Skip to main content
Log in

Sol–gel processed (ZnxNi1−x)O binary composite characterized for gas sensing and photocatalytic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal oxides have received consideration in recent times due to their outstanding properties and diverse applications with their composites exhibiting unique electrical and magnetic features, photocatalytic degradation, and gas sensing properties. This research was carried out to investigate the properties of sol–gel synthesized (ZnxNi1−x)O binary composites since there has been no published paper yet on this. The zinc oxide, ZnO and nickel oxide, NiO samples were mixed at varied volume ratios of (0.8:0.2), (0.5:0.5), and (0.2:0.8) using Zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and Nickel (II) acetate tetrahydrate (Ni(CH3CO2)2·4H2O) as their respective precursors. A hexagonal crystal structure of the binary composite was gotten at an average crystallite size of 5.88 nm. Uniformly distributed nanolumps over the surface were observed in the morphology due to even dispersion in the Zn–Ni matrix. TEM images showed compact nanoclusters while the energy band gap values gotten were 3.2, 3.3, and 3.6 eV were obtained for the ZnO0.8NiO0.2, ZnO0.5NiO0.5, and ZnO0.2NiO0.8 composites, respectively. The functional groups present in the composites were shown in the FTIR graph with high PL counts obtained in the visible spectrum. Variation in the volume ratio of the composites gave Raman shifts at high intensity. Results obtained from the elemental analysis confirmed the presence of as-deposited elements and ascertained that the composites were synthesized in the right proportion. The composites were found to be highly sensitive most especially at high temperatures to CO2, H2S, and Cl2 at 100 ppm and 10 V. The photocatalytic efficiency obtained was above 50% at 10 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Alagiri, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiO nanoparticles by sol–gel method. J. Mater. Sci. Mater. Electron. 23(3), 728–732 (2012). https://doi.org/10.1007/s10854-011-0479-6

    Article  CAS  Google Scholar 

  2. A.C. Nkele et al., Enhanced electrochemical property of SILAR-deposited Mn3O4 thin films decorated on graphene. J. Market. Res. 9(4), 9049–9058 (2020). https://doi.org/10.1016/j.jmrt.2020.06.031

    Article  CAS  Google Scholar 

  3. M. Rahayi, M.H. Ehsani, A.C. Nkele, M.M. Shahidi, F.I. Ezema, Synthesis and characterization of tin (IV) oxide thin films. Opt. Quant. Electron. 53(5), 222 (2021). https://doi.org/10.1007/s11082-021-02896-x

    Article  CAS  Google Scholar 

  4. A.C. Nkele et al., Investigating the properties of nano nest-like nickel oxide and the NiO/Perovskite for potential application as a hole transport material. Adv. Nat. Sci. Nanosci. Nanotechnol. 10(4), 045009 (2019). https://doi.org/10.1088/2043-6254/ab5102

    Article  Google Scholar 

  5. A.C. Nkele et al., Structural, optical and electrochemical properties of SILAR-deposited zirconium-doped cadmium oxide thin films. Mater. Res. Express 6(9), 096439 (2019). https://doi.org/10.1088/2053-1591/ab31f5

    Article  CAS  Google Scholar 

  6. A.C. Nkele, S. Ezugwu, M. Suguyima, F.I. Ezema, Structural and electronic properties of metal oxides and their applications in solar cells, in Chemically deposited nanocrystalline metal oxide thin films: synthesis, characterizations, and applications. ed. by F.I. Ezema, C.D. Lokhande, R. Jose (Springer, Cham, 2021), pp.147–163. https://doi.org/10.1007/978-3-030-68462-4_6

  7. L.R. Devi, R. Sarathi, N.L. Sheeba, E.S. Esakki, S. Meenakshi Sundar, Influence of pH variation on structural, optical, and superparamagnetic behavior of Ni-doped ZnO (X=0.02) using a solvothermal method. J. Indian Chem. Soc. 100(2), 100874 (2023). https://doi.org/10.1016/j.jics.2022.100874

    Article  CAS  Google Scholar 

  8. T. Alammar, A.-V. Mudring, Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Mater. Lett. 63(9), 732–735 (2009). https://doi.org/10.1016/j.matlet.2008.12.035

    Article  CAS  Google Scholar 

  9. S. Tarish et al., Synchronous formation of ZnO/ZnS core/shell nanotube arrays with removal of template for meliorating photoelectronic performance. J. Phys. Chem. C 119(3), 1575–1582 (2015). https://doi.org/10.1021/jp510835n

    Article  CAS  Google Scholar 

  10. C. Tian et al., Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 48(23), 2858–2860 (2012). https://doi.org/10.1039/C2CC16434E

    Article  CAS  Google Scholar 

  11. A.U.H.S. Rana et al., Intrinsic control in defects density for improved ZnO nanorod-based UV sensor performance. Nanomaterials 10(1), 142 (2020). https://doi.org/10.3390/nano10010142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A.U.H.S. Rana, J.Y. Lee, Y.-P. Hong, H.-S. Kim, Transient current response for ZnO nanorod-based doubly transparent UV sensor fabricated on flexible substrate. Physica Status Solidi Rapid Res. Lett. 12(5), 1800001 (2018). https://doi.org/10.1002/pssr.201800001

    Article  CAS  Google Scholar 

  13. A.C. Nkele et al., The use of nickel oxide as a hole transport material in perovskite solar cell configuration: achieving a high performance and stable device. Int. J. Energy Res. 44(13), 9839–9863 (2020). https://doi.org/10.1002/er.5563

    Article  CAS  Google Scholar 

  14. Y. Li, Z. Jiao, N. Yang, H. Gao, Regeneration of nano-ZnO photocatalyst by the means of soft-mechanochemical ion exchange method. J. Environ. Sci. 21, S69–S72 (2009). https://doi.org/10.1016/S1001-0742(09)60040-1

    Article  Google Scholar 

  15. G. Boschloo, A. Hagfeldt, Spectroelectrochemistry of nanostructured NiO. J. Phys. Chem. B 105(15), 3039–3044 (2001). https://doi.org/10.1021/jp003499s

    Article  CAS  Google Scholar 

  16. X. Deng, Z. Chen, Preparation of nano-NiO by ammonia precipitation and reaction in solution and competitive balance. Mater. Lett. 58(3), 276–280 (2004). https://doi.org/10.1016/S0167-577X(03)00469-5

    Article  CAS  Google Scholar 

  17. V. Ranga Rao Pulimi, P. Jeevanandam, The effect of anion on the magnetic properties of nanocrystalline NiO synthesized by homogeneous precipitation. J. Magn. Magn. Mater. 321(17), 2556–2562 (2009). https://doi.org/10.1016/j.jmmm.2009.03.039

    Article  CAS  Google Scholar 

  18. S.-F. Wang, L.-Y. Shi, X. Feng, S.-R. Ma, Eutectic assisted synthesis of nanocrystalline NiO through chemical precipitation. Mater. Lett. 61(7), 1549–1551 (2007). https://doi.org/10.1016/j.matlet.2006.07.076

    Article  CAS  Google Scholar 

  19. P. Palanisamy, A.M. Raichur, Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater. Sci. Eng. C 29(1), 199–204 (2009). https://doi.org/10.1016/j.msec.2008.06.008

    Article  CAS  Google Scholar 

  20. E. Traversa, M. Sakamoto, Y. Sadaoka, A chemical route for the preparation of nanosized rare earth perovskite-type oxides for electroceramic applications. Part. Sci. Technol. 16(3), 185–214 (1998). https://doi.org/10.1080/02726359808906794

    Article  CAS  Google Scholar 

  21. M. Salavati-Niasari, F. Mohandes, F. Davar, M. Mazaheri, M. Monemzadeh, N. Yavarinia, Preparation of NiO nanoparticles from metal-organic frameworks via a solid-state decomposition route. Inorg. Chim. Acta 362(10), 3691–3697 (2009). https://doi.org/10.1016/j.ica.2009.04.025

    Article  CAS  Google Scholar 

  22. F. Davar, Z. Fereshteh, M. Salavati-Niasari, Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties. J. Alloy. Compd. 476(1), 797–801 (2009). https://doi.org/10.1016/j.jallcom.2008.09.121

    Article  CAS  Google Scholar 

  23. S. Liu, S.-Q. Bai, Y. Zheng, K.W. Shah, M.-Y. Han, Composite metal-oxide nanocatalysts. ChemCatChem 4(10), 1462–1484 (2012). https://doi.org/10.1002/cctc.201200264

    Article  CAS  Google Scholar 

  24. S. Nagarani, G. Sasikala, K. Satheesh, M. Yuvaraj, R. Jayavel, Synthesis and characterization of binary transition metal oxide/reduced graphene oxide nanocomposites and its enhanced electrochemical properties for supercapacitor applications. J. Mater. Sci. Mater. Electron. 29(14), 11738–11748 (2018). https://doi.org/10.1007/s10854-018-9272-0

    Article  CAS  Google Scholar 

  25. D.C. Iwueke et al., A novel chemical preparation of Ni (OH) 2/CuO nanocomposite thin films for supercapacitive applications. J. Mater. Sci. Mater. Electron. 26, 2236–2242 (2015)

    Article  CAS  Google Scholar 

  26. R.M. Obodo et al., Influence of pH and annealing on the optical and electrochemical properties of cobalt (III) oxide (Co3O4) thin films. Surf. Interfaces 16, 114–119 (2019)

    Article  CAS  Google Scholar 

  27. R.S. Shinde et al., Synthesis and characterization of ZnO/CuO nanocomposites as an effective photocatalyst and gas sensor for environmental remediation. J. Inorg. Organomet. Polym. 32(3), 1045–1066 (2022). https://doi.org/10.1007/s10904-021-02178-9

    Article  CAS  Google Scholar 

  28. D.K. Sharma, J. Mandal, Thermoelastic properties of ZnxNi1-xO nanocomposites under high temperature, Nat. Sci. (2019)

  29. Y.H. Taufiq-Yap, S. Sivasangar, M. Surahim, Catalytic supercritical water gasification of empty palm fruit bunches using ZnO-doped Ni–CaO catalyst for hydrogen production. Bioenerg. Res. 12(4), 1066–1076 (2019). https://doi.org/10.1007/s12155-019-10031-8

    Article  CAS  Google Scholar 

  30. S. Suganya, M.M. Alam, F. Kousi, G. Ramalingam, M.R. Prabhu, S. Sudhahar, Facile one-pot synthesis of ternary Ni-Mn-Zn oxide nanocomposites for high-performance hybrid supercapacitors. J. Energy Storage 71, 108176 (2023). https://doi.org/10.1016/j.est.2023.108176

    Article  Google Scholar 

  31. M. Zahid Ishaque et al., Fabrication of ternary metal oxide (ZnO:NiO:CuO) nanocomposite heterojunctions for enhanced photocatalytic and antibacterial applications. RSC Adv. 13(44), 30838–30854 (2023). https://doi.org/10.1039/D3RA05170F

    Article  Google Scholar 

  32. K.O. Ighodalo et al., The structural and optical properties of metallic doped copper (I) iodide thin films synthesized by SILAR method. Mater. Res. Bull. 94, 528–536 (2017)

    Article  CAS  Google Scholar 

  33. A.C. Nkele et al., Role of metallic dopants on the properties of copper (1) iodide nanopod-like structures. Vacuum 161, 306–313 (2019). https://doi.org/10.1016/j.vacuum.2018.12.049

    Article  CAS  Google Scholar 

  34. T. Çayır Taşdemirci, Influence of annealing on properties of SILAR deposited nickel oxide films. Vacuum 167, 189–194 (2019). https://doi.org/10.1016/j.vacuum.2019.05.047

    Article  CAS  Google Scholar 

  35. A.C. Nkele et al., A study on titanium dioxide nanoparticles synthesized from titanium isopropoxide under SILAR-induced gel method: Transition from anatase to rutile structure. Inorg. Chem. Commun. 112, 107705 (2020). https://doi.org/10.1016/j.inoche.2019.107705

    Article  CAS  Google Scholar 

  36. I.L. Ikhioya, A.C. Nkele, Properties of electrochemically deposited NiTe films prepared at varying dopant concentrations of molybdenum. J. Mater. Sci. Mater. Electron. 34(21), 1603 (2023). https://doi.org/10.1007/s10854-023-11018-0

    Article  CAS  Google Scholar 

  37. A. Umar et al., Colloidal synthesis of NiMn2O4 nanodisks decorated reduced graphene oxide for electrochemical applications. Microchem. J. 160, 105630 (2021). https://doi.org/10.1016/j.microc.2020.105630

    Article  CAS  Google Scholar 

  38. I.L. Ikhioya, A.C. Nkele, A novel synthesis of hydrothermally prepared europium sulfide and cerium sulfide nanomaterials doped with yttrium. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08292-9

    Article  Google Scholar 

  39. M.B. Pramanik, M.A.A. Rakib, M.A. Siddik, S. Bhuiyan, Doping effects and relationship between energy band gaps, impact of ionization coefficient and light absorption coefficient in semiconductors. Eur. J. Eng. Technol. Res. (2024). https://doi.org/10.24018/ejeng.2024.9.1.3118

    Article  Google Scholar 

  40. R. Filter, Drude model: deriving the conductivity and permittivity of metals, photonics101.com. https://photonics101.com/light-matter-interactions/drude-model-metal-permittivity-conductivity.html.Accessed 24 May 2024

  41. A.C. Gandhi, S.Y. Wu, Strong deep-level-emission photoluminescence in NiO nanoparticles. Nanomaterials 7(8), 231 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  42. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, M. Pärs, Raman scattering in nanosized nickel oxide NiO. J. Phys. 93(1), 012039 (2007). https://doi.org/10.1088/1742-6596/93/1/012039

    Article  CAS  Google Scholar 

  43. R.F. Zhuo et al., Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs. J. Phys. D 41(18), 185405 (2008). https://doi.org/10.1088/0022-3727/41/18/185405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [GrantA478]. The authors are also thankful to DST, New Delhi for Research Infrastructure under DST-FIST.

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D. F. Matthew, A. C. Nkele G. E. Patil: Conceptualization, Methodology, Data curation, Validation, Experiments, Formal analysis, Investigation, Writing original draft. S. D. Shinde, B. A. Ezekoye: Validation, Data curation. G. H. Jain, A. B. C. Ekwealor, I. A. Huda: Experiments, Data curation. Adil Alshoaibi, A. M. Manoj: Conceptualization, Supervision. B. A.Yogesh, ABC Ekwealor: Validation, Formal analysis. G. H. Jain, ABC Ekwealor & Fabian I. Ezema: Validation, Formal analysis. G. H. Jain, Fabian I. Ezema: Conceptualization, Supervision, Validation, Formal analysis.

Corresponding authors

Correspondence to Matthew D. Femi or Agnes C. Nkele.

Ethics declarations

Conflict of interest

The authors declare that they have no relevant financial or non-financial conflict of interests.

Ethical approval

This paper meets the ethical standards of this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The guest editor of this special issue is Dr. Habib Pathan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Femi, M.D., More, M.A., Nkele, A.C. et al. Sol–gel processed (ZnxNi1−x)O binary composite characterized for gas sensing and photocatalytic applications. J Mater Sci: Mater Electron 35, 1300 (2024). https://doi.org/10.1007/s10854-024-12936-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12936-3

Navigation