-\lambda_n(z)} dV(z)\right)^{1/2} \\ &\times \left(\int_{V_1} e^{-\lambda_n(z)} dV(z)\right)^{1/2} \\ &+ C_\varepsilon \|\beta(z)w^{-n}\|_{W^{-1}(U_1)} \left(\int_{V_1} e^{-\lambda_n(z)}\right)^{1/2}. \end{split}$$

Then by Lemma 2 there exists C > 0 such that

$$\|\beta(z)w^{-n}\|_{W^{-1}(U_1)} \leq \frac{C}{n} \|\beta(z)w^{-n}\|_{U_1} = \frac{C}{n} \|\beta\|_{L^2(D(z_0,a),\lambda_n)}.$$

We note that to get the equality above we used the fact that β is supported in $D(z_0, a)$. Hence we get

$$\|g_n\|_{L^2(D(z_0,a),\lambda_n)}^2 \le \left(\varepsilon + \frac{CC_{\varepsilon}}{n}\right) \|\beta\|_{L^2(D(z_0,a),\lambda_n)} \|1\|_{L^2(V_1,\lambda_n)}.$$

For any $\varepsilon > 0$ there exists an integer n_{ε} such that

$$\frac{CC_{\varepsilon}}{n} + \frac{\pi a_1}{\sqrt{n-1}} \le \varepsilon$$

for $n \ge n_{\varepsilon}$. Then

$$\|g_n\|_{L^2(D(z_0,a),\lambda_n)}^2 \le 2\varepsilon \|\beta\|_{L^2(D(z_0,a),\lambda_n)} \|1\|_{L^2(V_1,\lambda_n)} \le 2\varepsilon^2 \|\beta\|_{L^2(D(z_0,a),\lambda_n)}$$

for $n \ge n_{\varepsilon}$ because $U \subset D(z_0, a) \times \{w \in \mathbb{C} : |w| > 1\}$ and

$$\begin{split} \|1\|_{L^{2}(V_{1},\lambda_{n})} &\leq \|1\|_{L^{2}(D(z_{0},a_{1}),\lambda_{n})} \\ &= \left(\int_{D(z_{0},a_{1})} \frac{\pi}{n-1} \left(e^{(2n-2)\varphi(z)} - e^{(2n-2)\alpha(z)}\right) dV(z)\right)^{1/2} \\ &\leq \left(\int_{D(z_{0},a_{1})} \frac{\pi}{n-1} dV(z)\right)^{1/2} \\ &= \frac{\pi a_{1}}{\sqrt{n-1}}. \end{split}$$

Let $u \in C_0^{\infty}(D(z_0, a))$ and $n \ge n_{\varepsilon}$. Then

$$\begin{split} &\int_{D(z_0,a)} |u(z)|^2 e^{\lambda_n(z)} dV(z) \\ &= \sup \left\{ |\langle u, \beta \rangle_{D(z_0,a)}|^2 : \beta \in C_0^\infty(D(z_0,a)), \|\beta\|_{L^2(D(z_0,a),\lambda_n)}^2 \le 1 \right\} \\ &\leq \sup \left\{ |\langle u, (g_n)_{\overline{z}} \rangle_{D(z_0,a)}|^2 : \|g_n\|_{L^2(D(z_0,a),\lambda_n)}^2 \le 2\varepsilon^2 \right\} \\ &= \sup \left\{ |\langle u_z, g_n \rangle_{D(z_0,a)}|^2 : \|g_n\|_{L^2(D(z_0,a),\lambda_n)}^2 \le 2\varepsilon^2 \right\} \\ &\leq 2\varepsilon^2 \int_{D(z_0,a)} |u_z(z)|^2 e^{\lambda_n(z)} dV(z). \end{split}$$

There exists 0 < c < 1 such that $e^{-\varphi(z)} < ce^{-\alpha(z)}$ for $z \in D(z_0, a)$. Then

$$\frac{\pi}{n-1}e^{(2n-2)\varphi(z)}\left(1-c^{2n-2}\right) < e^{-\lambda_n(z)} < \frac{\pi}{n-1}e^{(2n-2)\varphi(z)}.$$

So for large *n* we have

$$\frac{\pi}{2(n-1)}e^{(2n-2)\varphi(z)} < e^{-\lambda_n(z)} < \frac{\pi}{n-1}e^{(2n-2)\varphi(z)}$$

and

$$\frac{n-1}{\pi} \int_{D(z_0,a)} |u(z)|^2 e^{(2-2n)\varphi(z)} dV(z)$$

$$< \int_{D(z_0,a)} |u(z)|^2 e^{\lambda_n(z)} dV(z)$$

$$\le 2\varepsilon^2 \int_{D(z_0,a)} |u_z(z)|^2 e^{\lambda_n(z)} dV(z)$$

$$\leq \frac{4\varepsilon^2(n-1)}{\pi} \int_{D(z_0,a)} |u_z(z)|^2 e^{(2-2n)\varphi(z)} dV(z).$$

That is, for any $\varepsilon > 0$ and $u \in C_0^{\infty}(D(z_0, a))$

$$\int_{D(z_0,a)} |u(z)|^2 e^{(2-2n)\varphi(z)} dV(z) \le 4\varepsilon^2 \int_{D(z_0,a)} |u_z(z)|^2 e^{(2-2n)\varphi(z)} dV(z)$$
(2)

for large *n*.

The estimate in (2) is identical to the one in [5, p. 38, proof of Lemma 10.2]. That is $\lambda_{n\varphi}^m(D(z_0, a)) \to \infty$ as $n \to \infty$ (see [5, Definition 2.3]). Since φ is smooth and subharmonic, [5, Theorem 1.5] implies that $\lambda_{n\varphi}^e(D(z_0, a)) \to \infty$ as $n \to \infty$. We note that [5, Theorem 1.5] implies that if $\lambda_{n\varphi}^m(D(z_0, a)) \to \infty$ as $n \to \infty$ then $\lambda_{n\varphi}^e(D(z_0, a)) \to \infty$ as $n \to \infty$. This is enough to conclude that Γ_k is *B*-regular. This argument is contained in the proof of Proposition 9.1 converse of (1) in [5, p. 33]. We repeat the argument here for the convenience of the reader.

Let $V = \{z \in D(z_0, a) : \Delta \varphi(z) > 0\}$ and $K_0 = D(z_0, a/2) \setminus V$. Then V is open and K_0 is a compact subset of $D(z_0, a)$. Furthermore, $\Delta \varphi = 0$ on K_0 . If K_0 has non-trivial fine interior then it supports a nonzero function $f \in W^1(\mathbb{C})$ (see [15, Proposition 4.17]). Then

$$\lambda_{n\varphi}^{e}(D(z_0,a)) \leq \frac{\|\nabla f\|^2}{\|f\|^2} < \infty \quad \text{for all} \quad n.$$

Which is a contradiction. Hence K_0 has empty fine interior which implies that K_0 satisfies property (P) (see [15, Proposition 4.17] or [11, Proposition 1.11]). Therefore, for M > 0 there exists an open neighborhood O_M of K_0 and $b_M \in C_0^{\infty}(O_M)$ such that $|b_M| \leq 1/2$ on O_M and $\Delta b_M > M$ on K_0 . Furthermore, using the assumption that |w| > 0 on Γ_k one can choose M_1 such that the function $g_{M_1}(z, w) = M_1(|w|^2 e^{\varphi(z)} - 1) + b_M(z)$ has the following properties: $|g_{M_1}| \leq 1$ and the complex Hessian $H_{g_{M_1}}(W) \geq M ||W||^2$ on $\Gamma_k \cap \overline{D(z_0, a)}$ where W is complex tangential direction. Then [1, Proposition 3.1.7] implies that $\Gamma_k \cap \overline{D(z_0, a/2)}$ satisfies property (P) (hence it is *B*-regular). Therefore, [15, Corollary 4.13] implies that Γ_k is *B*-regular.

The computations in the second case (that is $\rho_{|w|}(z_0, |w_0|) > 0$) are very similar. So we will just highlight the differences between the two cases. We define

$$U^{a_1,b_1} = \left\{ (z,w) \in \mathbb{C}^2 : |w| > b_1 |z - z_0|^2 + a_1 \right\}$$

and

$$U_1 = \Omega \cap U^{a_1, b_1} = \left\{ (z, w) \in \mathbb{C}^2 : z \in V_1, e^{-\alpha(z)} < |w| < e^{-\varphi(z)} \right\}$$

where V_1 is a domain in \mathbb{C} and where $\alpha(z) = -\log(b_1|z - z_0|^2 + a_1)$ is a strictly superharmonic function. One can show that bU^{a_1,b_1} is strongly pseudoconvex. We choose $a, a_1, b, b_1 > 0$ such that such that $\overline{D(z_0, a)} \subset V_1$ and U is given by

$$U = \Omega \cap U_{a,b} = \left\{ (z, w) \in \mathbb{C}^2 : z \in D(z_0, a), e^{-\alpha(z)} < |w| < e^{-\varphi(z)} \right\}$$

where $U_{a,b} = D(z_0, a) \times \{w \in \mathbb{C} : |w_0| - b < |w| < |w_0| + b\}$. Furthermore, we define

$$\lambda_n(z) = -\log\left(\frac{\pi}{n+1}\left(e^{-(2n+2)\varphi(z)} - e^{-(2n+2)\alpha(z)}\right)\right)$$

for n = 0, 1, 2, ... and by scaling U_1 in w variable if necessary, we will assume that $U_1 \subset D(z_0, a_1) \times \{w \in \mathbb{C} : |w| < 1\}$ so that $||1||_{L^2(D(z_0, a_1), \lambda_n)}$ goes to zero as $n \to \infty$. One can check that λ_n is subharmonic for all n.

We take functions $\beta \in C_0^{\infty}(D(z_0, a))$ and consider symbols $\psi \in C^{\infty}(\overline{V_1})$ such that $\psi_{\overline{z}} = \beta$. Then we consider the functions $H_{\psi}w^n$ for $n = 0, 1, 2, \ldots$ Calculations similar to the ones in the previous case reveal that $g_n(z)w^n = H_{\psi}w^n$ where $g_n = S_{\lambda_n}^{V_1}(\beta d\overline{z})$. Using similar manipulations and again the compactness estimate (1) we conclude that for any $\varepsilon > 0$ there exists an integer n_{ε} such that for $u \in C_0^{\infty}(D(z_0, a))$ and $n \ge n_{\varepsilon}$ we have

$$\int_{D(z_0,a)} |u(z)|^2 e^{(2n+2)\varphi(z)} dV(z) \le \varepsilon \int_{D(z_0,a)} |u_z(z)|^2 e^{(2n+2)\varphi(z)} dV(z).$$
(3)

Finally, an argument similar to the one right after (2) implies that Γ_k is *B*-regular. \Box

Acknowledgements We would like to thank the anonymous referee for constructive comments. The work of the second author was partially supported by a grant from the Simons Foundation (#353525), and also by a University of Michigan–Dearborn CASL Faculty Summer Research Grant. Both authors would like to thank the American Institute of Mathematics for hosting a workshop during which this project was started.

References

- Ayyuru, M.:Compactness of the ∂-Neumann operator on the intersection domains in Cⁿ, Ph.D. thesis, Texas A&M University (2014)
- Çelik, M., Şahutoğlu, S.: On compactness of the ∂-Neumann problem and Hankel operators. Proc. Am. Math. Soc. 140(1), 153–159 (2012)
- Çelik, M., Şahutoğlu, S.: Compactness of the a-Neumann operator and commutators of the Bergman projection with continuous functions. J. Math. Anal. Appl. 409(1), 393–398 (2014)
- Chen, S-C., Shaw, M-C.: Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol. 19. RI; International Press, Boston, MA, American Mathematical Society, Providence (2001)
- Christ, M., Siqi, F.: Compactness in the a-Neumann problem, magnetic Schrödinger operators, and the Aharonov-Bohm effect. Adv. Math. 197(1), 1–40 (2005)
- Čučković, Z., Şahutoğlu, S.: Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains. J. Funct. Anal. 256(11), 3730–3742 (2009)
- 7. Hörmander, L.: L^2 estimates and existence theorems for the $\bar{\partial}$ operator. Acta Math. **113**, 89–152 (1965)
- John, P., Angelo, D.: Inequalities from Complex Analysis, Carus Mathematical Monographs, vol. 28. Mathematical Association of America, Washington (2002)
- 9. Kohn, J.J.: Harmonic integrals on strongly pseudo-convex manifolds. I. Ann. Math. 78, 112-148 (1963)
- Şahutoğlu, S.: Localization of compactness of Hankel operators on pseudoconvex domains. Ill. J. Math. 56(3), 795–804 (2012)
- 11. Sibony, N.: Une classe de domaines pseudoconvexes. Duke Math. J. 55(2), 299-319 (1987)

- Siqi, F., Straube, E.J.:Compactness in the ∂-Neumann problem, Complex analysis and geometry (Columbus: Ohio State Univ. Math. Res. Inst. Publ., vol. 9, de Gruyter. Berlin 2001, 141–160 (1999)
- 13. Siqi, F., Straube, E.J.: Compactness of the $\overline{\partial}$ -Neumann problem on convex domains. J. Funct. Anal. **159**(2), 629–641 (1998)
- Siqi, F., Straube, E.J.: Semi-classical analysis of Schrödinger operators and compactness in the a-Neumann problem. J. Math. Anal. Appl. 271(1), 267–282 (2002)
- Straube, E.J.: Lectures on the L²-Sobolev theory of the ∂-Neumann problem, ESI Lectures in Mathematics and Physics, vol. 7. European Mathematical Society (EMS), Zürich (2010)