1 Introduction

The main purpose of the current article is to study time-dependent heat equations with potentials on closed Riemannian \(n\)-manifolds \(M\) evolving by the geometric flow

$$\begin{aligned} \frac{\partial }{\partial t}g_{ij} = - 2S_{ij}, \end{aligned}$$
(1)

where \(S_{ij}(t)\) is a symmetric two-tensor on \((M, g(t))\). A typical example would be the case where \(S_{ij} = R_{ij}\) is the Ricci tensor and \(g(t)\) is a solution of the Ricci flow introduced by Hamilton [8]. We shall derive Li–Yau type differential Harnack inequalities [13] for positive solutions to the following heat equation with a potential term:

$$\begin{aligned} \frac{\partial f}{\partial t} = {\Delta }f + Sf, \end{aligned}$$
(2)

where the symbol \(\Delta \) stands for the Laplacian of the evolving metric \(g(t)\) and \(S ={g}^{ij}S_{ij}\) is the trace of \(S_{ij}\). In the current article, we shall use the Einstein summation convention. For simplicity, we omit \(g(t)\) in the above notation. All geometric operators are with respect to the evolving metric \(g(t)\). Notice also that we have

$$\begin{aligned} \frac{\partial }{\partial t}\left( \,\,\int _{M}f{\mathrm{d}}{\mu }_{g} \right) =\int _{M}\left( \frac{\partial f}{\partial t} -S \right) {\mathrm{d}}{\mu }_{g} = \int _{M}{\Delta }_{}f{\mathrm{d}}{\mu }_{g} = 0. \end{aligned}$$

The main results of the current article are Theorems A, B, C, D and E stated below, which can be seen as natural generalizations of results proved by Cao and Hamilton [4]. See also Sect. 2 below.

The study of differential Harnack inequalities for parabolic equations originated with the work of Li and Yau [13]. They first proved a gradient estimate for the heat equation using the maximal principle. By integrating the gradient estimate along a space-time path, a classical Harnack inequality was derived. Therefore, Li–Yau type gradient estimate is often called differential Harnack inequality. Hamilton adapted similar techniques to prove Harnack inequalities for the Ricci flow [10] and the mean curvature flow [11]. Many authors used similar techniques to prove Harnack inequalities for geometric flows. For instance, see [13, 57, 12, 1719].

To state the main results of the current article, we shall introduce evolving tensor quantities associated with the tensor \({S}_{ij}\).

Definition 1

Suppose that \(g(t)\) evolves by the geometric flow (1) and let \(X=X^{i}\frac{\partial }{\partial x^{i}} \in \Gamma (TX)\) be a vector field on \(M\). We define

$$\begin{aligned} {\mathcal I}(S, X)&= (R^{ij} - S^{ij})X_{i}X_{j}, \\ {\mathcal H}(S, {X})&= \frac{\partial S}{\partial t} + \frac{S}{t} + 2{\nabla }_{i}SX^{i} + 2{S}^{ij}X_{i}{X}_{j}, \\ {\mathcal E}(S, {X})&= \left( \frac{\partial S}{\partial t} - \Delta S - 2|S_{ij}|^{2} \right) - 2 (2{\nabla }^{i}S_{i\ell } - {\nabla }_{\ell }S ){X}^{\ell } + 2 {\mathcal I}(S, X), \end{aligned}$$

where \(R^{ij} = {g}^{ik}g^{j \ell }R_{k \ell }\), \(S^{ij} = {g}^{ik}g^{j \ell }S_{k \ell }\), \(S = g^{ij}S_{ij}\), \({\nabla }^{i} = g^{ij}{\nabla }_{j}\) and \(X_{k} = {g}_{ik}X^{i}\).

We notice that these quantities are also introduced by Müller [15] to prove the monotonicity of Perelman type reduced volume under (1).

The first main result of the current article is as follows:

Theorem A

Suppose that \(g(t)\) evolves by the geometric flow (1) on a closed oriented smooth \(n\)-manifold \(M\) and

$$\begin{aligned} 2{\mathcal H}(S, X)+{\mathcal E}(S,X) \ge 0 \end{aligned}$$
(3)

holds for all vector fields \(X\) and all time \(t \in [0, T)\) for which the flow exists. Let \(f\) be a positive solution to the heat equation (2), \(u = -\log f\), and

$$\begin{aligned} H_{S} = 2{\Delta }u - |\nabla u|^{2}-3{S} - \frac{2n}{t}. \end{aligned}$$

Then, \(H_{S} \le 0\) for all time \(t \in (0, T)\).

In the case of the heat equation without the potential term, we shall also prove

Theorem B

Suppose that \(g(t)\) evolves by the geometric flow (1) on a closed oriented smooth \(n\)-manifold \(M\) and

$$\begin{aligned} {\mathcal I}(S, X) \ge 0 \end{aligned}$$
(4)

holds for all vector fields \(X\) and all time \(t \in [0, T)\) for which the flow exists. Let \(f \ (< 1)\) be a positive solution to the heat equation \(\frac{\partial f}{\partial t} = \Delta f\), \(u = -\log f\) and

$$\begin{aligned} H_{S} = |\nabla u|^{2} - \frac{u}{t}. \end{aligned}$$

Then, \(H_{S} \le 0\) holds for all time \(t \in (0, T)\). Hence we have the following on \((0, T)\),

$$\begin{aligned} |\nabla f|^{2} \le -\frac{f^{2}}{t}\log f. \end{aligned}$$

On the other hand, a similar technique with the proof of Theorem A also enables us to prove

Theorem C

Suppose that \(g(t)\) evolves by the geometric flow (1) on a closed oriented smooth \(n\)-manifold \(M\) and \(2{\mathcal H}(S, X) + {\mathcal E}(S,X) \ge 0\) holds for all vector fields \(X\) and all time \(t \in [0, T)\) for which the flow exists. Let \(f\) be a positive solution to the heat equation (2), \(v = -\log f- \frac{n}{2}\log (4{\pi }t)\) and

$$\begin{aligned} P_{S} = 2{\Delta }v - |\nabla v|^{2}-3{S} + \frac{v}{t} - d\frac{n}{t}, \end{aligned}$$

where \(d\) is any constant. Then for all time \(t \in (0, T)\),

$$\begin{aligned} \frac{\partial }{\partial t}(tP_{S})&= {\Delta }(t{P}_{S}) - 2{\nabla }^{i}(tP_{S}){\nabla }_{i}v -2t\left| \nabla _{i}\nabla _{j}v - S_{ij} - \frac{1}{2t}g_{ij}\right| ^{2} \\&-t\left( 2{\mathcal H}(S, {\nabla }v)+{\mathcal E}(S, {\nabla }v) \right) \end{aligned}$$

and \(\max (t{P}_{S})\) is non-increasing.

Moreover, inspired by the works of Perelman [17] and Cao and Hamilton [4], we shall introduce two entropies which are associated with the above Harnack quantities. The first one is associated with \(H_{S}\).

Theorem D

Under the same assumption with Theorem A, we define

$$\begin{aligned} {\mathcal F}_{S} = \int _{M}t^{2}\mathrm{e}^{-u}H_{S}{\mathrm{d}}{\mu }_{g}. \end{aligned}$$

Then for all time \(t \in (0, T)\), we have \({\mathcal F}_{S} \le 0\) and

$$\begin{aligned} \frac{\mathrm{d}}{{\mathrm{d}}t} {\mathcal {F}}_{S} \le 0. \end{aligned}$$

Moreover, suppose that \({\mathcal H}(S, X) \ge 0\) and \({\mathcal E}(S, X) \ge 0\) holds for all vector fields \(X\) and all time \(t \in [0, T)\) for which the flow exists. If \(\frac{\mathrm{d}}{{\mathrm{d}}t} {\mathcal F}_{S} = 0\) holds for some time \(t\), then the following holds:

$$\begin{aligned} S_{ij} = -\frac{1}{t}g_{ij}, \quad {\nabla }u = 0, \, {\mathcal H}(S, {\nabla }u) = 0, \, {\mathcal E}(S, {\nabla v}) = 0 \end{aligned}$$
(5)

The second one is associated with \(P_{S}\) as follows.

Theorem E

Under the same assumption with Theorem C, we define

$$\begin{aligned} {\mathcal W}_{S} = \int _{M}tP_{S}(4{\pi }t)^{-\frac{n}{2}}\mathrm{e}^{-v}{\mathrm{d}}{\mu }_{g}. \end{aligned}$$

Then for all time \(t \in (0, T)\), we have

$$\begin{aligned} \frac{\mathrm{d}}{{\mathrm{d}}t} {\mathcal W}_{S} \le 0. \end{aligned}$$

Moreover, suppose that \({\mathcal H}(S, X) \ge 0\) and \({\mathcal E}(S,X) \ge 0\) holds for all vector fields \(X\) and all time \(t \in [0, T)\) for which the flow exists. If \(\frac{\mathrm{d}}{{\mathrm{d}}t} {\mathcal W}_{S} = 0\) holds for some time \(t\), then the following holds:

$$\begin{aligned} S_{ij} - {\nabla }_{i}{\nabla }_{j}v + \frac{1}{2t}g_{ij}=0, \quad {\mathcal H}(S, {\nabla }v)=0, \, {\mathcal E}(S, {\nabla v}) = 0. \end{aligned}$$
(6)

2 Examples

2.1 The Ricci flow

Let \(g(t)\) be a solution to the Ricci flow:

$$\begin{aligned} \frac{\partial }{\partial t}g_{ij} = - 2R_{ij}. \end{aligned}$$

Namely, we have \(S_{ij} = {R}_{ij}\) and \(S = R\) the scalar curvature. Notice that it is known that the scalar curvature \(R\) evolves by \(\frac{\partial R}{\partial t} - \Delta R - 2|R_{ij}|^{2} = 0\). Moreover, we have the twice contracted second Bianchi identity \(2{\nabla }^{i}R_{i\ell } - {\nabla }_{\ell }R=0\). Hence, we have \({\mathcal E}(S, X) =0\) in this case. Therefore, (3) is equivalent to

$$\begin{aligned} {\mathcal H}(S, X) = \frac{\partial R}{\partial t} + \frac{R}{t} + 2{\nabla }_{i}RX^{i} + 2{R}^{ij}X_{i}X_{j} \ge 0. \end{aligned}$$

This tells us that \(g(t)\) has weakly positive curvature operator (see also [9]). Moreover, we have \({\mathcal I}(S, X) =0\). Hence, (4) holds. Therefore, Theorems A, B, C, D and E in the case where \(S_{ij} = {R}_{ij}\) just correspond to the results proved by Cao and Hamilton [4]. Notice also that (5) particularly tells us that \(R_{ij} = -\frac{1}{t}g_{ij}\), i.e., \(g(t)\) is Einstein. Similarly, (6) implies \(R_{ij} +{\nabla }_{i}{\nabla }_{j}(-v) + \frac{1}{2t}g_{ij}=0\). This tells us that \(g(t)\) is an expanding gradient Ricci soliton. Since it is known [17] that any expanding Ricci soliton on a closed manifold must be Einstein, \(g(t)\) is Einstein.

2.2 Bernhard List’s flow

List [14] introduced a geometric flow closely related to the Ricci flow:

$$\begin{aligned} \frac{\partial }{\partial t}g_{ij}&= - 2R_{ij} + 4{\nabla }_i \psi {\nabla }_j \psi , \\ \frac{\partial \psi }{\partial t}&= {\Delta } \psi , \end{aligned}$$

where \(\psi : M \rightarrow {\mathbb R}\) is a smooth function. If we set \(S_{ij} = {R}_{ij}-2{\nabla }_i \psi {\nabla }_j \psi \), it is clear that the first of List’s flow has the form (1). Notice also that we have \(S =R -2|\nabla \psi |^{2}\). List [14] pointed out that \(S\) satisfies the following evolution equation:

$$\begin{aligned} \frac{\partial S}{\partial t} -\Delta S - 2|S_{ij}|^{2} = 4|\Delta \psi |^{2}. \end{aligned}$$

On the other hand, we get \(2{\nabla }^{i}S_{i\ell } - {\nabla }_{\ell }S = 2{\nabla }^{i}({R}_{i\ell }-2{\nabla }_i \psi {\nabla }_\ell \psi )-{\nabla }_{\ell }(R -2|\nabla \psi |^{2}) = -4{\nabla }^{i}({\nabla }_i \psi {\nabla }_\ell \psi ) - 2{\nabla }_{\ell }(\nabla ^{k} \psi \nabla _{k} \psi ) = -4{\Delta }\psi \nabla _{\ell } \psi \), where notice the twice contracted second Bianchi identity \(2{\nabla }^{i}R_{i\ell } = {\nabla }_{\ell }R\). Therefore, we have

$$\begin{aligned} {\mathcal E}(S, X) = 4|\Delta \psi |^{2} + 8{\Delta }\psi \nabla _{\ell } \psi X^{\ell } + 4{\nabla }^i \psi {\nabla }^j \psi X_{i}X_{j} = 4|\Delta \psi + {\nabla }_{X}\psi |^{2} \ge 0. \end{aligned}$$
(7)

In particular, (3) is particularly satisfied if

$$\begin{aligned} {\mathcal H}(S, X) \ge 0. \end{aligned}$$

On the other hand, we have \({\mathcal I}(S, X) = {\nabla }^i \psi {\nabla }^j \psi X_{i}X_{j} = ({\nabla }_{X}\psi )^{2} \ge 0\). Hence, (4) holds. Therefore, Theorems A, B, C, D and E just correspond to the result proved by Fang [6]. Notice also that, under the situation on Theorem D, we particularly have the following by (5) and (7):

$$\begin{aligned} {R}_{ij}-2{\nabla }_i \psi {\nabla }_j \psi = -\frac{1}{t}g_{ij}, \quad {\nabla }u = 0, \, \Delta \psi + {\nabla }^{i}\psi {\nabla }_{i}u = 0. \end{aligned}$$

Since it follows that \(\Delta \psi =0\), \(\psi \) must be a harmonic function on the closed manifold \(M\). This implies that \(\psi \) is a constant for the time \(t\). Therefore, we have \({R}_{ij}= -\frac{1}{t}g_{ij}\), i.e., \(M\) is Einstein.

2.3 Rent Müller’s flow

Let \((Y, h)\) be a fixed Riemannian manifold. Let \((g(t), \phi (t))\) be the couple consisting of a family of metric \(g(t)\) on \(M\) and a family of maps \(\phi (t)\) from \(M\) to \(Y\). We call \((g(t), \phi (t))\) a solution of Rent Müller’s flow [16] (also known as the Ricci flow coupled with harmonic map heat flow) with coupling function \(\alpha (t) \ge 0\) if

$$\begin{aligned} \frac{\partial }{\partial t}g_{ij}&= - 2R_{ij} + 2\alpha (t){\nabla }_i \phi {\nabla }_j \phi , \\ \frac{\partial \phi }{\partial t}&= {\tau } _g \phi , \end{aligned}$$

where \( {\tau } _g \phi \) is the tension field of the map \(\phi \) with respect to the metric \(g(t)\). List’s flow is a special case of this flow. If we set \(S_{ij} = {R}_{ij}-\alpha (t){\nabla }_i \phi {\nabla }_j \phi \), the first of Müller’s flow has the form (1). Notice that \(S =R -2\alpha (t)|\nabla \phi |^{2}\) holds. Müller [16] proved that \(S\) satisfies

$$\begin{aligned} \frac{\partial S}{\partial t} -\Delta S - 2|S_{ij}|^{2} = 2\alpha (t)|\tau _{g} \phi |^{2} -\left( \frac{\partial \alpha (t)}{\partial t}\right) |\nabla \phi |^{2}. \end{aligned}$$

Since we are able to get \(2{\nabla }^{i}S_{i\ell } - {\nabla }_{\ell }S = -2\alpha (t){\tau }_{g}\phi \nabla _{\ell } \phi \), the following holds:

$$\begin{aligned} {\mathcal E}(S, X)&= 2\alpha (t)|\tau _{g} \phi |^{2} -\left( \frac{\partial \alpha (t)}{\partial t}\right) |\nabla \phi |^{2}+4\alpha (t){\tau }_{g}\phi \nabla _{\ell } \phi X^{\ell }+ 2\alpha (t){\nabla }^i \phi {\nabla }^j \phi X_{i}X_{j} \\&= 2{\alpha (t)}\left| \tau _{g} \phi + {\nabla }_{X}\phi \right| ^{2} -\left( \frac{\partial \alpha (t)}{\partial t}\right) |\nabla \phi |^{2}. \end{aligned}$$

Therefore, \({\mathcal E}(S, X) \ge 0\) holds if \(\alpha (t) \ge 0\) is non-increasing. In this case, (3) is particularly satisfied if

$$\begin{aligned} {\mathcal H}(S, X) \ge 0. \end{aligned}$$

Notice also that \({\mathcal I}(S, X) = \alpha (t){\nabla }^i \phi {\nabla }^j \phi X_{i}X_{j} = \alpha (t)({\nabla }_{X}\phi )^{2} \ge 0\). Hence, (4) holds. To the best of our knowledge, Theorems A, B, C, D and E in the case where \(S_{ij} = {R}_{ij}-\alpha (t){\nabla }_i \phi {\nabla }_j \phi \) are new.

On the other hand, under the situation on Theorem D, we have the following by (5) and the above computation if \(\alpha (t)\) is constant:

$$\begin{aligned} {R}_{ij}-2{\nabla }_i \phi {\nabla }_j \phi = -\frac{1}{t}g_{ij}, \quad {\nabla }u = 0, \quad \tau _{g} \phi + {\nabla }^{i}\phi {\nabla }_{i}u = 0. \end{aligned}$$

Therefore, we have \({R}_{ij}-2{\nabla }_i \phi {\nabla }_j \phi = -\frac{1}{t}g_{ij}\) and \(\tau _{g} \phi = 0\). In particular, \(\phi \) must be a harmonic map.

3 Proofs of Theorems A and B

Let \(f\) be a positive solution of the following heat equation with potential:

$$\begin{aligned} \frac{\partial f}{\partial t} = {\Delta }_{}f - cSf, \end{aligned}$$
(8)

where \(c\) is a constant. In what follows, let \(u = - \log f\). By a direct computation, we are able to see that \(u\) satisfies

$$\begin{aligned} \frac{\partial u}{\partial t} = \Delta u - |\nabla u|^{2} + cS. \end{aligned}$$
(9)

Let us introduce the following:

Definition 2

Suppose that \(g(t)\) evolves by (1) and let \(S\) be the trace of \(S_{ij}\). Let \(X=X^{i}\frac{\partial }{\partial x^{i}} \in \Gamma (TX)\) be a vector field on \(M\). We define

$$\begin{aligned} {\mathcal D}_{(a, \alpha , \beta )}(S, X)&= a \left( \frac{\partial S}{\partial t} - \Delta S - 2|S_{ij}|^{2} \right) + \alpha (2{\nabla }^{i}S_{i\ell } - {\nabla }_{\ell }S){X}^{\ell } \\&+ 2{\beta } (R^{ij} -S^{ij}){X}_{i}{X}_{j}, \end{aligned}$$

where \(a, \alpha \) and \(\beta \) are constants.

Notice that we have \({\mathcal E}(S, {X}) = {\mathcal D}_{(1, -2, 1)}(S, X)\).

Lemma 1

Let \(g(t)\) be a solution to the geometric flow (1) and \(u\) satisfies (9). Let

$$\begin{aligned} H_{S} = \alpha \Delta u - \beta |\nabla u|^{2} + a{S} - b\frac{u}{t}-d\frac{n}{t}, \end{aligned}$$
(10)

where \(\alpha , \beta , a, b\) and \(d\) are constants. Then, \(H_{S}\) satisfies

$$\begin{aligned} \frac{\partial H_{S}}{\partial t}&= {\Delta }H_{S} - 2{\nabla }^{i}H_{S}{\nabla }_{i}u + 2(a-\beta c){\nabla }^{i}S{\nabla }_{i}u-2(\alpha -\beta )|\nabla \nabla u|^{2} \\&-2{\alpha }R^{ij}{\nabla }_{i}u{\nabla }_{j}u + 2{\alpha }S^{ij}{\nabla }_{i}{\nabla }_{j}u + {\alpha }c{\Delta }S -\frac{b}{t}|\nabla u|^{2} - \frac{b}{t}cS + \frac{b}{t^{2}}u + d\frac{n}{t^{2}} \\&+ 2a|S_{ij}|^{2} + {\mathcal D}_{(a, \alpha , \beta )}(S, \nabla u). \end{aligned}$$

Proof

First of all, notice that we have the following three evolution equations, which follow from standard computation:

$$\begin{aligned} \frac{\partial }{\partial t} (\Delta u)&= 2{S}^{ij}{\nabla }_{i}{\nabla }_{j}u + \Delta \left( \frac{\partial u}{\partial t}\right) - g^{ij}\left( \frac{\partial }{\partial t}\Gamma ^{k}_{ij} \right) \nabla _{k}u, \\ \frac{\partial }{\partial t}(|\nabla u|^{2})&= 2{S}^{ij}{\nabla }_{i}u{\nabla }_{j}u + 2 \nabla ^{i}\left( \frac{\partial u}{\partial t}\right) \nabla _{i} u, \\ g^{ij}\left( \frac{\partial }{\partial t}\Gamma ^{k}_{ij} \right)&= -g^{k \ell } (2\nabla ^{i}S_{i\ell } - \nabla _{\ell }S). \end{aligned}$$

By (9), (10) and these equations, we are able to obtain

$$\begin{aligned} \frac{\partial H_{S}}{\partial t}&= \alpha \frac{\partial }{\partial t} (\Delta u) - \beta \frac{\partial }{\partial t}(|\nabla u|^{2}) + a\frac{\partial S}{\partial t}- \frac{b}{t}\frac{\partial u}{\partial t} + \frac{b}{t^{2}}u + d\frac{n}{t^{2}} \\&= \alpha \left( 2{S}^{ij}{\nabla }_{i}{\nabla }_{j}u + \Delta \left( \frac{\partial u}{\partial t}\right) - g^{ij}\left( \frac{\partial }{\partial t}\Gamma ^{k}_{ij} \right) \nabla _{k}u \right) \\&\quad - \beta \left( 2{S}^{ij}{\nabla }_{i}u{\nabla }_{j}u + 2 \nabla ^{i}\left( \frac{\partial u}{\partial t}\right) \nabla _{i} u \right) + a\frac{\partial S}{\partial t} - \frac{b}{t}\frac{\partial u}{\partial t} + \frac{b}{t^{2}}u + d\frac{n}{t^{2}} \\&= \alpha (2{S}^{ij}{\nabla }_{i}{\nabla }_{j}u + \Delta (\Delta u - |\nabla u|^{2} + cS) + g^{k \ell } (2\nabla ^{i}S_{i\ell } - \nabla _{\ell }S)\nabla _{k}u) \\&\quad - \beta (2{S}^{ij}{\nabla }_{i}u{\nabla }_{j}u + 2 \nabla ^{i}(\Delta u - |\nabla u|^{2} + cS) \nabla _{i} u) + a\frac{\partial S}{\partial t} \\&\quad - \frac{b}{t}(\Delta u - |\nabla u|^{2} + cS) + \frac{b}{t^{2}}u + d\frac{n}{t^{2}} \\&= 2 \alpha {S}^{ij}{\nabla }_{i}{\nabla }_{j}u + \alpha \Delta (\Delta u) - \alpha \Delta (|\nabla u|^{2}) + \alpha c \Delta S+ \alpha (2\nabla ^{i}S_{i\ell } - \nabla _{\ell }S)\nabla ^{\ell }u \\&\quad - 2\beta {S}^{ij}{\nabla }_{i}u{\nabla }_{j}u - 2{\beta }\nabla ^{i}(\Delta u)\nabla _{i}u + 2{\beta }\nabla ^{i}(|\nabla u|^{2})\nabla _{i}u-2{\beta } c\nabla ^{i}S \nabla _{i}u \\&\quad + \frac{b}{t}|\nabla u|^{2} - \frac{b}{t}cS + \frac{b}{t^{2}}u + d\frac{n}{t^{2}} + a\frac{\partial S}{\partial t} - \frac{b}{t}\Delta u. \end{aligned}$$

On the other hand, we also have the following by (10):

$$\begin{aligned} {\Delta }H_{S}&= \alpha \Delta (\Delta u) - \beta \Delta (|\nabla u|^{2}) + a\Delta {S} - \frac{b}{t}\Delta u. \\ {\nabla }^{i}H_{S}&= \alpha \nabla ^{i}(\Delta u) - \beta \nabla ^{i}(|\nabla u|^{2}) + a\nabla ^{i}{S} - \frac{b}{t}\nabla ^{i}u \end{aligned}$$

Therefore, we get

$$\begin{aligned} {\Delta }H_{S}-2{\nabla }^{i}H_{S}{\nabla }_{i}u&= \alpha \Delta (\Delta u) - \beta \Delta (|\nabla u|^{2}) + a\Delta {S} - \frac{b}{t}\Delta u \\&- 2{\alpha }{\nabla }^{i}(\Delta u){\nabla }_{i}u + 2\beta {\nabla }^{i}(|\nabla u|^{2}){\nabla }_{i}u - 2a{\nabla }^{i}S{\nabla }_{i}u + \frac{2b}{t}|\nabla u|^{2}. \end{aligned}$$

Using this, we are able to obtain

$$\begin{aligned} \frac{\partial H_{S}}{\partial t}&= {\Delta }H_{S} - 2{\nabla }^{i}H{\nabla }_{i}u + 2 \alpha {S}^{ij}{\nabla }_{i}{\nabla }_{j}u - 2\beta {S}^{ij}{\nabla }_{i}u{\nabla }_{j}u - (\alpha - \beta ) \Delta (|\nabla u|^{2}) \\&+ (\alpha c-a)\Delta S + \alpha (2{\nabla }^{i}S_{i \ell } - {\nabla }_\ell S){\nabla }^{\ell }u + 2(\alpha -\beta ){\nabla }^{i}(\Delta u){\nabla }_{i}u \\&+ 2(a-\beta c){\nabla }^{i}S{\nabla }_{i}u -\frac{b}{t}|\nabla u|^{2} + a\frac{\partial S}{\partial t} - \frac{b}{t}cS + \frac{b}{t^{2}}u + d\frac{n}{t^{2}}. \end{aligned}$$

On the other hand, we also have the following Bochner–Weitzenbock type formula:

$$\begin{aligned} \Delta (|\nabla u|^{2}) = 2|\nabla \nabla u|^{2} + 2{\nabla }^{i}(\Delta u){\nabla }_{i}u + 2{R}^{ij}{\nabla }_{i}u{\nabla }_{j}u. \end{aligned}$$

Using this formula, we get

$$\begin{aligned} \frac{\partial H_{S}}{\partial t}&= {\Delta }H_{S} - 2{\nabla }^{i}H_{S}{\nabla }_{i}u + 2(a-\beta c){\nabla }^{i}S{\nabla }_{i}u-2(\alpha -\beta )|\nabla \nabla u|^{2} \\&-2{\alpha }R^{ij}{\nabla }_{i}u{\nabla }_{j}u + 2{\alpha }S^{ij}{\nabla }_{i}{\nabla }_{j}u + {\alpha }c{\Delta }S -\frac{b}{t}|\nabla u|^{2} - \frac{b}{t}cS + \frac{b}{t^{2}}u + d\frac{n}{t^{2}} \\&+ 2a|S_{ij}|^{2} + a \left( \frac{\partial S}{\partial t} -{\Delta }S - 2|S_{ij}|^{2} \right) + \alpha (2{\nabla }^{i}S_{i \ell } - {\nabla }_\ell S){\nabla }^{\ell }u \\&+ 2{\beta }(R^{ij} - S^{ij}){\nabla }_{i}u{\nabla }_{j}u \\&= {\Delta }H_{S} - 2{\nabla }^{i}H_{S}{\nabla }_{i}u + 2(a-\beta c){\nabla }^{i}S{\nabla }_{i}u-2(\alpha -\beta )|\nabla \nabla u|^{2} \\&-2{\alpha }R^{ij}{\nabla }_{i}u{\nabla }_{j}u + 2{\alpha }S^{ij}{\nabla }_{i}{\nabla }_{j}u + {\alpha }c{\Delta }S -\frac{b}{t}|\nabla u|^{2} - \frac{b}{t}cS + \frac{b}{t^{2}}u + d\frac{n}{t^{2}} \\&+ 2a|S_{ij}|^{2} + {\mathcal D}_{(a, \alpha , \beta )}(S, \nabla u), \end{aligned}$$

where notice that Definition 2. \(\square \)

In particular, we shall use Lemma 1 to prove Theorem B. The following result is used to prove Theorem A.

Proposition 1

The evolution equation in Lemma 1 can be rewritten as follows:

$$\begin{aligned} \frac{\partial H_{S}}{\partial t}&= \Delta {H_{S}} -2{\nabla }^{i}H_{S}{\nabla }_{i}u - 2(\alpha - \beta )\left| \nabla _{i}\nabla _{j}u - \frac{\alpha }{2(\alpha -\beta )}S_{ij}-\frac{\lambda }{2t}g_{ij} \right| ^{2} \\&+ 2(a-\beta c){\nabla }^{i}u{\nabla }_{i}S - \frac{2(\alpha -\beta )}{\alpha }\frac{\lambda }{t}H_{S} + \frac{(\alpha -\beta )n{\lambda }^{2}}{2t^{2}}- \left( b + \frac{2(\alpha -\beta )\lambda {\beta }}{\alpha } \right) \frac{|\nabla u|^{2}}{t} \\&+ \left( 2a + \frac{\alpha ^{2}}{2(\alpha -\beta )} \right) |S_{ij}|^{2} + \left( \alpha {\lambda } - bc + \frac{2(\alpha -\beta )\lambda a}{\alpha } \right) \frac{S}{t} + \left( 1-\frac{2(\alpha -\beta )\lambda }{\alpha } \right) \frac{b}{t^{2}}u \\&+ \left( 1-\frac{2(\alpha -\beta )\lambda }{\alpha } \right) \frac{d}{t^{2}}n + \alpha c {\Delta }S - 2{\alpha }R^{ij}{\nabla }_{i}u{\nabla }_{j}u + {\mathcal D}_{(a, \alpha , \beta )}(S, {\nabla }u), \end{aligned}$$

where \(\lambda \) is a constant, \(\alpha \not = 0\) and \(\alpha \not = \beta \).

Proof

A direct computation implies

$$\begin{aligned}&-2(\alpha -\beta )\left| \nabla _{i}\nabla _{j}u - \frac{\alpha }{2(\alpha -\beta )}S_{ij}-\frac{\lambda }{2t}g_{ij} \right| ^{2} = -2(\alpha -\beta )|\nabla \nabla u|^{2} + 2{\alpha }S^{ij}{\nabla }_{i}{\nabla }_{j}u \\&\quad + 2(\alpha -\beta )\frac{\lambda }{t} \Delta u - \frac{\lambda }{t}S - \frac{\alpha ^{2}}{2(\alpha -\beta )} |S_{ij}|^{2} - \frac{(\alpha - \beta )\lambda ^{2} n}{2t^{2}}. \end{aligned}$$

Therefore, we get

$$\begin{aligned}&-2(\alpha -\beta )|\nabla \nabla u|^{2} + 2{\alpha }S^{ij}{\nabla }_{i}{\nabla }_{j}u + 2a|S_{ij}|^{2}\\&\quad = -2(\alpha -\beta )\left| \nabla _{i}\nabla _{j}u - \frac{\alpha }{2(\alpha -\beta )}S_{ij}-\frac{\lambda }{2t}g_{ij} \right| ^{2} - 2(\alpha -\beta )\frac{\lambda }{t} \left( \Delta u - \frac{\alpha S}{2(\alpha -\beta )} \right) \\&\qquad + \frac{(\alpha - \beta )\lambda ^{2} n}{2t^{2}} + \left( 2a + \frac{\alpha ^{2}}{2(\alpha -\beta )} \right) |S_{ij}|^{2}. \end{aligned}$$

By this and Lemma 1, we obtain

$$\begin{aligned} \frac{\partial H_{S}}{\partial t}&= {\Delta }H_{S} - 2{\nabla }^{i}H_{S}{\nabla }_{i}u - 2(\alpha -\beta )\left| \nabla _{i}\nabla _{j}u - \frac{\alpha }{2(\alpha -\beta )}S_{ij} - \frac{\lambda }{2t}g_{ij} \right| ^{2} \\&+ 2(a-\beta c){\nabla }^{i}S{\nabla }_{i}u - 2(\alpha -\beta )\frac{\lambda }{t} \left( \Delta u - \frac{\alpha S}{2(\alpha -\beta )} \right) + \frac{(\alpha - \beta )\lambda ^{2} n}{2t^{2}} \\&+ \left( 2a + \frac{\alpha ^{2}}{2(\alpha -\beta )} \right) |S_{ij}|^{2} + \alpha c {\Delta }S - 2\alpha {R}^{ij}{\nabla }_{i}u{\nabla }_{j}u - \frac{b}{t}|\nabla u|^{2} - \frac{b}{t}cS \\&+ \frac{b}{t^{2}}u + d\frac{n}{t^{2}} + {\mathcal D}_{(a, \alpha , \beta )}(S, \nabla u). \end{aligned}$$

The desired result now follows from the above equation and the following:

$$\begin{aligned}&-2(\alpha -\beta )\frac{\lambda }{t} \left( \Delta u - \frac{\alpha S}{2(\alpha -\beta )} \right) - \frac{b}{t}|\nabla u|^{2} - \frac{b}{t}cS + \frac{b}{t^{2}}u + d\frac{n}{t^{2}} \\&\quad = - \frac{2(\alpha - \beta )}{\alpha }\frac{\lambda }{t}H_{S} - \left( b + \frac{2(\alpha -\beta )\lambda \beta }{\alpha } \right) \frac{|\nabla u|^{2}}{t} + \left( 1- \frac{2(\alpha - \beta )\lambda }{\alpha } \right) \frac{b}{t^{2}}u \\&\quad \quad + \left( \alpha {\lambda } -bc + \frac{2(\alpha -\beta )\lambda a}{\alpha } \right) \frac{S}{t} + \left( 1-\frac{2(\alpha -\beta )\lambda }{\alpha } \right) \frac{d}{t^{2}}n. \end{aligned}$$

This equation also follows from a direct computation. \(\square \)

As a corollary of the above proposition, we obtain the following result which is a key to prove Theorem A:

Corollary 1

Suppose that \(g(t)\) evolves by the geometric flow (1) on a closed oriented smooth \(n\)-manifold \(M\). Let \(f\) be a positive solution to the heat equation (8) with \(c=-1\), \(u = -\log f\) and

$$\begin{aligned} H_{S} = 2{\Delta }u - |\nabla u|^{2}-3{S} - \frac{2n}{t}. \end{aligned}$$

Then,

$$\begin{aligned} \frac{\partial H_{S}}{\partial t}&= \Delta {H_{S}} -2{\nabla }^{i}H_{S}{\nabla }_{i}u - 2\left| \nabla _{i}\nabla _{j}u - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} - \frac{2}{t}H_{S} - \frac{2}{t}{|\nabla u|^{2}} \\&\quad - \left( 2{\mathcal H}(S, {\nabla }u) + {\mathcal E}(S, {\nabla }u) \right) . \end{aligned}$$

Proof

By Proposition 1 in the case where \(\alpha = 2\), \(\beta = 1\), \(a = -3\), \(c=-1\), \(\lambda = 2\), \(b = 0\) and \(d= 2\), we get the desired result as follows:

$$\begin{aligned} \frac{\partial H_{S}}{\partial t}&= \Delta {H}_{S} -2{\nabla }^{i}H_{S}{\nabla }_{i}u - 2\left| \nabla _{i}\nabla _{j}u - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} - \frac{2}{t}H_{S} - \frac{2}{t}{|\nabla u|^{2}} \\&- 4{\nabla }_{i}S{\nabla }^{i}u - 4|S_{ij}|^{2} -2 \frac{S}{t} - 2{\Delta }S - 4R^{ij}{\nabla }_{i}u{\nabla }_{j}u + {\mathcal D}_{(-3, 2, 1)}(S, {\nabla }u) \\&= \Delta {H_{S}} -2{\nabla }^{i}H_{S}{\nabla }_{i}u - 2\left| \nabla _{i}\nabla _{j}u - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} - \frac{2}{t}H_{S} - \frac{2}{t}{|\nabla u|^{2}} \\&- 2\left( \frac{\partial S}{\partial t} + \frac{S}{t} + 2{\nabla }_{i}S{\nabla }^{i}u + 2{S}^{ij}{\nabla }_{i}u{\nabla }_{j}u\right) + 2\frac{\partial S}{\partial t} + 4({S}^{ij}-R^{ij}){\nabla }_{i}u{\nabla }_{j}u \\&- 4|S_{ij}|^{2}- 2{\Delta }S + {\mathcal D}_{(-3, 2, 1)}(S, {\nabla }u) \\&= \Delta {H_{S}} -2{\nabla }^{i}H_{S}{\nabla }_{i}u - 2\left| \nabla _{i}\nabla _{j}u - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} - \frac{2}{t}H_{S} - \frac{2}{t}{|\nabla u|^{2}} \\&- 2\left( \frac{\partial S}{\partial t} + \frac{S}{t} + 2{\nabla }_{i}S{\nabla }^{i}u + 2{S}^{ij}{\nabla }_{i}u{\nabla }_{j}u\right) + 2\left( \frac{\partial S}{\partial t} - \Delta S - 2|S_{ij}|^{2}\right) \\&- 4(R^{ij}-{S}^{ij}){\nabla }_{i}u{\nabla }_{j}u - 3 \left( \frac{\partial S}{\partial t} - \Delta S - 2|S_{ij}|^{2} \right) + 2 (2{\nabla }^{i}S_{i\ell } - {\nabla }_{\ell }S){\nabla }^{\ell }u \\&+ 2 (R^{ij} -S^{ij}){\nabla }_{i}u{\nabla }_{j}u \\&= \Delta {H_{S}} -2{\nabla }^{i}H_{S}{\nabla }_{i}u - 2\left| \nabla _{i}\nabla _{j}u - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} - \frac{2}{t}H - \frac{2}{t}{|\nabla u|^{2}} \\&- 2\left( \frac{\partial S}{\partial t} + \frac{S}{t} + 2{\nabla }_{i}S{\nabla }^{i}u + 2{S}^{ij}{\nabla }_{i}u{\nabla }_{j}u\right) \\&- \left( \frac{\partial S}{\partial t} - \Delta S - 2|S_{ij}|^{2} \right) + 2 (2{\nabla }^{i}S_{i\ell } - {\nabla }_{\ell }S){\nabla }^{\ell }u -2 (R^{ij} -S^{ij}){\nabla }_{i}u{\nabla }_{j}u \\&= \Delta {H_{S}} -2{\nabla }^{i}H_{S}{\nabla }_{i}u - 2\left| \nabla _{i}\nabla _{j}u - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} - \frac{2}{t}H_{S} - \frac{2}{t}{|\nabla u|^{2}} \\&- \left( 2{\mathcal H}(S, {\nabla }u) + {\mathcal E}(S, {\nabla }u) \right) \!, \end{aligned}$$

where we used Definition 2. \(\square \)

We are now in a position to prove Theorem A. First of all, notice that, for \(t\) small enough, we get \(H_{S} < 0\). Since we assumed that (3) holds, the maximal principle and Corollary 1 tell us that

$$\begin{aligned} H_{S} \le 0 \end{aligned}$$

for all time \(t \in (0, T)\). Hence, we have proved Theorem A.

By Theorem A and integrating along a space-time path, we are able to get a classical Harnack inequality as follows:

Corollary 2

Suppose that \(g(t)\) evolves by the geometric flow (1) on a closed oriented smooth \(n\)-manifold \(M\) and \(2{\mathcal H}(S, X)+{\mathcal E}(S,X) \ge 0\) holds for all vector fields \(X\) and all time \(t \in [0, T)\) for which the flow exists. Let \(f\) be a positive solution to the heat equation (2). Assume that \((x_{1}, t_{1})\) and \((x_{2}, t_{2})\) are two points in \(M \times (0, T)\), where \(0 < t_{1} < {t}_{2}\). Let

$$\begin{aligned} L = \inf _{\ell }\int ^{t_{2}}_{t_{1}}\left( |\dot{\ell }|^{2} + S \right) {\mathrm{d}}t, \end{aligned}$$

where \(\ell \) is any space-time path joining \((x_{1}, t_{1})\) and \((x_{2}, t_{2})\). Then,

$$\begin{aligned} f(x_{1}, t_{1}) \le f(x_{2}, t_{2}) \left( \frac{t_{2}}{t_{1}} \right) ^{n}\exp \left( {\frac{L}{2}}\right) \!. \end{aligned}$$
(11)

Proof

The strategy of the proof is now standard. For the reader, let us include the proof. First of all, we have \(H_{S} \le 0\) by Theorem A. And \(u = -\log f\) satisfies (9) with \(c=-1\), i.e.,

$$\begin{aligned} \frac{\partial u}{\partial t} = \Delta u - |\nabla u|^{2} -S. \end{aligned}$$

Therefore, we get

$$\begin{aligned} 2\frac{\partial u}{\partial t} + |\nabla u|^{2} - S - 2\frac{n}{t} = H_{S} \le 0. \end{aligned}$$
(12)

Pick a space-time path \(\ell (x, t)\) joining \((x_{1}, t_{1})\) and \((x_{2}, t_{2})\). Then, we obtain the following along the path \(\ell (x, t)\) using (12):

$$\begin{aligned} \frac{{\mathrm{d}}u}{{\mathrm{d}}t}&= \frac{\partial u}{\partial t} + {\nabla u} \cdot \dot{\ell } \\&\le \frac{S}{2} + \frac{n}{t} - \frac{|\nabla u|^{2}}{2} + {\nabla u} \cdot \dot{\ell } \\&\le \frac{n}{t} + \frac{1}{2}\left( |\dot{\ell }|^{2} + S \right) \!. \end{aligned}$$

This implies

$$\begin{aligned} u(x_{2}, {t}_{1}) -u(x_{1}, {t}_{1}) \le \frac{L}{2} + n \log \left( \frac{t_{2}}{t_{1}}\right) \!. \end{aligned}$$

This tells us that (11) holds. \(\square \)

Let us close this section with the proof of Theorem B. Let \(f\) be a positive solution to linear heat equation \(\frac{\partial f}{\partial t} = \Delta f\). Then, we may assume that \(f< 1\) by the linearity. Then, \(u = -\log f\) satisfies (9) with \(c=0\). Therefore, by taking \(\alpha = 0\), \(\beta = -1\), \(a = c =0\), \(\lambda = 2\), \(b = 1\) and \(d= 0\) in Lemma 1, we have

$$\begin{aligned} H_{S} = |\nabla u|^{2} - \frac{u}{t} \end{aligned}$$

and

$$\begin{aligned} \frac{\partial H_{S}}{\partial t}&= {\Delta }H_{S} - 2{\nabla }^{i}{H}_{S}{\nabla }_{i}u - 2|\nabla \nabla u|^{2} - \frac{1}{t}|\nabla u|^{2} + \frac{1}{t^{2}}u +{\mathcal D}_{(0,0,-1)} \\&= {\Delta }H_{S} - 2{\nabla }^{i}{H}_{S}{\nabla }_{i}u - \frac{1}{t}H_{S} - 2|\nabla \nabla u|^{2} - 2{\mathcal I}(S, {\nabla }u). \end{aligned}$$

Notice that as \(t\) small enough, \(H_{S}<0\). By the maximal principle and this evolution equation, Theorem B follows as desired.

4 Proof of Theorem C

Let \(f\) be a positive solution of (8). In what follows, let \(v = - \log f-\frac{n}{2}\log (4{\pi }t)\). By a direct computation, we see that \(v\) satisfies

$$\begin{aligned} \frac{\partial v}{\partial t} = \Delta v - |\nabla v|^{2} + cS - \frac{n}{2t}. \end{aligned}$$
(13)

Then, we have

Proposition 2

Let \(g(t)\) be a solution to the geometric flow (1) and \(v\) satisfies (13). Let

$$\begin{aligned} P_{S} = \alpha \Delta v - \beta |\nabla v|^{2} + a{S} - b\frac{v}{t}-d\frac{n}{t}, \end{aligned}$$
(14)

where \(\alpha , \beta , a, b\) and \(d\) are constants. Then, \(P_{S}\) satisfies

$$\begin{aligned} \frac{\partial P_{S}}{\partial t}&= \Delta {P_{S}} -2{\nabla }^{i}P_{S}{\nabla }_{i}v - 2(\alpha - \beta )\left| \nabla _{i}\nabla _{j}v - \frac{\alpha }{2(\alpha -\beta )}S_{ij}\!-\!\frac{\lambda }{2t}g_{ij} \right| ^{2} \\&+ 2(a-\beta c){\nabla }^{i}v{\nabla }_{i}S \!-\! \frac{2(\alpha -\beta )}{\alpha }\frac{\lambda }{t}P_{S} \!+\! \frac{(\alpha -\beta )n{\lambda }^{2}}{2t^{2}}- \left( b + \frac{2(\alpha -\beta )\lambda {\beta }}{\alpha } \right) \frac{|\nabla v|^{2}}{t} \\&+ \left( 2a \!+\! \frac{\alpha ^{2}}{2(\alpha -\beta )} \right) |S_{ij}|^{2} \!+\! \left( \alpha {\lambda } - bc \!+\! \frac{2(\alpha -\beta )\lambda a}{\alpha } \right) \frac{S}{t} \!+\! \left( 1\!-\!\frac{2(\alpha \!-\!\beta )\lambda }{\alpha } \right) \frac{b}{t^{2}}v \\&+ \left( 1-\frac{2(\alpha -\beta )\lambda }{\alpha } \right) \frac{d}{t^{2}}n + \alpha c {\Delta }S - 2{\alpha }R^{ij}{\nabla }_{i}v{\nabla }_{j}v + \frac{bn}{2{t}^{2}} + {\mathcal D}_{(a, \alpha , \beta )}(S, {\nabla }v), \end{aligned}$$

where \(\lambda \) is a constant, \(\alpha \not =0\) and \(\alpha \not = \beta \).

Proof

A similar computation with Proposition 1 enables us to prove this result. In fact, notice that we have \(v = u - \frac{n}{2}\log (4{\pi }t)\). Therefore, we get \(\nabla u = \nabla v\) and \(\Delta u = \Delta v\). We also have \(P_{S} =H_{S} + \frac{bn}{2t}\log (4{\pi }t)\). Then, Proposition 1 and a direct computation imply

$$\begin{aligned} \frac{\partial P_{S}}{\partial t}&= \frac{\partial {H_S}}{\partial t} - \frac{bn}{2{t}^{2}}\log (4{\pi }t) + \frac{bn}{2t^{2}} \\&= \Delta {P_{S}} -2{\nabla }^{i}P_{S}{\nabla }_{i}v - 2(\alpha - \beta )\left| \nabla _{i}\nabla _{j}v - \frac{\alpha }{2(\alpha -\beta )}S_{ij}-\frac{\lambda }{2t}g_{ij} \right| ^{2} \\&\quad + 2(a-\beta c){\nabla }^{i}v{\nabla }_{i}S - \frac{2(\alpha -\beta )}{\alpha }\frac{\lambda }{t}P_{S} + \frac{(\alpha -\beta )n{\lambda }^{2}}{2t^{2}}- \left( b + \frac{2(\alpha -\beta )\lambda {\beta }}{\alpha } \right) \frac{|\nabla v|^{2}}{t} \\&\quad + \left( 2a + \frac{\alpha ^{2}}{2(\alpha -\beta )} \right) |S_{ij}|^{2} \!+\! \left( \alpha {\lambda } - bc \!+\! \frac{2(\alpha -\beta )\lambda a}{\alpha } \right) \frac{S}{t} \!+\! \left( 1-\frac{2(\alpha -\beta )\lambda }{\alpha } \right) \frac{b}{t^{2}}v \\&\quad + \left( 1-\frac{2(\alpha -\beta )\lambda }{\alpha } \right) \frac{d}{t^{2}}n + \alpha c {\Delta }S - 2{\alpha }R^{ij}{\nabla }_{i}v{\nabla }_{j}v + \frac{bn}{2{t}^{2}} + {\mathcal D}_{(a, \alpha , \beta )}(S, {\nabla }v). \end{aligned}$$

Hence we obtained the desired result. \(\square \)

As a special case of Proposition 2, we get

Corollary 3

Suppose that \(g(t)\) evolves by the geometric flow (1) on a closed oriented smooth \(n\)-manifold \(M\). Let \(f\) be a positive solution to the heat equation (8) with \(c= -1\), \(v = - \log f-\frac{n}{2}\log (4{\pi }t)\) and

$$\begin{aligned} P_{S} = 2{\Delta }v - |\nabla v|^{2}-3{S} + \frac{v}{t} - d\frac{n}{t}. \end{aligned}$$

Then,

$$\begin{aligned} \frac{\partial P_{S}}{\partial t} + \frac{1}{t}P_{S}&= \Delta {P_{S}} -2{\nabla }^{i}P_{S}{\nabla }_{i}v - 2\left| \nabla _{i}\nabla _{j}v - S_{ij}-\frac{1}{2t}g_{ij} \right| ^{2} \\&\quad - \left( 2{\mathcal H}(S, {\nabla }v) + {\mathcal E}(S, {\nabla }v) \right) . \end{aligned}$$

\(\square \)

Proof

By Proposition 2 in the case where \(\alpha = 2\), \(\beta = 1\), \(a = -3\), \(b = -1\), \(c=-1\), \(\lambda = 1\), we obtain

$$\begin{aligned} \frac{\partial P_{S}}{\partial t}&= \Delta {P_{S}} -2{\nabla }^{i}P_{S}{\nabla }_{i}v - 2\left| \nabla _{i}\nabla _{j}v - S_{ij}-\frac{1}{2t}g_{ij} \right| ^{2} - \frac{1}{t}P_{S} \\&\quad - 4{\nabla }_{i}S{\nabla }^{i}u - 4|S_{ij}|^{2} -2 \frac{S}{t} - 2{\Delta }S - 4R^{ij}{\nabla }_{i}u{\nabla }_{j}u \\&\quad + {\mathcal D}_{(-3, 2, 1)}(S, {\nabla }u) \\&= \Delta {P}_{S} -2{\nabla }^{i}P_{S}{\nabla }_{i}v - 2\left| \nabla _{i}\nabla _{j}v - S_{ij}-\frac{1}{2t}g_{ij} \right| ^{2} - \frac{1}{t}P_{S} \\&\quad - 2\left( \frac{\partial S}{\partial t} + \frac{S}{t} + 2{\nabla }_{i}S{\nabla }^{i}u + 2{S}^{ij}{\nabla }_{i}u{\nabla }_{j}u\right) + 2\left( \frac{\partial S}{\partial t} - \Delta S - 2|S_{ij}|^{2}\right) \\&\quad + 4({S}^{ij}-R^{ij}){\nabla }_{i}u{\nabla }_{j}u + {\mathcal D}_{(-3, 2, 1)}(S, {\nabla }u) \\&= \Delta {P_{S}} -2{\nabla }^{i}P_{S}{\nabla }_{i}v - 2\left| \nabla _{i}\nabla _{j}v - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} - \frac{1}{t}P_{S} \\&\quad - 2\left( \frac{\partial S}{\partial t} + \frac{S}{t} + 2{\nabla }_{i}S{\nabla }^{i}v + 2{S}^{ij}{\nabla }_{i}v{\nabla }_{j}v\right) + 2\left( \frac{\partial S}{\partial t} - \Delta S - 2|S_{ij}|^{2}\right) \\&\quad - 4(R^{ij}-{S}^{ij}){\nabla }_{i}u{\nabla }_{j}v - 3 \left( \frac{\partial S}{\partial t} - \Delta S - 2|S_{ij}|^{2} \right) + 2 (2{\nabla }^{i}S_{i\ell } - {\nabla }_{\ell }S){\nabla }^{\ell }u \\&\quad + 2 (R^{ij} -S^{ij}){\nabla }_{i}u{\nabla }_{j}u \\&= \Delta {P_{S}} -2{\nabla }^{i}P_{S}{\nabla }_{i}v - 2\left| \nabla _{i}\nabla _{j}v - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} - \frac{1}{t}P_{S} \\&\quad - 2\left( \frac{\partial S}{\partial t} + \frac{S}{t} + 2{\nabla }_{i}S{\nabla }^{i}v + 2{S}^{ij}{\nabla }_{i}v{\nabla }_{j}v\right) \\&\quad - \left( \frac{\partial S}{\partial t} - \Delta S - 2|S_{ij}|^{2} \right) + 2 (2{\nabla }^{i}S_{i\ell } - {\nabla }_{\ell }S ){\nabla }^{\ell }u -2 (R^{ij} -S^{ij}){\nabla }_{i}u{\nabla }_{j}u \\&= \Delta {P_{S}} -2{\nabla }^{i}P_{S}{\nabla }_{i}v - 2\left| \nabla _{i}\nabla _{j}v - S_{ij}-\frac{1}{2t}g_{ij} \right| ^{2} - \frac{1}{t}P_{S} \\&\quad - \left( 2{\mathcal H}(S, {\nabla }v) + {\mathcal E}(S, {\nabla }v) \right) . \end{aligned}$$

Therefore, the desired result follows. \(\square \)

We shall prove Theorem C as follows. In fact, we are able to obtain the following by Corollary 3:

$$\begin{aligned} \frac{\partial }{\partial t}(tP_{S})&= t\frac{\partial P_{S}}{\partial t} + P_{S} = {\Delta }(t{P}_{S}) - 2{\nabla }^{i}(tP_{S}){\nabla }_{i}v -2t\left| \nabla _{i}\nabla _{j}v - S_{ij} - \frac{1}{2t}g_{ij}\right| ^{2} \\&\quad - t\left( 2{\mathcal H}(S, {\nabla }v)+{\mathcal E}(S, {\nabla }v) \right) . \end{aligned}$$

Furthermore, the monotonicity of \(\max (t{P}_{S})\) follows from this equation and the maximal principle.

5 Proof of Theorem D

First of all, notice that \({\mathcal F}_{S} \le 0\) follows from the definition of \({\mathcal F}_{S}\) and \(H_{S} \le 0\), where we used Theorem A. Let us consider the following quantity:

$$\begin{aligned} A = 2t\mathrm{e}^{-u}{H}_{S} - t^{2}\mathrm{e}^{-u}\frac{\partial u}{\partial t}H_{S} + t^{2}\mathrm{e}^{-u}\frac{\partial H_{S}}{\partial t} -St^{2}\mathrm{e}^{-u}H_{S}. \end{aligned}$$

On the other hand, a direct computation tells us that the following holds:

$$\begin{aligned} {\Delta }(t^{2}\mathrm{e}^{-u}H_{S}) = t^{2}\mathrm{e}^{-u} ({\Delta } H_{S} - 2{\nabla }^{i}H_{S}{\nabla }_{i}u - H_{S}{\Delta }u + H_{S}|\nabla u|^{2}). \end{aligned}$$
(15)

By (9) with \(c=-1\), Corollary 1 and (15), we get

$$\begin{aligned} A&= 2t\mathrm{e}^{-u}{H}_{S} - t^{2}\mathrm{e}^{-u} \left( \Delta u - |\nabla u|^{2} -S \right) H_{S} \\&+ t^{2}\mathrm{e}^{-u}\left( \Delta {H_{S}} -2{\nabla }^{i}H_{S}{\nabla }_{i}u - 2\left| \nabla _{i}\nabla _{j}u - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} - \frac{2}{t}H_{S} - \frac{2}{t}{|\nabla u|^{2}}- (2{\mathcal H}(S, {\nabla }u) + {\mathcal E}(S, {\nabla }u) ) \right) \\&- St^{2}\mathrm{e}^{-u}H_{S} \\&= {\Delta }(t^{2}\mathrm{e}^{-u}H_{S}) - 2t^{2}\mathrm{e}^{-u}\left| \nabla _{i}\nabla _{j}u - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} -2t{e}^{-u}|\nabla u|^{2} \\&- t^{2}\mathrm{e}^{-u}\left( 2{\mathcal H}(S, {\nabla }u) + {\mathcal E}(S, {\nabla }u) \right) \!. \end{aligned}$$

On the other hand, notice that we have

$$\begin{aligned} \frac{\mathrm{d}}{{\mathrm{d}}t} {\mathcal F}_{S} = \frac{\mathrm{d}}{{\mathrm{d}}t} \left( \int _{M}t^{2}\mathrm{e}^{-u}H_{S}{\mathrm{d}}{\mu }_{g}\right) = \int _{M}A{\mathrm{d}}{\mu }_{g}. \end{aligned}$$

Therefore, the following holds:

$$\begin{aligned} \frac{\mathrm{d}}{{\mathrm{d}}t} {\mathcal F}_{S}&= \int _{M}\bigg ({\Delta }(t^{2}\mathrm{e}^{-u}H_{S}) - 2t^{2}\mathrm{e}^{-u}\left| \nabla _{i}\nabla _{j}u - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} -2t{e}^{-u}|\nabla u|^{2} \\&-\, t^{2}\mathrm{e}^{-u}(2{\mathcal H}(S, {\nabla }u) + {\mathcal E}(S, {\nabla }u))\bigg ) {\mathrm{d}}{\mu }_{g} \\&= -\int _{M}\bigg (2t^{2}\mathrm{e}^{-u}\left| \nabla _{i}\nabla _{j}u - S_{ij}-\frac{1}{t}g_{ij} \right| ^{2} + 2t\mathrm{e}^{-u}|\nabla u|^{2}\\&+\, t^{2}\mathrm{e}^{-u}(2{\mathcal H}(S, {\nabla }u) + {\mathcal E}(S, {\nabla }u))\bigg ) {\mathrm{d}}{\mu }_{g} \le 0. \end{aligned}$$

Assume moreover that \({\mathcal H}(S, X) \ge 0\) and \({\mathcal E}(S, X) \ge 0\) holds. Suppose also that \(\frac{\mathrm{d}}{{\mathrm{d}}t} {\mathcal F}_{S} = 0\) holds for some time \(t\). Then, we obtain

$$\begin{aligned} \nabla _{i}\nabla _{j}u - S_{ij}-\frac{1}{t}g_{ij} = 0, \ \nabla u = 0, \ {\mathcal H}(S, {\nabla }u) = 0, \ {\mathcal E}(S, {\nabla }u) = 0. \end{aligned}$$

These imply (5) as desired. We proved Theorem D.

6 Proof of Theorem E

Let us consider the following quantity:

$$\begin{aligned} B = \mathrm{e}^{-v}{P}_{S} + t\mathrm{e}^{-v}\frac{\partial P_{S}}{\partial t} -\frac{n}{2}\mathrm{e}^{-v}P_{S} - t\mathrm{e}^{-v}\frac{\partial v}{\partial t}P_{S} -St\mathrm{e}^{-v}P_{S}. \end{aligned}$$

A direct computation tells us that the following holds:

$$\begin{aligned} {\Delta }(t\mathrm{e}^{-v}P_{S}) = t\mathrm{e}^{-v} ({\Delta } P_{S} - 2{\nabla }^{i}P_{S}{\nabla }_{i}v - P_{S}{\Delta }v + P_{S}|\nabla v|^{2}) \end{aligned}$$
(16)

By (13) with \(c=-1\), Corollary 3 and (16), we obtain the following:

$$\begin{aligned} B&= \mathrm{e}^{-v}{P}_{S} + t\mathrm{e}^{-v}(\Delta {P_{S}} -2{\nabla }^{i}P_{S}{\nabla }_{i}v - 2\left| \nabla _{i}\nabla _{j}v - S_{ij}-\frac{1}{2t}g_{ij} \right| ^{2} - \frac{1}{t}P_{S} \\&-\, (2{\mathcal H}(S, {\nabla }v) + {\mathcal E}(S, {\nabla }v)) -\frac{n}{2}\mathrm{e}^{-v}P_{S}- t\mathrm{e}^{-v}P_{S}\left( \Delta v - |\nabla v|^{2} -S - \frac{n}{2t} \right) \\&-\, St\mathrm{e}^{-v}P_{S} \\&= {\Delta }(t\mathrm{e}^{-v}P_{S}) -2t\mathrm{e}^{-v}\left| \nabla _{i}\nabla _{j}v - S_{ij}-\frac{1}{2t}g_{ij} \right| ^{2} - t\mathrm{e}^{-v}\left( 2{\mathcal H}(S, {\nabla }v) + {\mathcal E}(S, {\nabla }v) \right) \!. \end{aligned}$$

By a direct computation, we also have

$$\begin{aligned} \frac{\mathrm{d}}{{\mathrm{d}}t} {\mathcal W}_{S} = \frac{\mathrm{d}}{{\mathrm{d}}t}\left( \,\,\int _{M}tP_{S}(4{\pi }t)^{-\frac{n}{2}}\mathrm{e}^{-v}{\mathrm{d}}{\mu }_{g} \right) = \int _{M}B(4{\pi }t)^{-\frac{n}{2}}{\mathrm{d}}{\mu }_{g}. \end{aligned}$$

Therefore, we obtain

$$\begin{aligned} \frac{\mathrm{d}}{{\mathrm{d}}t} {\mathcal W}_{S}&= \int _{M}({\Delta }(t\mathrm{e}^{-v}P_{S}) -2t\mathrm{e}^{-v}\left| \nabla _{i}\nabla _{j}v - S_{ij}-\frac{1}{2t}g_{ij} \right| ^{2} \\&-\, t\mathrm{e}^{-v}( 2{\mathcal H}(S, {\nabla }v) + {\mathcal E}(S, {\nabla }v)))(4{\pi }t)^{-\frac{n}{2}}{\mathrm{d}}{\mu }_{g} \\&= - \int _{M}\bigg (2t\mathrm{e}^{-v}\left| \nabla _{i}\nabla _{j}v - S_{ij}-\frac{1}{2t}g_{ij} \right| ^{2}\\&+\, t\mathrm{e}^{-v}( 2{\mathcal H}(S, {\nabla }v) + {\mathcal E}(S, {\nabla }v)) \bigg )(4{\pi }t)^{-\frac{n}{2}}{\mathrm{d}}{\mu }_{g} \le 0. \end{aligned}$$

Assume moreover that \({\mathcal H}(S, X) \ge 0\) and \({\mathcal E}(S, X) \ge 0\). Suppose also that \(\frac{\mathrm{d}}{{\mathrm{d}}t} {\mathcal W}_{S} =0\) for some time \(t\). Then, we obtain

$$\begin{aligned} S_{ij}-\nabla _{i}\nabla _{j}v +\frac{1}{2t}g_{ij} = 0,\quad \ {\mathcal H}(S, {\nabla }v) = 0,\quad \ {\mathcal E}(S, {\nabla }v) = 0. \end{aligned}$$

Hence, we have proved Theorem E.