Skip to main content
Log in

Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons

  • Article
  • Physics & Astronomy
  • Published:
Science Bulletin

Abstract

Telecom-band polarization-entangled photon-pair source has been widely used in quantum communication due to its acceptable transmission loss. It is also used in cooperation with wavelength-division multiplexing (WDM) to construct entanglement distributor. However, previous schemes generally are not suitable for multinode scenario. In this paper, we construct a telecom-band polarization-entangled photon-pair source, and it shows ultrahigh fidelity and concurrence which are both greater than 90 % (raw data). Moreover, we set up a four-by-four entanglement distributor based on WDM. We check the 16 Clauser–Horne–Shimony–Holt inequalities, which show nonlocality. Lastly, as an example of practical application of this source, we estimate the quantum bit error rates and quantum secret key rates when it is used in quantum key distribution. Furthermore, the transmission of entanglement in long optical fibers is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gisin N, Thew R (2007) Quantum communication. Nat Photon 1:165–171

    Article  Google Scholar 

  2. Mattle K, Weinfurter H, Kwiat PG et al (1996) Dense coding in experimental quantum communication. Phys Rev Lett 76:4559–4656

    Article  Google Scholar 

  3. Ekert AK (1991) Quantum cryptography based on Bell theorem. Phys Rev Lett 67:661–663

    Article  Google Scholar 

  4. Gisin N, Ribordy G, Tittel W et al (2002) Quantum cryptography. Rev Mod Phys 74:145

    Article  Google Scholar 

  5. Bouwmeester D, Pan JW, Mattle K et al (1997) Experimental quantum teleportation. Nature 390:575–579

    Article  Google Scholar 

  6. Man ZX, Su F, Xia YJ (2013) Stationary entanglement of two atoms in a common reservoir. Chin Sci Bull 58:2423–2429

    Article  Google Scholar 

  7. Sheng YB, Liu J, Zhao SY (2013) Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin Sci Bull 58:3507–3513

    Article  Google Scholar 

  8. Lim HC, Yoshizawa A, Tsuchida H et al (2007) Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution. Opt Express 16:16052–16057

    Article  Google Scholar 

  9. Herbauts I, Blauensteiner B, Poppe A et al (2013) Demonstration of active routing of entanglement in a multi-user network. Opt Express 21:29013–29024

    Article  Google Scholar 

  10. Lim HC, Yoshizawa A, Tsuchida H et al (2008) Distribution of polarization-entangled photon-pairs produced via spontaneous parametric down-conversion within a local-area fiber network: theoretical model and experiment. Opt Express 16:14512–14523

    Article  Google Scholar 

  11. Ou ZY, Mandel L (1988) Violation of Bell’s inequality and classical probability in a two-photon correlation experiment. Phys Rev Lett 61:50–53

    Article  Google Scholar 

  12. Shih YH, Alley CO (1988) New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys Rev Lett 61:2921–2924

    Article  Google Scholar 

  13. Rarity JG, Tapster PR (1990) Experimental violation of Bell inequality based on phase and momentum. Phys Rev Lett 64:2495–2498

    Article  Google Scholar 

  14. Franson JD (1989) Bell inequality for position and time. Phys Rev Lett 62:2205–2208

    Article  Google Scholar 

  15. Brendel J, Gisin N, Tittel W et al (1999) Pulsed energy-time entangled twin-photon source for quantum communication. Phys Rev Lett 82:2594–2597

    Article  Google Scholar 

  16. Mair A, Vaziri A, Weihs G et al (2001) Entanglement of the orbital angular momentum states of photons. Nature 412:313–316

    Article  Google Scholar 

  17. Arnaut HH, Barbosa GA (2000) Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion. Phys Rev Lett 85:286–289

    Article  Google Scholar 

  18. Barreiro JT, Langford NK, Peters NA et al (2005) Generation of hyperentangled photon pairs. Phys Rev Lett 95:260501

    Article  Google Scholar 

  19. Cinelli C, Di Nepi G, De Martini F et al (2004) Parametric source of two-photon states with a tunable degree of entanglement and mixing: experimental preparation of Werner states and maximally entangled mixed states. Phys Rev A 70:022321

    Article  Google Scholar 

  20. Barbieri M, Vallone G, De Martini F et al (2007) Polarization-momentum hyper-entangled two photon states. Opt Spectrosc 103:129

    Article  Google Scholar 

  21. Takeuchi S (2001) Beamlike twin-photon generation by use of type II parametric downconversion. Opt Lett 26:843–845

    Article  Google Scholar 

  22. Kurtsiefer C, Oberparleiter M, Weinfurter H (2001) Generation of correlated photon pairs in type-II parametric down conversion—revisited. J Mod Opt 48:1997–2007

    Google Scholar 

  23. Kwiat PG, Waks E, White AG et al (1999) Ultrabright source of polarization-entangled photons. Phys Rev A 60:R773

    Article  Google Scholar 

  24. Kwiat PG, Mattle K, Weinfurter H et al (1995) New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett 75:4337–4341

    Article  Google Scholar 

  25. Kim YH (2003) Quantum interference with beamlike type-II spontaneous parametric down-conversion. Phys Rev A 68:013804

    Article  Google Scholar 

  26. James DFV, Kwiat PG, Munro WJ et al (2001) Measurement of qubits. Phys Rev A 64:052312

    Article  Google Scholar 

  27. Hill S, Wootters WK (1997) Entanglement of a pair of quantum bits. Phys Rev Lett 78:5022–5025

    Article  Google Scholar 

  28. Wootters WK (1998) Entanglement of formation of an arbitrary state of two qubits. Phys Rev Lett 80:2245–2248

    Article  Google Scholar 

  29. Koashi M, Preskill J (2003) Secure quantum key distribution with an uncharacterized source. Phys Rev Lett 90:057902

    Article  Google Scholar 

  30. Ma XF, Fung C, Lo H (2007) Quantum key distribution with entangled photon sources. Phys Rev A 76:012307

    Article  Google Scholar 

  31. Huang YF, Liu BH, Peng L et al (2011) Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state. Nat Commun 2:546

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61327901, 61490711, 11274289, 11325419, 11374288 and 11104261), the National Basic Research Program of China (2011CB921200), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB01030300), the National Science Fund for Distinguished Young Scholars (61225025), and the Fundamental Research Funds for Central Universities (WK2470000011).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bi-Heng Liu, Yun-Feng Huang or Chuan-Feng Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, DY., Liu, BH., Wang, Z. et al. Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bull. 60, 1128–1132 (2015). https://doi.org/10.1007/s11434-015-0801-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0801-4

Keywords

Navigation