

On Compactness of Hankel and the *∂***-Neumann Operators on Hartogs Domains in** C**²**

 $Sönmez $Sahutoğlu¹$ **·** Yunus E. Zeytuncu²$

Received: 27 October 2015 / Published online: 23 June 2016 © Mathematica Josephina, Inc. 2016

Abstract We prove that on smooth bounded pseudoconvex Hartogs domains in \mathbb{C}^2 compactness of the $\overline{\partial}$ -Neumann operator is equivalent to compactness of all Hankel operators with symbols smooth on the closure of the domain.

Keywords Hankel operators · ∂-Neumann problem · Hartogs domains

Mathematics Subject Classification Primary 32W05 · Secondary 47B35

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n and $L^2_{(0,q)}(\Omega)$ denote the space of square integrable $(0, q)$ forms for $0 \le q \le n$. The complex Laplacian $\square = \overline{\partial} \overline{\partial}^* + \overline{\partial}^* \overline{\partial}$ is a densely defined, closed, self-adjoint linear operator on $L^2_{(0,q)}(\Omega)$. Hörmander in [\[7](#page-10-0)] showed that when Ω is bounded and pseudoconvex, \Box has a bounded solution operator *N_a*, called the $\overline{\partial}$ -Neumann operator, for all *q*. Kohn in [\[9](#page-10-1)] showed that the Bergman projection, denoted by **B** below, is connected to the $\overline{\partial}$ -Neumann operator via the following formula

$$
\mathbf{B} = \mathbf{I} - \overline{\partial}^* N_1 \overline{\partial}
$$

where **I** denotes the identity operator. For more information about the $\overline{\partial}$ -Neumann problem we refer the reader to two books [\[4](#page-10-2)[,15](#page-11-0)].

 \boxtimes Yunus E. Zeytuncu zeytuncu@umich.edu Sönmez Sahutoğlu Sonmez.Sahutoglu@utoledo.edu

¹ Department of Mathematics & Statistics, University of Toledo, Toledo, OH 43606, USA

² Department of Mathematics & Statistics, University of Michigan–Dearborn, Dearborn, MI 48128, USA

Let $A^2(\Omega)$ denote the space of square integrable holomorphic functions on Ω and $\phi \in L^{\infty}(\Omega)$. The Hankel operator with symbol ϕ , $H_{\phi}: A^2(\Omega) \to L^2(\Omega)$ is defined by

$$
H_{\phi}g = [\phi, \mathbf{B}]g = (\mathbf{I} - \mathbf{B}) (\phi g).
$$

Using Kohn's formula one can immediately see that

$$
H_{\phi}g = \overline{\partial}^* N_1(g\overline{\partial}\phi)
$$

for $\phi \in C^1(\overline{\Omega})$. It is clear that H_{ϕ} is a bounded operator; however, its compactness depends on both the function theoretic properties of the symbol ϕ as well as the geometry of the boundary of the domain Ω (see [\[6](#page-10-3)]).

The following observation is relevant to our work here. Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n and $\phi \in C(\overline{\Omega})$. If $\overline{\partial}$ -Neumann operator N_1 is compact on $L^2_{(0,1)}(\Omega)$ then the Hankel operator H_{ϕ} is compact (see [\[15](#page-11-0), Proposition 4.1]).

We are interested in the converse of this observation. Namely,

Assume that Ω *is a bounded pseudoconvex domain in* \mathbb{C}^n *and* H_{ϕ} *is compact on A*²(Ω) *for all symbols* $φ ∈ C(\overline{Ω})$ *. Then is the* $\overline{∂}$ -*Neumann operator* N_1 *compact on* $L^2_{(0,1)}(\Omega)$?

This is known as D'Angelo's question and first appeared in [\[12](#page-11-1), Remark 2].

The answer to D'Angelo's question is still open in general but there are some partial results. Fu and Straube in [\[13](#page-11-2)] showed that the answer is yes if Ω is convex. Çelik and the first author [\[2,](#page-10-4) Corollary 1] observed that if Ω is not pseudoconvex then the answer to D'Angelo's question may be no. Indeed, they constructed an annulus type domain Ω where *H*_φ is compact on *A*²(Ω) for all symbols $φ ∈ C(\overline{Ω})$; yet, the $\overline{∂}$ -Neumann operator N_1 is not compact on $L^2_{(0,1)}(\Omega)$.

Remark 1 One can extend the definition of Hankel operators from holomorphic functions to the $\overline{\partial}$ -closed (0, *q*)-forms (denoted by $K^2_{(0,q)}(\Omega)$) and ask the analogous problem at the forms level. In this case, an affirmative answer was obtained in [\[3](#page-10-5)]. Namely, for $1 \le q \le n - 1$ if $H^q_\phi = [\phi, \mathbf{B}_q]$ is compact on $K^2_{(0,q)}(\Omega)$ for all symbols $\phi \in C^{\infty}(\overline{\Omega})$ then the $\overline{\partial}$ -Neumann operator N_{q+1} is compact on $L^2_{(0,q)}(\Omega)$.

In this paper, we provide an affirmative answer to D'Angelo's question on smooth bounded pseudoconvex Hartogs domains in \mathbb{C}^2 .

Theorem 1 Let Ω be a smooth bounded pseudoconvex Hartogs domain in \mathbb{C}^2 . The $\overline{\partial}$ -Neumann operator N_1 is compact on $L^2_{(0,1)}(\Omega)$ if and only if H_{ψ} is compact on $A^2(\Omega)$ *for all* $\psi \in C^\infty(\overline{\Omega})$ *.*

As mentioned above, compactness of N_1 implies that H_ψ is compact on any bounded pseudoconvex domain (see [\[12](#page-11-1)[,15](#page-11-0), Proposition 4.4.1]). The key ingredient of our proof of the converse is the characterization of the compactness of N_1 in terms of ground state energies of certain Schrödinger operators as previously explored in [\[5](#page-10-6)[,14](#page-11-3)].

We will need a few lemmas before we prove Theorem [1.](#page-1-0)

Lemma 1 *Let* $A(a, b) = \{z \in \mathbb{C} : a < |z| < b\}$ for $0 < a < b < \infty$ and $d_{ab}(w)$ be the *distance from* w *to the boundary of A*(*a*, *b*)*. Then there exists C*>0 *such that*

$$
\int_{A(a,b)} (d_{ab}(w))^2 |w|^{2n} dV(w) \leq \frac{C}{n^2} \int_{A(a,b)} |w|^{2n} dV(w)
$$

for nonzero integer n.

Proof We will use the fact that $d_{ab}(w) = \min\{b-|w|, |w|-a\}$ with polar coordinates to compute the first integral. One can compute that

$$
\int_{A(a,b)} |w|^{2n} dV(w) = \frac{\pi}{n+1} (b^{2n+2} - a^{2n+2})
$$

for $n \neq -1$. Let $c = \frac{a+b}{2}$. Then

$$
\int_{A(a,b)} (d_{ab}(w))^2 |w|^{2n} dV(w) = \int_{A(a,c)} (|w| - a)^2 |w|^{2n} dV(w)
$$

+
$$
\int_{A(c,b)} (b - |w|)^2 |w|^{2n} dV(w)
$$

=
$$
2\pi \int_a^c (a^2 \rho^{2n+1} - 2a\rho^{2n+2} + \rho^{2n+3}) d\rho
$$

+
$$
2\pi \int_c^b (b^2 \rho^{2n+1} - 2b\rho^{2n+2} + \rho^{2n+3}) d\rho
$$

=
$$
2\pi (b^{2n+4} - a^{2n+4}) \left(\frac{1}{2n+2} - \frac{2}{2n+3} + \frac{1}{2n+4} \right)
$$

+
$$
2\pi (a^2 - b^2) \frac{c^{2n+2}}{2n+2} + 4\pi (b - a) \frac{c^{2n+3}}{2n+3}
$$

=
$$
\frac{\pi (b^{2n+4} - a^{2n+4})}{(n+1)(n+2)(2n+3)} - \frac{\pi c^{2n+2} (b^2 - a^2)}{(n+1)(2n+3)}.
$$

In the last equality we used the fact that $c = \frac{a+b}{2}$. Then one can show that

$$
\lim_{n \to \pm \infty} \frac{n^2 \int_{A(a,b)} (d_{ab}(w))^2 |w|^{2n} dV(w)}{\int_{A(a,b)} |w|^{2n} dV(w)} = \frac{b^2}{2}.
$$

Therefore, there exists *C*>0 such that

$$
\int_{A(a,b)} (d_{ab}(w))^2 |w|^{2n} dV(w) \leq \frac{C}{n^2} \int_{A(a,b)} |w|^{2n} dV(w)
$$

for nonzero integer *n*.

We note that throughout the paper $\|\. \|_{-1}$ denotes the Sobolev -1 norm.

² Springer

Lemma 2 *Let* $\Omega = \{(z, w) \in \mathbb{C}^2 : z \in D \text{ and } \phi_1(z) < |w| < \phi_2(z)\}$ *be a bounded Hartogs domain. Then there exists* $C > 0$ *such that*

$$
||g(z)w^{n}||_{-1} \leq \frac{C}{n} ||g(z)w^{n}||
$$

for any $g \in L^2(D)$ *and nonzero integer n, as long as the right-hand side is finite.*

Proof We will denote the distance from (z, w) to the boundary of Ω by $d_{\Omega}(z, w)$. We note that $W^{-1}(\Omega)$ is the dual of $W_0^1(\Omega)$, the closure of $C_0^{\infty}(\Omega)$ in $W^1(\Omega)$. Furthermore,

$$
||f||_{-1} = \sup\{|\langle f, \phi \rangle| : \phi \in C_0^{\infty}(\Omega), ||\phi||_1 \le 1\}
$$

for $f \in W^{-1}(\Omega)$. Then there exists $C_1 > 0$ such that

$$
||f||_{-1} \leq ||d_{\Omega} f|| \sup{||\phi/d_{\Omega}||} : \phi \in C_0^{\infty}(\Omega), ||\phi||_1 \leq 1} \leq C_1 ||d_{\Omega} f||.
$$

In the second inequality above we used the fact that (see [\[4,](#page-10-2) Proof of Theorem C.3]) there exists $C_1 > 0$ such that $\|\phi/d_{\Omega}\| \le C_1 \|\phi\|_1$ for all $\phi \in W_0^1(\Omega)$.

Let $d_z(w)$ denote the distance from w to the boundary of $A(\phi_1(z), \phi_2(z))$. Then there exists $C_1 > 0$ such that

$$
\|g(z)w^n\|_{-1}^2 \leq C_1 \int_{\Omega} (d_{\Omega}(z, w))^2 |g(z)|^2 |w|^{2n} dV(z, w)
$$

$$
\leq C_1 \int_{D} |g(z)|^2 \int_{\phi_1(z) < |w| < \phi_2(z)} (d_z(w))^2 |w|^{2n} dV(w).
$$

Lemma [1](#page-1-1) and the assumption that Ω is bounded imply that there exists $C_2 > 0$ such that

$$
\int_{\phi_1(z) < |w| < \phi_2(z)} (d_z(w))^2 |w|^{2n} dV(w) \le \frac{C_2}{n^2} \int_{\phi_1(z) < |w| < \phi_2(z)} |w|^{2n} dV(w).
$$

Then

$$
\int_{D} |g(z)|^{2} \int_{\phi_{1}(z) < |w| < \phi_{2}(z)} (d_{z}(w))^{2} |w|^{2n} dV(w)
$$
\n
$$
\leq \frac{C_{2}}{n^{2}} \int_{D} |g(z)|^{2} \int_{\phi_{1}(z) < |w| < \phi_{2}(z)} |w|^{2n} dV(w)
$$
\n
$$
= \frac{C_{2}}{n^{2}} \|g(z)w^{n}\|^{2}.
$$

Therefore, for $C = \sqrt{C_1 C_2}$ we have $||g(z)w^n||_{-1} \le \frac{C}{n} ||g(z)w^n||$ for nonzero integer *n*. □

 \mathcal{D} Springer

Lemma 3 *Let* Ω *be a bounded pseudoconvex domain in* \mathbb{C}^n *and* $\psi \in C^1(\overline{\Omega})$ *. Then H*_{ψ} *is compact if and only if for any* $\varepsilon > 0$ *there exists* $C_{\varepsilon} > 0$ *such that*

$$
||H_{\psi}h||^{2} \leq \varepsilon ||h\overline{\partial}\psi|| ||h|| + C_{\varepsilon} ||h\overline{\partial}\psi||_{-1} ||h|| \tag{1}
$$

for $h \in A^2(\Omega)$ *.*

Proof First assume that H_{ψ} is compact. Then

$$
||H_{\psi}h||^{2} = \langle H_{\psi}^{*}H_{\psi}h, h \rangle \leq ||H_{\psi}^{*}H_{\psi}h|| ||h||
$$

for $h \in A^2(\Omega)$. Compactness of H_{ψ} implies that H_{ψ}^* is compact. Now we apply the compactness estimate in [\[8](#page-10-7), Proposition V.2.3] to H^*_{ψ} . For $\varepsilon > 0$ there exists a compact operator K_{ε} such that

$$
||H^*_{\psi} H_{\psi} h|| \leq \frac{\varepsilon}{2||\overline{\partial}^* N||} ||H_{\psi} h|| + ||K_{\varepsilon} H_{\psi} h||
$$

$$
\leq \frac{\varepsilon}{2} ||h \overline{\partial} \psi|| + ||K_{\varepsilon} H_{\psi} h||.
$$

In the second inequality we used the fact that $H_{\psi} h = \overline{\partial}^* N(h \overline{\partial} \psi)$. Since Ω is bounded pseudoconvex $\overline{\partial}^* N$ is bounded and hence $K_{\varepsilon} \overline{\partial}^* N$ is compact. Now we use the fact that $H_{\psi}h = \overline{\partial}^* N(h\overline{\partial}\psi)$ and [\[15,](#page-11-0) Lemma 4.3] for the compact operator $K_{\varepsilon}\overline{\partial}^* N$ to conclude that there exists $C_{\varepsilon} > 0$ such that

$$
||K_{\varepsilon} H_{\psi} h|| \leq \frac{\varepsilon}{2} ||h \overline{\partial} \psi|| + C_{\varepsilon} ||h \overline{\partial} \psi||_{-1}.
$$

Therefore, for $\varepsilon > 0$ there exists $C_{\varepsilon} > 0$ such that

$$
||H_{\psi}h||^{2} \leq \varepsilon ||h\overline{\partial}\psi|| ||h|| + C_{\varepsilon} ||h\overline{\partial}\psi||_{-1} ||h||
$$

for $h \in A^2(\Omega)$.

To prove the converse assume [\(1\)](#page-4-0) and choose $\{h_i\}$ a sequence in $A^2(\Omega)$ such that ${h_j}$ converges to zero weakly. Then the sequence ${h_j}$ is bounded and $||h_j \partial \psi||_{-1}$ converges to 0 (as the imbedding from L^2 into Sobolev -1 is compact). The inequality [\(1\)](#page-4-0) implies that there exists $C > 0$ such that for every $\varepsilon > 0$ there exists *J* such that $||H_{\psi} h_j||^2 \leq C \varepsilon$ for $j \geq J$. That is, $\{H_{\psi} h_j\}$ converges to 0. That is, H_{ψ} is compact. \Box

The following lemma is contained in [\[10,](#page-10-8) Remark 1]. The superscripts on the Hankel operators are used to emphasize the domains.

Lemma 4 ([\[10](#page-10-8)]) Let Ω_1 be a bounded pseudoconvex domain in \mathbb{C}^n and Ω_2 be a *bounded strongly pseudoconvex domain in* C*ⁿ with C*2*-smooth boundary. Assume that* $U = \Omega_1 \cap \Omega_2$ *is connected,* $\phi \in C^1(\overline{\Omega}_1)$ *, and* $H_{\phi}^{\Omega_1}$ *is compact on* $A^2(\Omega_1)$ *. Then* H_{ϕ}^{U} *is compact on* $A^{2}(U)$ *.*

Now we are ready to prove Theorem [1.](#page-1-0)

Proof of Theorem [1](#page-1-0) We present the proof of the nontrivial direction. That is, we assume that H_{ψ} is compact on $A^2(\Omega)$ for all $\psi \in C^{\infty}(\overline{\Omega})$ and prove that N_1 is compact. Our proof is along the lines of the proof of [\[5,](#page-10-6) Theorem 1.1].

Let $\rho(z, w)$ be a smooth defining function for Ω that is invariant under rotations in w. That is, $\rho(z, w) = \rho(z, |w|)$,

$$
\Omega = \{ (z, w) \in \mathbb{C}^2 : \rho(z, w) < 0 \},
$$

and $\nabla \rho$ is nonvanishing on $b\Omega$. Let $\Gamma_0 = \{(z, w) \in b\Omega : \rho_{|w|}(z, |w|) = 0\}$ and

$$
\Gamma_k = \{ (z, w) \in b\Omega : |\rho_{|w|}(z, |w|) | \ge 1/k \}
$$

for $k = 1, 2, \ldots$ We will show that Γ_k is *B*-regular for $k = 0, 1, 2, \ldots$ by establishing the estimates (2) and (3) below and invoking $[5,$ $[5,$ Lemma 10.2]. Then

$$
b\Omega = \bigcup_{k=0}^{\infty} \Gamma_k
$$

and [\[11,](#page-10-10) Proposition 1.9] implies that $b\Omega$ is *B*-regular (satisfies Property (*P*) in Catlin's terminology). This will be enough to conclude that N_1 is compact on $L^2_{(0,1)}(\Omega)$

The proof of the fact that Γ_0 is *B*-regular is essentially contained in [\[5,](#page-10-6) Lemma 10.1] together with the following fact: Let Ω be a smooth bounded pseudoconvex domain in \mathbb{C}^2 . If $H_{\overline{z}}$ and $H_{\overline{w}}$ are compact on $A^2(\Omega)$ then there is no analytic disc in $b\Omega$ (see [\[6,](#page-10-3) Corollary 1]).

Now we will prove that Γ_k is *B*-regular for any fixed $k \geq 1$. Let $(z_0, w_0) \in \Gamma_k$, we argue in two cases. The first case is when $\rho_{|w|}(z_0, |w_0|) < 0$ and the second case is $\rho_{|w|}(z_0, |w_0|) > 0.$

We continue with the first case. Assume that $b\Omega$ near (z_0, w_0) is given by $|w| =$ $e^{-\varphi(z)}$. Let $D(z_0, r)$ denote the disc centered at z_0 with radius *r* and

$$
U_{a,b} = D(z_0, a) \times \{w \in \mathbb{C} : |w_0| - b < |w| < |w_0| + b\}
$$

for $a, b > 0$. Then let us choose $a, a_1, b, b_1 > 0$ such that $a_1 > a, b_1 > |w_0| + b$, the open sets

$$
U = \Omega \cap U_{a,b} = \left\{ (z, w) \in \mathbb{C}^2 : z \in D(z_0, a), \ e^{-\varphi(z)} < |w| < |w_0| + b \right\}
$$

and $U_1 = \Omega \cap U^{a_1, b_1}$ are connected where

$$
U^{a_1,b_1} = \left\{ (z,w) \in \mathbb{C}^2 : \frac{|z-z_0|^2}{a_1^2} + \frac{|w|^2}{b_1^2} < 1 \right\},\,
$$

and finally $\overline{U} \subset U_1$. Then

$$
U_1 = \left\{ (z, w) \in \mathbb{C}^2 : z \in V_1, e^{-\varphi(z)} < |w| < e^{-\alpha(z)} \right\}
$$

where *V*₁ is a domain in $\mathbb C$ such that $\overline{D(z_0, a)} \subset V_1 \subset D(z_0, a_1)$ and

$$
\alpha(z) = \log a_1 - \log b_1 - \frac{1}{2} \log (a_1^2 - |z - z_0|^2).
$$

One can check that α is subharmonic on $D(z_0, a_1)$, while pseudoconvexity of Ω implies that the function φ is superharmonic on $D(z_0, a_1)$. Furthermore, since *B*regularity is invariant under holomorphic change of coordinates, by mapping under $(z, w) \rightarrow (z, \lambda w)$ for some $\lambda > 1$, we may assume that

$$
U_1 \subset D(z_0, a_1) \times \{w \in \mathbb{C} : |w| > 1\}.
$$

For any $\beta \in C_0^{\infty}(D(z_0, a))$ let us choose $\psi \in C^{\infty}(V_1)$ such that $\psi_{\overline{z}} = \beta$. Lemma [4](#page-4-1) implies that the Hankel operator $H_{\psi}^{U_1}$ (we use the superscript U_1 to emphasize the domain) is compact on the Bergman space $A^2(U_1)$.

Let

$$
\lambda_n(z) = -\log\left(\frac{\pi}{n-1}\left(e^{(2n-2)\varphi(z)} - e^{(2n-2)\alpha(z)}\right)\right)
$$

for $n = 2, 3, \ldots$ One can check that since φ is superharmonic and α is subharmonic, the function λ_n is subharmonic. Let $S_{\lambda_n}^{V_1}$ be the canonical solution operator for $\overline{\partial}$ on $L^2(V_1, \lambda_n)$. If $f_n = H_{\psi}^{U_1} w^{-n}$ then we claim that

$$
f_n(z, w) = g_n(z)w^{-n}
$$

where $g_n = S_{\lambda_n}^{V_1} (\beta d\bar{z})$ and $n = 2, 3, ...$ Clearly $H_{\psi}^{U_1} w^{-n} = f_n \in L^2(U_1)$ and

$$
\overline{\partial}g_n(z)w^{-n} = \beta(z)w^{-n}d\overline{z}.
$$

To prove the claim we will just need to show that $g_n(z)w^{-n}$ is orthogonal to $A^2(U_1)$. That is, we need to show that $\langle g_n(z)w^{-n}, h(z)w^m \rangle_{U_1} = 0$ for any $h(z) \in A^2(V_1)$ and $m \in \mathbb{Z}$. Then

$$
\langle g_n(z)w^{-n}, h(z)w^m \rangle_{U_1} = \int_{U_1} g_n(z)w^{-n} \overline{h(z)w^m} dV(z) dV(w)
$$

=
$$
\int_{V_1} g_n(z) \overline{h(z)} dV(z) \int_{e^{-\varphi(z)} < |w| < e^{-\alpha(z)}} w^{-n} \overline{w^m} dV(w).
$$

 \mathcal{L} Springer

Unless $m = -n$ the integral $\int_{e^{-\varphi(z)} < |w| < e^{-\alpha(z)}} w^{-n} \overline{w^m} dV(w) = 0$. So let us assume that $m = -n$. In that case we get

$$
\int_{V_1} g_n(z) \overline{h(z)} dV(z) \int_{e^{-\varphi(z)} < |w| < e^{-\alpha(z)}} w^{-n} \overline{w^m} dV(w) = \int_{V_1} g_n(z) \overline{h(z)} e^{-\lambda_n(z)} dV(z).
$$

The integral on the right-hand side above is zero because g_n is orthogonal to $A^2(V_1, \lambda_n)$. Therefore,

$$
g_n(z)w^{-n} = H_{\psi}^{U_1} w^{-n}.
$$

The equality above implies that $\frac{\partial g_n}{\partial \overline{z}} = \frac{\partial \psi}{\partial \overline{z}} = \beta$. Then the compactness estimate [\(1\)](#page-4-0) implies that

$$
\int_{D(z_0,a)} |g_n(z)|^2 e^{-\lambda_n(z)} dV(z) \le ||g_n(z)w^{-n}||_{U_1}^2
$$
\n
$$
\le \varepsilon ||\beta(z)w^{-n}||_{U_1} ||w^{-n}||_{U_1}
$$
\n
$$
+ C_{\varepsilon} ||\beta(z)w^{-n}||_{W^{-1}(U_1)} ||w^{-n}||_{U_1}
$$
\n
$$
= \varepsilon \left(\int_{D(z_0,a)} |\beta(z)|^2 e^{-\lambda_n(z)} dV(z) \right)^{1/2}
$$
\n
$$
\times \left(\int_{V_1} e^{-\lambda_n(z)} dV(z) \right)^{1/2}
$$
\n
$$
+ C_{\varepsilon} ||\beta(z)w^{-n}||_{W^{-1}(U_1)} \left(\int_{V_1} e^{-\lambda_n(z)} \right)^{1/2}.
$$

Then by Lemma [2](#page-2-0) there exists $C > 0$ such that

$$
\|\beta(z)w^{-n}\|_{W^{-1}(U_1)} \leq \frac{C}{n}\|\beta(z)w^{-n}\|_{U_1} = \frac{C}{n}\|\beta\|_{L^2(D(z_0,a),\lambda_n)}.
$$

We note that to get the equality above we used the fact that β is supported in $D(z_0, a)$. Hence we get

$$
||g_n||_{L^2(D(z_0,a),\lambda_n)}^2 \leq \left(\varepsilon + \frac{CC_{\varepsilon}}{n}\right) ||\beta||_{L^2(D(z_0,a),\lambda_n)} ||1||_{L^2(V_1,\lambda_n)}.
$$

For any $\varepsilon > 0$ there exists an integer n_{ε} such that

$$
\frac{CC_{\varepsilon}}{n} + \frac{\pi a_1}{\sqrt{n-1}} \leq \varepsilon
$$

² Springer

for $n \geq n_{\varepsilon}$. Then

$$
||g_n||_{L^2(D(z_0,a),\lambda_n)}^2 \leq 2\varepsilon ||\beta||_{L^2(D(z_0,a),\lambda_n)} ||1||_{L^2(V_1,\lambda_n)} \leq 2\varepsilon^2 ||\beta||_{L^2(D(z_0,a),\lambda_n)}
$$

for $n \ge n_{\varepsilon}$ because $U \subset D(z_0, a) \times \{w \in \mathbb{C} : |w| > 1\}$ and

$$
\begin{aligned} \|1\|_{L^2(V_1,\lambda_n)} &\le \|1\|_{L^2(D(z_0,a_1),\lambda_n)} \\ &= \left(\int_{D(z_0,a_1)} \frac{\pi}{n-1} \left(e^{(2n-2)\varphi(z)} - e^{(2n-2)\alpha(z)}\right) dV(z)\right)^{1/2} \\ &\le \left(\int_{D(z_0,a_1)} \frac{\pi}{n-1} dV(z)\right)^{1/2} \\ &= \frac{\pi a_1}{\sqrt{n-1}}. \end{aligned}
$$

Let $u \in C_0^{\infty}(D(z_0, a))$ and $n \geq n_{\varepsilon}$. Then

$$
\int_{D(z_0,a)} |u(z)|^2 e^{\lambda_n(z)} dV(z)
$$
\n
$$
= \sup \left\{ |\langle u, \beta \rangle_{D(z_0,a)}|^2 : \beta \in C_0^{\infty}(D(z_0,a)), ||\beta||_{L^2(D(z_0,a),\lambda_n)}^2 \le 1 \right\}
$$
\n
$$
\le \sup \left\{ |\langle u, (g_n)_z \rangle_{D(z_0,a)}|^2 : ||g_n||_{L^2(D(z_0,a),\lambda_n)}^2 \le 2\varepsilon^2 \right\}
$$
\n
$$
= \sup \left\{ |\langle u_z, g_n \rangle_{D(z_0,a)}|^2 : ||g_n||_{L^2(D(z_0,a),\lambda_n)}^2 \le 2\varepsilon^2 \right\}
$$
\n
$$
\le 2\varepsilon^2 \int_{D(z_0,a)} |u_z(z)|^2 e^{\lambda_n(z)} dV(z).
$$

There exists $0 < c < 1$ such that $e^{-\varphi(z)} < ce^{-\alpha(z)}$ for $z \in D(z_0, a)$. Then

$$
\frac{\pi}{n-1}e^{(2n-2)\varphi(z)}\left(1-c^{2n-2}\right)
$$

So for large *n* we have

$$
\frac{\pi}{2(n-1)}e^{(2n-2)\varphi(z)} < e^{-\lambda_n(z)} < \frac{\pi}{n-1}e^{(2n-2)\varphi(z)}
$$

and

$$
\frac{n-1}{\pi} \int_{D(z_0, a)} |u(z)|^2 e^{(2-2n)\varphi(z)} dV(z)
$$

<
$$
< \int_{D(z_0, a)} |u(z)|^2 e^{\lambda_n(z)} dV(z)
$$

$$
\leq 2\varepsilon^2 \int_{D(z_0, a)} |u_z(z)|^2 e^{\lambda_n(z)} dV(z)
$$

² Springer

$$
\leq \frac{4\varepsilon^2(n-1)}{\pi} \int_{D(z_0,a)} |u_z(z)|^2 e^{(2-2n)\varphi(z)} dV(z).
$$

That is, for any $\varepsilon > 0$ and $u \in C_0^{\infty}(D(z_0, a))$

$$
\int_{D(z_0,a)} |u(z)|^2 e^{(2-2n)\varphi(z)} dV(z) \le 4\varepsilon^2 \int_{D(z_0,a)} |u_z(z)|^2 e^{(2-2n)\varphi(z)} dV(z) \tag{2}
$$

for large *n*.

The estimate in [\(2\)](#page-9-0) is identical to the one in [\[5](#page-10-6), p. 38, proof of Lemma 10.2]. That is $\lambda_{n\varphi}^m(D(z_0, a)) \to \infty$ as $n \to \infty$ (see [\[5,](#page-10-6) Definition 2.3]). Since φ is smooth and subharmonic, [\[5](#page-10-6), Theorem 1.5] implies that $\lambda_{n\varphi}^e(D(z_0, a)) \to \infty$ as $n \to \infty$. We note that [\[5,](#page-10-6) Theorem 1.5] implies that if $\lambda_{n\varphi}^m(D(z_0, a)) \to \infty$ as $n \to \infty$ then $\lambda_{n\varphi}^e(D(z_0, a)) \to \infty$ as $n \to \infty$. This is enough to conclude that Γ_k is *B*-regular. This argument is contained in the proof of Proposition 9.1 converse of (1) in [\[5](#page-10-6), p. 33]. We repeat the argument here for the convenience of the reader.

Let $V = \{z \in D(z_0, a) : \Delta \varphi(z) > 0\}$ and $K_0 = D(z_0, a/2) \setminus V$. Then *V* is open and K_0 is a compact subset of $D(z_0, a)$. Furthermore, $\Delta \varphi = 0$ on K_0 . If K_0 has non-trivial fine interior then it supports a nonzero function $f \in W^1(\mathbb{C})$ (see [\[15,](#page-11-0) Proposition 4.17]). Then

$$
\lambda_{n\varphi}^e(D(z_0, a)) \le \frac{\|\nabla f\|^2}{\|f\|^2} < \infty \quad \text{for all} \quad n.
$$

Which is a contradiction. Hence K_0 has empty fine interior which implies that K_0 satisfies property (P) (see $[15,$ Proposition 4.17] or $[11,$ $[11,$ Proposition 1.11]). Therefore, for *M* > 0 there exists an open neighborhood O_M of K_0 and $b_M \in C_0^{\infty}(O_M)$ such that $|b_M| \leq 1/2$ on O_M and $\Delta b_M > M$ on K_0 . Furthermore, using the assumption that $|w| > 0$ on Γ_k one can choose M_1 such that the function $g_{M_1}(z, w) =$ $M_1(|w|^2e^{\varphi(z)}-1) + b_M(z)$ has the following properties: $|g_{M_1}| \le 1$ and the complex Hessian $H_{gM_1}(W) \geq M ||W||^2$ on $\Gamma_k \cap \overline{D(z_0, a)}$ where *W* is complex tangential direc-tion. Then [\[1](#page-10-11), Proposition 3.1.7] implies that $\Gamma_k \cap \overline{D(z_0, a/2)}$ satisfies property (P) (hence it is *B*-regular). Therefore, [\[15,](#page-11-0) Corollary 4.13] implies that Γ_k is *B*-regular.

The computations in the second case (that is $\rho_{|w|}(z_0, |w_0|) > 0$) are very similar. So we will just highlight the differences between the two cases. We define

$$
U^{a_1, b_1} = \left\{ (z, w) \in \mathbb{C}^2 : |w| > b_1 |z - z_0|^2 + a_1 \right\}
$$

and

$$
U_1 = \Omega \cap U^{a_1, b_1} = \left\{ (z, w) \in \mathbb{C}^2 : z \in V_1, e^{-\alpha(z)} < |w| < e^{-\varphi(z)} \right\}
$$

where V_1 is a domain in $\mathbb C$ and where $\alpha(z) = -\log(b_1|z-z_0|^2 + a_1)$ is a strictly superharmonic function. One can show that bU^{a_1,b_1} is strongly pseudoconvex. We choose *a*, *a*₁, *b*, *b*₁ > 0 such that such that $\overline{D(z_0, a)} \subset V_1$ and *U* is given by

$$
U = \Omega \cap U_{a,b} = \left\{ (z, w) \in \mathbb{C}^2 : z \in D(z_0, a), e^{-\alpha(z)} < |w| < e^{-\varphi(z)} \right\}
$$

where $U_{a,b} = D(z_0, a) \times \{w \in \mathbb{C} : |w_0| - b < |w| < |w_0| + b\}$. Furthermore, we define

$$
\lambda_n(z) = -\log\left(\frac{\pi}{n+1}\left(e^{-(2n+2)\varphi(z)} - e^{-(2n+2)\alpha(z)}\right)\right)
$$

for $n = 0, 1, 2, \ldots$ and by scaling U_1 in w variable if necessary, we will assume that *U*₁ ⊂ *D*(*z*₀, *a*₁) × {*w* ∈ ℂ : |*w*| < 1} so that $||1||_{L^2(D(z_0, a_1), \lambda_n)}$ goes to zero as $n \to \infty$. One can check that λ_n is subharmonic for all *n*.

We take functions $\beta \in C_0^{\infty}(D(z_0, a))$ and consider symbols $\psi \in C^{\infty}(V_1)$ such that $\psi_{\overline{z}} = \beta$. Then we consider the functions $H_{\psi}w^n$ for $n = 0, 1, 2, \dots$ Calculations similar to the ones in the previous case reveal that $g_n(z)w^n = H_w w^n$ where $g_n =$ $S_{\lambda_n}^{V_1}(\beta d\overline{z})$. Using similar manipulations and again the compactness estimate [\(1\)](#page-4-0) we conclude that for any $\varepsilon > 0$ there exists an integer n_{ε} such that for $u \in C_0^{\infty}(D(z_0, a))$ and $n > n_{\epsilon}$ we have

$$
\int_{D(z_0,a)} |u(z)|^2 e^{(2n+2)\varphi(z)} dV(z) \leq \varepsilon \int_{D(z_0,a)} |u_z(z)|^2 e^{(2n+2)\varphi(z)} dV(z). \tag{3}
$$

Finally, an argument similar to the one right after [\(2\)](#page-9-0) implies that Γ_k is *B*-regular. \Box

Acknowledgements We would like to thank the anonymous referee for constructive comments. The work of the second author was partially supported by a grant from the Simons Foundation (#353525), and also by a University of Michigan–Dearborn CASL Faculty Summer Research Grant. Both authors would like to thank the American Institute of Mathematics for hosting a workshop during which this project was started.

References

- 1. Ayyuru, M.:Compactness of the ∂-Neumann operator on the intersection domains in C*n*, Ph.D. thesis, Texas A&M University (2014)
- 2. Çelik, M., Şahutoğlu, S.: On compactness of the $\overline{\partial}$ -Neumann problem and Hankel operators. Proc. Am. Math. Soc. **140**(1), 153–159 (2012)
- 3. Çelik, M., Şahutoğlu, S.: Compactness of the $\overline{\partial}$ -Neumann operator and commutators of the Bergman projection with continuous functions. J. Math. Anal. Appl. **409**(1), 393–398 (2014)
- 4. Chen, S-C., Shaw, M-C.: Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol. 19. RI; International Press, Boston, MA, American Mathematical Society, Providence (2001)
- 5. Christ, M., Siqi, F.: Compactness in the ∂-Neumann problem, magnetic Schrödinger operators, and the Aharonov-Bohm effect. Adv. Math. **197**(1), 1–40 (2005)
- 6. Čučković, Z., Şahutoğlu, S.: Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains. J. Funct. Anal. **256**(11), 3730–3742 (2009)
- 7. Hörmander, L.: *L*² estimates and existence theorems for the ∂¯ operator. Acta Math. **113**, 89–152 (1965)
- 8. John, P., Angelo, D.: Inequalities from Complex Analysis, Carus Mathematical Monographs, vol. 28. Mathematical Association of America, Washington (2002)
- 9. Kohn, J.J.: Harmonic integrals on strongly pseudo-convex manifolds. I. Ann. Math. **78**, 112–148 (1963)
- 10. Şahutoğlu, S.: Localization of compactness of Hankel operators on pseudoconvex domains. Ill. J. Math. **56**(3), 795–804 (2012)
- 11. Sibony, N.: Une classe de domaines pseudoconvexes. Duke Math. J. **55**(2), 299–319 (1987)
- 12. Siqi, F., Straube, E.J.:Compactness in the $\overline{\partial}$ -Neumann problem, Complex analysis and geometry (Columbus: Ohio State Univ. Math. Res. Inst. Publ., vol. 9, de Gruyter. Berlin **2001**, 141–160 (1999)
- 13. Siqi, F., Straube, E.J.: Compactness of the ∂-Neumann problem on convex domains. J. Funct. Anal. **159**(2), 629–641 (1998)
- 14. Siqi, F., Straube, E.J.: Semi-classical analysis of Schrödinger operators and compactness in the ∂- Neumann problem. J. Math. Anal. Appl. **271**(1), 267–282 (2002)
- 15. Straube, E.J.: Lectures on the *^L*2-Sobolev theory of the [∂]-Neumann problem, ESI Lectures in Mathematics and Physics, vol. 7. European Mathematical Society (EMS), Zürich (2010)