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Abstract Let M be aclosed Riemannian manifold with a Riemannian metric g;; (¢) evolving
by a geometric flow d;g;; = —25;;, where S;;(¢) is a symmetric two-tensor on (M, g(1)).
Suppose that S;; satisfies the tensor inequality 2H(S, X)+&(S, X) > 0 for all vector fields X
on M, where H(S, X) and £(S, X) are introduced in Definition 1 below. Then, we shall prove
differential Harnack estimates for positive solutions to time-dependent forward heat equations
with potentials. In the case where S;; = R;;, the Ricci tensor of M, our results correspond to
the results proved by Cao and Hamilton (Geom Funct Anal 19:983-989, 2009). Moreover, in
the case where the Ricci flow coupled with harmonic map heat flow introduced by Miiller (Ann
Sci Ec Norm Super 45(4):101-142, 2012), our results derive new differential Harnack esti-
mates. We shall also find new entropies which are monotone under the above geometric flow.
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1 Introduction

The main purpose of the current article is to study time-dependent heat equations with
potentials on closed Riemannian n-manifolds M evolving by the geometric flow

a
5781 = ~25ij, ey

where S;;(¢) is a symmetric two-tensor on (M, g(¢)). A typical example would be the case
where S;; = R;; is the Ricci tensor and g(t) is a solution of the Ricci flow introduced by
Hamilton [8]. We shall derive Li—Yau type differential Harnack inequalities [13] for positive

M. Ishida ()

Department of Mathematics, Graduate School of Science, Osaka University,
1-1, Machikaneyama, Toyonaka, Osaka 560-0043, Japan

e-mail: ishida@math.sci.osaka-u.ac.jp

@ Springer



288 Ann Glob Anal Geom (2014) 45:287-302

solutions to the following heat equation with a potential term:

af

- =Af+ S, (2)

ot
where the symbol A stands for the Laplacian of the evolving metric g(¢) and § = g/ S; j 1s
the trace of S;;. In the current article, we shall use the Einstein summation convention. For
simplicity, we omit g(¢) in the above notation. All geometric operators are with respect to
the evolving metric g(¢). Notice also that we have

% /fdﬂg :/(%—S)dug:/Afd,ug:O.
M M M

The main results of the current article are Theorems A, B, C, D and E stated below, which
can be seen as natural generalizations of results proved by Cao and Hamilton [4]. See also
Sect. 2 below.

The study of differential Harnack inequalities for parabolic equations originated with
the work of Li and Yau [13]. They first proved a gradient estimate for the heat equation
using the maximal principle. By integrating the gradient estimate along a space-time path,
a classical Harnack inequality was derived. Therefore, Li—Yau type gradient estimate is
often called differential Harnack inequality. Hamilton adapted similar techniques to prove
Harnack inequalities for the Ricci flow [10] and the mean curvature flow [11]. Many authors
used similar techniques to prove Harnack inequalities for geometric flows. For instance, see
[1-3,5-7,12,17-19].

To state the main results of the current article, we shall introduce evolving tensor quantities
associated with the tensor S;;.

Definition 1 Suppose that g(z) evolves by the geometric flow (1) and let X = X' % ¢

3 1
['(T X) be a vector field on M. We define !
(S, X) = (R — ") X; X,

0S S , ..
H(S. X) = 5+~ +2ViSX + 287 XX,

s .
£(S,X) = (E —AS — 2|S,»,-|2) —202VSii — VeS)Xt 4+ 21(S, X).

where Rij = gikgﬂng, Sij = gikgjesk[, S = gijSl'j, Vi = gijVj and Xk = g,‘kXi.
We notice that these quantities are also introduced by Miiller [ 15] to prove the monotonicity

of Perelman type reduced volume under (1).
The first main result of the current article is as follows:

Theorem A Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth
n-manifold M and

2H(S, X)+E(S.X) >0 3)
holds for all vector fields X and all time t € [0, T) for which the flow exists. Let f be a
positive solution to the heat equation (2), u = —log f, and

2 2n
Hs =2Au — |Vu|” — 38 — e

Then, Hs < 0 for all time t € (0, T).
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In the case of the heat equation without the potential term, we shall also prove

Theorem B Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth
n-manifold M and

(S, X) >0 “)

holds for all vector fields X and all time t € [0, T') for which the flow exists. Let f (< 1) be
a positive solution to the heat equation % =Af,u=—log f and

Hs = |Vu|? — ?
Then, Hs < 0 holds for all time t € (0, T). Hence we have the following on (0, T),

2
Vi~ 0

On the other hand, a similar technique with the proof of Theorem A also enables us to
prove

Theorem C Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth
n-manifold M and 2H(S, X) + £(S, X) > 0 holds for all vector fields X and all time
t € [0, T) for which the flow exists. Let | be a positive solution to the heat equation (2),
v=—log f — 5 log(4nt) and

2 v n
Ps =2Av — |Vu| —3S+;—d;,
where d is any constant. Then for all time t € (0, T),

d : I
g(tPS) = A(tPs) —ZVI(Z‘Ps)V,'U — 2t V,-Vjv — S,‘j — Egij

—t (2QH(S, Vv) 4+ £(S, Vv))
and max(t Ps) is non-increasing.

Moreover, inspired by the works of Perelman [17] and Cao and Hamilton [4], we shall
introduce two entropies which are associated with the above Harnack quantities. The first
one is associated with Hg.

Theorem D Under the same assumption with Theorem A, we define

Fs = / *e " Hgdu,.
M
Then for all time t € (0, T), we have Fs < 0 and
d
—Fs <0.
dr s =

Moreover, suppose that H(S, X) > 0 and (S, X) > 0 holds for all vector fields X and
all time t € [0, T) for which the flow exists. If %Fs = 0 holds for some time t, then the
following holds:

1
Sij = —;gij, Vu =0, H(S, Vu) =0, £(S, Vv) =0 )
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The second one is associated with Pg as follows.

Theorem E Under the same assumption with Theorem C, we define

W =/tP5(47tt)_%e_”d;Lg.
M

Then for all time t € (0, T), we have

d
—Ws <0.
s =

Moreover, suppose that H(S, X) > 0 and E(S, X) > 0 holds for all vector fields X and
all time t € [0, T) for which the flow exists. If %WS = 0 holds for some time t, then the
following holds:

1
Sij = ViVjv+ 58 = 0. H(S, Vo) =0, £(S. Vv) =0. (6)

2 Examples
2.1 The Ricci flow

Let g(¢) be a solution to the Ricci flow:

ad

5780 = —2Rij.

Namely, we have S;; = R;; and S = R the scalar curvature. Notice that it is known that
the scalar curvature R evolves by %—f — AR — 2|R;; |2 = 0. Moreover, we have the twice
contracted second Bianchi identity 2ViR;s — V; R = 0. Hence, we have £(S, X) = 0 in this
case. Therefore, (3) is equivalent to

dR R . -
HS, X) ==+ + +2V;RX' + 2RV X;X; > 0.

This tells us that g(z) has weakly positive curvature operator (see also [9]). Moreover, we
have Z(S, X) = 0. Hence, (4) holds. Therefore, Theorems A, B, C, D and E in the case
where §;; = R;; just correspond to the results proved by Cao and Hamilton [4]. Notice also
that (5) particularly tells us that R;; = —% gij» 1.e., g(t) is Einstein. Similarly, (6) implies
Rij +ViVj(—v) + %gij = 0. This tells us that g(¢) is an expanding gradient Ricci soliton.
Since it is known [17] that any expanding Ricci soliton on a closed manifold must be Einstein,
g(¢) is Einstein.

2.2 Bernhard List’s flow

List [14] introduced a geometric flow closely related to the Ricci flow:

a
5,8 = —2Rij +4Viy Vv,

W
X—AW,
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where ¢ : M — R is a smooth function. If we set S;; = R;; — 2V; ¥V, it is clear that
the first of List’s flow has the form (1). Notice also that we have S = R — 2|V1//|2. List [14]
pointed out that S satisfies the following evolution equation:

S
— — AS 2|8 > = 4|Ay .
ot
On the other hand, we get 2V'S;y — VS = 2V (Riy — 2Viy V) — Ve(R — 2|V |?) =
—4AV (Vi Veyr) —ZVg (VKy Vi) = —4 Ay Vi, where notice the twice contracted second
Bianchi identity 2V' R;y = V,R. Therefore, we have

E(S, X) = 4| AY > +8AYV Y X  +4VIYVIY X, X, = 4|AY + Vxy > = 0. (7)
In particular, (3) is particularly satisfied if
H(S, X) > 0.

On the other hand, we have Z(S, X) = ViyV/y X; X; = (Vxy)? > 0. Hence, (4) holds.
Therefore, Theorems A, B, C, D and E just correspond to the result proved by Fang [6].
Notice also that, under the situation on Theorem D, we particularly have the following by
(5) and (7):

1 .
Rij — Zvilﬁvj‘lﬁ = —;gij, Vu=0, Ay +V'y¥yVu =0.

Since it follows that Ay = 0, ¥ must be a harmonic function on the closed manifold M.
This implies that v is a constant for the time ¢. Therefore, we have R;; = —% gij-1.e., M is
Einstein.

2.3 Rent Miiller’s flow

Let (Y, k) be a fixed Riemannian manifold. Let (g(¢), ¢ (¢)) be the couple consisting of a
family of metric g(¢) on M and a family of maps ¢ (z) from M to Y. We call (g(¢), ¢(2))
a solution of Rent Miiller’s flow [16] (also known as the Ricci flow coupled with harmonic
map heat flow) with coupling function «(¢) > 0 if

a
5,8 = ~2Rij +22O)VigV ¢,

d¢

a9 Teh,
where 1,¢ is the tension field of the map ¢ with respect to the metric g(¢). List’s flow is a
special case of this flow. If we set S;; = R;; — a(t)V;¢V ¢, the first of Miiller’s flow has
the form (1). Notice that S = R — 201(t)|Vq§|2 holds. Miiller [16] proved that S satisfies

as da(r)
ST AS - 218: 17 = 2a(0)| 79> — ( ” ) Vo

Since we are able to get 2ViSi — ViS = —20(t) T, V¢, the following holds:

do(t)

o ) IVo|? + 4a()T,¢Vep XE + 2a(1) VIV g X, X

E(S, X) = 2a(t)|t,¢]* — (
3
= 2a(t) |te0p + Vx| — ( “(’)) V|
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Therefore, £(S, X) > 0 holds if «(¢) > 0 is non-increasing. In this case, (3) is particularly
satisfied if

H(S, X) > 0.

Notice also that Z(S, X) = a(t)Vid)Vj(pXin = a(1)(Vx¢)? > 0. Hence, (4) holds. To the
best of our knowledge, Theorems A, B, C, D and E in the case where S;; = R;j —a(t)V;¢V ;¢
are new.

On the other hand, under the situation on Theorem D, we have the following by (5) and
the above computation if «(¢) is constant:

1 .
R,’j — 2Vi¢Vj¢ = —;g,‘j, Vu =0, Tg¢ +V'¢Viu = 0.

Therefore, we have R;; — 2V;¢V;¢p = —%g,-j and 7,¢ = 0. In particular, ¢ must be a
harmonic map.

3 Proofs of Theorems A and B

Let f be a positive solution of the following heat equation with potential:

af
— =Af—cSf, 8
o = Af =SS ®)
where c is a constant. In what follows, let u = — log f. By a direct computation, we are able
to see that u satisfies
d
M Au—|Vu? +cS. ©9)

at

Let us introduce the following:

Definition 2 Suppose that g(7) evolves by (1) and let S be the trace of S;;. Let X = X i aii €
I'(T X) be a vector field on M. We define
98 2 i 1
D,a,p)(S, X) =a 5 AS = 21857 ) +a@2V'Sip — Ve S)X
+2B8(RY — S X; X,
where a, o and B are constants.
Notice that we have £(S, X) = D,-2,1)(S, X).
Lemma 1 Let g(t) be a solution to the geometric flow (1) and u satisfies (9). Let
HszaAu—ﬂ|Vu|2+aS—b?—d;, (10)

where a, B, a, b and d are constants. Then, Hg satisfies

0Hg i i 2
ar = AHg —2V'HsViu 4+ 2(a — Bc)V'SViu — 2(a — B)|VVu|

y y b, b . b n
—2aR-’ViuVju+2aS/V,-Vju—l—acAS—;|Vu| —;cS—I—t—Zu—l—dt—2

+2a|S;;1* + Dia.a.p)(S, Vo).
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Proof First of all, notice that we have the following three evolution equations, which follow
from standard computation:

Rl ij ou i 9k
E(Au):ZS-V,-Vju—i—A i —g" EFU Viu,

a g (9
S (Vul) = 28TVuVju + 2V (8—‘;) Viu,

9 )
(atr") = —gMQVISi — Vi9).
By (9), (10) and these equations, we are able to obtain
0Hg

d 2 oS bou b n
— —a—(Au)— B—(V —Su+d—
ot aat( u) ﬂat(l ul )+a8t t ot +t2u+ 12

. ou o f 0
= (2S'fv,~vju +A (E) — gl (Erfj) Vku)

g (257 viuvju+2v () Vi) 402> - 22 g
- iuVu — )Viu)+a—— - —Su+d—
e ar ) ! ottt 12 12

= w28V, Vju + A(Au — |Vul* + ¢S) + g2V Sip — Vi S) Vi)

. . aS
—BQ2SYViuVu+2V'(Au — |Vul? + cS)Viu) + aa

b
—f(Au — |Vul> +¢S) + U +d

=208V, Vju + aA(Au) — aA(|Vu| )+ acAS +a(RViSiy — Vi $)Viu
2887 VuVu — 2ﬁvi(Au)v-u +2BVI(|Vu?)Viu — 2V SViu
b b S b
—|—;|Vu| — ch—l— —Su +d 7 +a ao-— —Au.
On the other hand, we also have the followmg by (10):

b
AHs = aA(Au) — BA(|Vul?>) +aAS — ~Au.

i _ i _ i 2 i _é i
V'Hg = oV ' (Au) — BV (|Vul|®) +aV'Ss [Vu

Therefore, we get

. b
AHg —2V'HsViu = aA(Au) — ,8A(|Vu|2) +aAS — ;Au
. ) . 2b
—2aV (Au)Viu + 28V (IVu|>)Viu — 2aV' SViu + —|Vu|>.
Using this, we are able to obtain
0Hg

= AHs — 2V HV;u 4 208" V;Vju — 2887 V;uViu — (& — B)A(|Vul*)

+(ae — a)AS + a2V Siy — ViS)Viu + 2(a — )V (Au)Viu

4200 — BovisViu— 2w a2 —les iy By a
ot at ot 12 12
On the other hand, we also have the following Bochner—Weitzenbock type formula

A(Vul?) = 2|VVul> + 2V (Au)Viu + 2RV V;uV;u
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Using this formula, we get

d0Hg

ral AHg — 2V HsViu + 2(a — Bc)V SViu — 2(a — B)|VVul?

y y b, b . b n
—2aRYViuViu +2aS”V;V;u +occAS—?|Vu| —;cS—I—t—zu—l—dt—2

+2a|S;;|* +a (% —AS — 2|sij|2) +a@ViSi — Vi S)Viu
+2B(RY — SYYViuV;u

= AHg — 2V HgViu + 2(a — Bc)V! SViu — 2(a — B)|VVul?
—2ozRijViuVju + ZaSijViVju 4+ acAS — ?|Vu|2 — ?cS + [%u —I—d%
+2a|8;j 1> 4+ Dia.a.p) (S, Vuu),

where notice that Definition 2. |

In particular, we shall use Lemma 1 to prove Theorem B. The following result is used to
prove Theorem A.

Proposition 1 The evolution equation in Lemma 1 can be rewritten as follows:

dHg

ot

2a— ) T 8

_ _ 2 _ 2
2 poviuy,s - 2@y @ pm (b+ 2 fmﬁ) |Vu|
o t 212 o t

o? 5 20— Bra\ S 2 — BA b

2a — P\ d y
+ (1 - ("‘017/’)) 3t acAS - 20RYV;uV ju + Dy g p)(S, Vi),

= AHg —2V' HgViu — 2(a — B) |V; Vju —

where A is a constant, « # 0 and a # .

Proof A direct computation implies

o A 2 2 .
2o = B) [ViVju = g Si = 58| = ~2e = IVl +2a8TViVju
A A o? (a—ﬂ)Azn
2a— B)=Au—=8§ — ——— |8 — ———.
2 'B)t Ty 2(0{—;3)' il 22

Therefore, we get

—2(a — B)|VVul* + 2087 V;V;u + 2al|S;; |*
2

=20 —B)|ViVju —

A aS
—2-p); (Au - 7)

A
e p) U 2@—p)

(a—ﬂ))»zn o? 2
+T + (20+ m) |SU| .
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By this and Lemma 1, we obtain

dHy 2

— = AHs - 2ViHgViu — 2(a — B)

A

o

i A aS (a — /3))‘2"
+2(a — Bc)V'SViu — 2(a — ,3); (A” T 2 — ,3)) + 2¢2

: 2 ij b 2 b
[Si1 +acAS—2aRJViuVju—;|Vu| —;CS

2(a —B)
b n
+t—2u + dﬁ + D(a,a,ﬁ)(S, Vu).

+(2a+

The desired result now follows from the above equation and the following:

oS

A
—2(04—,3)? (Au— 2@ —5)
- — 2 —
L 2e=pr, (b+ e ﬁ)xﬂ) AL +(1_ 2e ﬂ)k) b

b b . b
2 Vul? = ZeS+ out+de
t t 12 12

a ot a a 12
2 — B)ra\ S 2@ —pP)A\ d
+(M\_bc+w),+(1_u) 7,,1.
o t [0 t
This equation also follows from a direct computation. O

As a corollary of the above proposition, we obtain the following result which is a key to
prove Theorem A:

Corollary 1 Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth

n-manifold M. Let f be a positive solution to the heat equation (8) withc = —1,u = —log f
and
2n
Hs = 2Au — |Vu|*> — 3§ — —
Then,
3 H . 1?2 2,
78[ :AH5—2V HSViu—Z ViVju—S,‘j—;gij —;Hs—?|Vu|

— (QH(S, Vu) + (S, Vu)) .

Proof By Proposition 1 in the case whereo =2, 8 =1,a = -3, c=—-1,A=2,b=0
and d = 2, we get the desired result as follows:

dHg

at

2 2H 2|V 2
—_ = —_ = u
t § t

= AHg —2V'HsVju — 2

1
ViVju = Sij = ~8ij

. S ..
—4V,‘SV’M - 4|Sij|2 - 27 —2AS8 — 4R’/ViuVju + D(,3,2,1)(S, Vu)

1 2

= AHs —2V'HgViu — 2 |\V;Vu — S;; — —8ij

2 o= 2 1vup
- - - - u
t § t

as S ; . a8 . .
-2 (E + ? +2V;SV'u + ZS’/ViuVju) + 25 + 4(SY — R’/)V,-uVju

—418;j> = 2A8 + D(—3.2.1)(S, V)
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. 1P o2 2,
:AHs—ZV HSV,»u—2 V,-Vju—S,--—;g,-j —;Hs—;|vu|
as S i . aS
-2 (E + 7 +2V;SV'u -I-ZSUVI'MVJ'M) +2 (5 —AS — 2|S,'j|2)

. o FRY .
—4(RY — STYV;uVu —3 (5 —AS - 2|S,-,»|2) +2QV S — VeS)Viu

+2(RY — SUYV;uVu

L) 2

. 1
= AHg — 2V HgViu —2|V;Vju — S;j — —8ij| = H = ;IVulz

as S i i j
-2 (E + ? +2V;SV'u + ZS’-’ViuVju)

s , T
- (— — AS - 2|S,-j|2) +2Q2ViSip — VeS)Viu — 2(RY — SUYWViuVu

ot
1?2 2
i 2
:AHs—ZV HSV,»u—2 V,-Vju—S,--—;g,-j —;Hs—;|vu|
— (2H(S, Vu) + (S, Vu)),
where we used Definition 2. ]

We are now in a position to prove Theorem A. First of all, notice that, for # small enough,
we get Hg < 0. Since we assumed that (3) holds, the maximal principle and Corollary 1 tell
us that

Hsfo

for all time ¢ € (0, T'). Hence, we have proved Theorem A.
By Theorem A and integrating along a space-time path, we are able to get a classical Harnack
inequality as follows:

Corollary 2 Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth
n-manifold M and 2H(S, X) + £(S, X) > 0 holds for all vector fields X and all time
t € [0, T) for which the flow exists. Let f be a positive solution to the heat equation (2).
Assume that (x1, t1) and (x2, tp) are two points in M x (0, T), where 0 < t| < tp. Let

n
L= n/}f/ (161 + ) dt,
1
where £ is any space-time path joining (x1, t1) and (x2, t2). Then,
n\" L
f,n) < fxg, 12) (a) exp (5) (11)

Proof The strategy of the proof is now standard. For the reader, let us include the proof. First
of all, we have Hg < 0 by Theorem A. And u = —log f satisfies (9) with ¢ = —1, i.e.,

u 2
— = Au — |Vu|” - S.
at
Therefore, we get
0
2a—?+|vu|2—5—2§:f1550. (12)
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Pick a space-time path €(x, t) joining (xp, t;) and (x2, ). Then, we obtain the following
along the path £(x, t) using (12):

du 8u+v i
_—= — u -
dt ot
SO \ LT
242 u-
-2 0t 2
n L, .5
< —4+=(£ S).
= - +5 (P +S)
This implies
L 15
u(x, ty) —u(xy, 1) < — +nlog| —=).
2 n
This tells us that (11) holds. ]

Let us close this section with the proof of Theorem B. Let f be a positive solution to
linear heat equation % = Af. Then, we may assume that f < 1 by the linearity. Then,
u = —log f satisfies (9) with ¢ = 0. Therefore, by takingoe = 0,8 = —1,a = ¢ =0,
A=2,b=1andd = 0in Lemma 1, we have

2 u

and
0Hg

4 1 1
— = AHs - 2ViHgViu — 2|VVul|* — ;|Vu|2 + 5+ Do,

4 1
= AHg — 2V HsVu — —Hs = 2IVVul*> = 2Z(S, Vu).

Notice that as ¢ small enough, Hs < 0. By the maximal principle and this evolution equation,
Theorem B follows as desired.

4 Proof of Theorem C

Let f be a positive solution of (8). In what follows, let v = —log f — 5 log(47t). By a direct

computation, we see that v satisfies

av 2 n
— =Av—|Vv|["+cS— —. 13
at Vol ¢ 2t (13)

Then, we have

Proposition 2 Let g(t) be a solution to the geometric flow (1) and v satisfies (13). Let

2 v n
Ps = aAv — B|Vy| +aS—b;—d;, (14)
where «, B, a, b and d are constants. Then, Pg satisfies
OPs  APs— 2V PsVio — 20— B) ViV, @ g Pol
a S SViv (04 ivVjv 2a—B) ij Ztglj
; 2(a — B) A — B)nr? 2(a — BABY |Vv)?
V2 poviuw s e B p @ B _(b+ @—p) ﬂ)l vl
o t 2t o t

@ Springer



298 Ann Glob Anal Geom (2014) 45:287-302

o? 2(a — Bra\ S 2(a—p)A
2 _ 2
(2a+ @ ,3)) [Si;] -l-(Ol)» bc+ ” ) ; +<1 " ) t2v

+(1 2= B

bn
)l—n—i—acAS 2ozR/VvVv+2 + D,a,p)(S, VV),
o

where X is a constant, @ # 0 and a # B.

Proof A similar computation with Proposition 1 enables us to prove this result. In fact, notice
that we have v = u — 5 log(4mt). Therefore, we get Vu = Vv and Au = Av. We also have

Ps = Hg + bz—’t’ 10g(471t). Then, Proposition 1 and a direct computation imply

dPg dHg bn b
5 _ 008 N jos(ant
ot or 212 g(n)+

2
= APg —2V'PsV;v — 2(a —

ViV Ls.. Ao

l ]v_Z(o(—,B) l]_ztgl]

_ _ 2 _ 2

42(a — Be)VivV; S — 2(a ﬁ)&PS N (o — pynr= (b+ 2« ﬁ)m) |V
o t 2¢2 o P

a2 5 20— Bra\ S 2 — BA\ b

2a — B)A bn
+(1 M)t—nﬂms 2aRI V0V ; v+ 35 T Daap) (5. Vo).
o

Hence we obtained the desired result. O

As a special case of Proposition 2, we get

Corollary 3 Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth
n-manifold M. Let f be a positive solution to the heat equation (8) with c = —1, v =
—log f — 5 log(4nt) and

Pg = 2Av — [Vol? — 35 + ; —d?

Then,

aPs 1 . 1P
731‘ +;PS = APs—2V'PsViv —2 ViVjv—S,-i,‘—z—tgij

— (2H(S, Vv) + (S, Vv)).

Proof By Proposition 2 in the case wherea =2, 8 =1,a = -3,b=—-1,c = -1, 1 =1,
we obtain
0 Pg

5o =OPs- 2ViPgViv —2

21P
Ps

1
V,-Vjv — Sl'j - ?tgij

. S .
—4V; SV u — 418;;1* — 2= =288 —4RVVuVju
+D(-3,2,1)(S, Vu)

1
= 8ij

. 1
:APS—ZV’PSV,-U—Z V,'Vjv—sij—zt —?PS
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as S i . as
-2 (E + 7 +2V;SV'u + ZS”V,‘MVJ‘M) +2 (5 —AS — 2|S,’j|2)

+4(SY — RVYV;uVju + D—32,1)(S, Vi)

1
V,'VJ'U — Sij - ;gij

2
= APs —2V' PsViv —2 - Ps

as S : . a8
-2 (g + ? +2V; SV +2SUV,'UV]'U) +2 (E —AS — 2|Sij|2)

L EN ;
—4(RY — SYYV;uV;v -3 (E —AS— 2|S,~,~|2) +2QViSi — Vi $)Viu

+2(RY — SYV;uV;u

. 13
:APS—ZV’PSViv—Z V,-Vjv—Sl-j—;g,»j —;PS
0S S . ..
-2 (E + ? +2V; SV + 2SUV,'UV]'U)
98 2 i 0 ij ij
— E—AS—2|S,-]-| +202V'S;¢ — VeS)Viu — 2(RY —S])ViuVju
. 1?1
:APS—ZV’PSViv—Z V,»Vjv—Sij—z—tg,-j —;PS
— 2QH(S, Vv) + £(S, Vv)).
Therefore, the desired result follows. O

We shall prove Theorem C as follows. In fact, we are able to obtain the following by
Corollary 3:

1 2

d dPg )
S(tPs) =12 4 Ps = A(tPs) =2V (tP5)Viv =2 [V,Vju— 8 — g

ot
—t (2H(S, Vv) + £(S, Vv)).

Furthermore, the monotonicity of max(z Ps) follows from this equation and the maximal
principle.

5 Proof of Theorem D

First of all, notice that Fg < 0 follows from the definition of Fg and Hg < 0, where we used
Theorem A. Let us consider the following quantity:

d oH
A =2te ™ "Hg — tze_"a—?Hs + th_”a—tS — St?e " Hg.

On the other hand, a direct computation tells us that the following holds:
A(t?e ™ Hg) = t*¢ “(AHs — 2V  H¢Viu — HgAu + Hg|Vul?). (15)
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By (9) with ¢ = —1, Corollary 1 and (15), we get

A =2te™Hg — t*¢™" (Au — |Vu|* — S) Hs
1 2
ViViu —S;j — ?gij

+12e M (AHS —2VIHsViu —2 :

—(2H(S, Vu) + £(S, Vu)))

—Sl‘ze_uHS
2

= A(t*e " Hg) — 21" — 2te | Vul?

1
V,-Vju — Sij - ;g,‘j

—t2e ™ QH(S, Vu) + E(S, Vu)).

On the other hand, notice that we have

d d 2 .—u
—Fg = — t Hgd = [ Adu,.
dtj:s dr Q © HSCHe / He

M
Therefore, the following holds:

1 2
V,-Vju - Sij - ;g,'j

d
afs = / (A(tzequs) — 217"
M

— 127U (QH(S, Vu) + E(S, Vu)))dug

= —/ (2tze*“
M

+ 12" (2QH(S, Vu) + E(S, Vu)))dug <0.

2
+2te 4| Vu|?

1
V,»Vju — S,'j - ;g,’j

2 2,
— “Hs — ~|Vul

—2te™"|Vul?

Assume moreover that H(S, X) > 0 and £(S, X) > 0 holds. Suppose also that %fs =0

holds for some time ¢. Then, we obtain

1
ViVju = $ij = —gij =0. Vu =0, H(S, Vu) =0, £(S, Vu) = 0.

These imply (5) as desired. We proved Theorem D.

6 Proof of Theorem E

Let us consider the following quantity:

A direct computation tells us that the following holds:

A(te V" Pg) = te ' (APs — 2V PsV;v — PsAv + Ps|Vv|?)
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By (13) with ¢ = —1, Corollary 3 and (16), we obtain the following:

. | |
B=e"Ps+te ' (APs —2V' PsViv — 2 ViVjU - Sij - Zgij - ;PS
n _, v 2 n
— (QH(S. Vo) + (S, Vv) = Je " Ps —1e ™" P (Av —Vur =S — 5)
— Ste™V Pg
2
= A(te " Pg) — 2te™" V,’Vjv - Sl'j - 2lgij —te” Y (2H(S, Vv) + £(S, Vv)).

By a direct computation, we also have

d

d _n _ _n
EWS =3 /tP5(471t) 2e” "duy =/B(47'rt) 2dug.
M M

Therefore, we obtain

1
V,‘Vjv — S,'j — 7&.].

d _ _
—Wsg = /(A(te VPg) — 2te”? 5

dr
M

— 1€V (2H(S, Vv) + (S, V) (@drt) "3 du,

2
= —/(2te_”
M

+1e V(2H(S, Vu) + £(S, Vv)))(4m‘)_%dug <0.

1
ViVjv —8;ij — Zgij

Assume moreover that H(S, X) > 0 and £(S, X) > 0. Suppose also that %Ws = 0 for
some time ¢. Then, we obtain

1
Sij—ViVjv+Zgij =0, H(S,Vv)=0, &S, Vv)=0.

Hence, we have proved Theorem E.
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