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Abstract Let M be a closed Riemannian manifold with a Riemannian metric gi j (t) evolving
by a geometric flow ∂t gi j = −2Si j , where Si j (t) is a symmetric two-tensor on (M, g(t)).
Suppose that Si j satisfies the tensor inequality 2H(S, X)+E(S, X) ≥ 0 for all vector fields X
on M , where H(S, X) and E(S, X) are introduced in Definition 1 below. Then, we shall prove
differential Harnack estimates for positive solutions to time-dependent forward heat equations
with potentials. In the case where Si j = Ri j , the Ricci tensor of M , our results correspond to
the results proved by Cao and Hamilton (Geom Funct Anal 19:983–989, 2009). Moreover, in
the case where the Ricci flow coupled with harmonic map heat flow introduced by Müller (Ann
Sci Ec Norm Super 45(4):101–142, 2012), our results derive new differential Harnack esti-
mates. We shall also find new entropies which are monotone under the above geometric flow.
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1 Introduction

The main purpose of the current article is to study time-dependent heat equations with
potentials on closed Riemannian n-manifolds M evolving by the geometric flow

∂

∂t
gi j = −2Si j , (1)

where Si j (t) is a symmetric two-tensor on (M, g(t)). A typical example would be the case
where Si j = Ri j is the Ricci tensor and g(t) is a solution of the Ricci flow introduced by
Hamilton [8]. We shall derive Li–Yau type differential Harnack inequalities [13] for positive
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solutions to the following heat equation with a potential term:

∂ f

∂t
= � f + S f, (2)

where the symbol � stands for the Laplacian of the evolving metric g(t) and S = gi j Si j is
the trace of Si j . In the current article, we shall use the Einstein summation convention. For
simplicity, we omit g(t) in the above notation. All geometric operators are with respect to
the evolving metric g(t). Notice also that we have

∂

∂t

⎛
⎝

∫

M

f dμg

⎞
⎠ =

∫

M

(
∂ f

∂t
− S

)
dμg =

∫

M

� f dμg = 0.

The main results of the current article are Theorems A, B, C, D and E stated below, which
can be seen as natural generalizations of results proved by Cao and Hamilton [4]. See also
Sect. 2 below.

The study of differential Harnack inequalities for parabolic equations originated with
the work of Li and Yau [13]. They first proved a gradient estimate for the heat equation
using the maximal principle. By integrating the gradient estimate along a space-time path,
a classical Harnack inequality was derived. Therefore, Li–Yau type gradient estimate is
often called differential Harnack inequality. Hamilton adapted similar techniques to prove
Harnack inequalities for the Ricci flow [10] and the mean curvature flow [11]. Many authors
used similar techniques to prove Harnack inequalities for geometric flows. For instance, see
[1–3,5–7,12,17–19].

To state the main results of the current article, we shall introduce evolving tensor quantities
associated with the tensor Si j .

Definition 1 Suppose that g(t) evolves by the geometric flow (1) and let X = Xi ∂
∂xi ∈

�(T X) be a vector field on M . We define

I(S, X) = (Ri j − Si j )Xi X j ,

H(S, X) = ∂S

∂t
+ S

t
+ 2∇i SXi + 2Si j Xi X j ,

E(S, X) =
(
∂S

∂t
−�S − 2|Si j |2

)
− 2(2∇ i Si� − ∇�S)X� + 2I(S, X),

where Ri j = gik g j�Rk�, Si j = gik g j�Sk�, S = gi j Si j , ∇ i = gi j∇ j and Xk = gik Xi .

We notice that these quantities are also introduced by Müller [15] to prove the monotonicity
of Perelman type reduced volume under (1).

The first main result of the current article is as follows:

Theorem A Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth
n-manifold M and

2H(S, X)+ E(S, X) ≥ 0 (3)

holds for all vector fields X and all time t ∈ [0, T ) for which the flow exists. Let f be a
positive solution to the heat equation (2), u = − log f , and

HS = 2�u − |∇u|2 − 3S − 2n

t
.

Then, HS ≤ 0 for all time t ∈ (0, T ).
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In the case of the heat equation without the potential term, we shall also prove

Theorem B Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth
n-manifold M and

I(S, X) ≥ 0 (4)

holds for all vector fields X and all time t ∈ [0, T ) for which the flow exists. Let f (< 1) be
a positive solution to the heat equation ∂ f

∂t = � f , u = − log f and

HS = |∇u|2 − u

t
.

Then, HS ≤ 0 holds for all time t ∈ (0, T ). Hence we have the following on (0, T ),

|∇ f |2 ≤ − f 2

t
log f.

On the other hand, a similar technique with the proof of Theorem A also enables us to
prove

Theorem C Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth
n-manifold M and 2H(S, X) + E(S, X) ≥ 0 holds for all vector fields X and all time
t ∈ [0, T ) for which the flow exists. Let f be a positive solution to the heat equation (2),
v = − log f − n

2 log(4π t) and

PS = 2�v − |∇v|2 − 3S + v

t
− d

n

t
,

where d is any constant. Then for all time t ∈ (0, T ),

∂

∂t
(t PS) = �(t PS)− 2∇ i (t PS)∇iv − 2t

∣∣∣∣∇i∇ jv − Si j − 1

2t
gi j

∣∣∣∣
2

−t (2H(S,∇v)+ E(S,∇v))
and max(t PS) is non-increasing.

Moreover, inspired by the works of Perelman [17] and Cao and Hamilton [4], we shall
introduce two entropies which are associated with the above Harnack quantities. The first
one is associated with HS .

Theorem D Under the same assumption with Theorem A, we define

FS =
∫

M

t2e−u HSdμg.

Then for all time t ∈ (0, T ), we have FS ≤ 0 and

d

dt
FS ≤ 0.

Moreover, suppose that H(S, X) ≥ 0 and E(S, X) ≥ 0 holds for all vector fields X and
all time t ∈ [0, T ) for which the flow exists. If d

dt FS = 0 holds for some time t, then the
following holds:

Si j = −1

t
gi j , ∇u = 0, H(S,∇u) = 0, E(S,∇v) = 0 (5)
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The second one is associated with PS as follows.

Theorem E Under the same assumption with Theorem C, we define

WS =
∫

M

t PS(4π t)−
n
2 e−vdμg.

Then for all time t ∈ (0, T ), we have

d

dt
WS ≤ 0.

Moreover, suppose that H(S, X) ≥ 0 and E(S, X) ≥ 0 holds for all vector fields X and
all time t ∈ [0, T ) for which the flow exists. If d

dt WS = 0 holds for some time t, then the
following holds:

Si j − ∇i∇ jv + 1

2t
gi j = 0, H(S,∇v) = 0, E(S,∇v) = 0. (6)

2 Examples

2.1 The Ricci flow

Let g(t) be a solution to the Ricci flow:

∂

∂t
gi j = −2Ri j .

Namely, we have Si j = Ri j and S = R the scalar curvature. Notice that it is known that
the scalar curvature R evolves by ∂R

∂t − �R − 2|Ri j |2 = 0. Moreover, we have the twice
contracted second Bianchi identity 2∇ i Ri� − ∇�R = 0. Hence, we have E(S, X) = 0 in this
case. Therefore, (3) is equivalent to

H(S, X) = ∂R

∂t
+ R

t
+ 2∇i R Xi + 2Ri j Xi X j ≥ 0.

This tells us that g(t) has weakly positive curvature operator (see also [9]). Moreover, we
have I(S, X) = 0. Hence, (4) holds. Therefore, Theorems A, B, C, D and E in the case
where Si j = Ri j just correspond to the results proved by Cao and Hamilton [4]. Notice also
that (5) particularly tells us that Ri j = − 1

t gi j , i.e., g(t) is Einstein. Similarly, (6) implies
Ri j + ∇i∇ j (−v)+ 1

2t gi j = 0. This tells us that g(t) is an expanding gradient Ricci soliton.
Since it is known [17] that any expanding Ricci soliton on a closed manifold must be Einstein,
g(t) is Einstein.

2.2 Bernhard List’s flow

List [14] introduced a geometric flow closely related to the Ricci flow:

∂

∂t
gi j = −2Ri j + 4∇iψ∇ jψ,

∂ψ

∂t
= �ψ,
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where ψ : M → R is a smooth function. If we set Si j = Ri j − 2∇iψ∇ jψ , it is clear that
the first of List’s flow has the form (1). Notice also that we have S = R − 2|∇ψ |2. List [14]
pointed out that S satisfies the following evolution equation:

∂S

∂t
−�S − 2|Si j |2 = 4|�ψ |2.

On the other hand, we get 2∇ i Si� − ∇�S = 2∇ i (Ri� − 2∇iψ∇�ψ) − ∇�(R − 2|∇ψ |2) =
−4∇ i (∇iψ∇�ψ)−2∇�(∇kψ∇kψ) = −4�ψ∇�ψ , where notice the twice contracted second
Bianchi identity 2∇ i Ri� = ∇�R. Therefore, we have

E(S, X) = 4|�ψ |2 + 8�ψ∇�ψX� + 4∇ iψ∇ jψXi X j = 4|�ψ + ∇Xψ |2 ≥ 0. (7)

In particular, (3) is particularly satisfied if

H(S, X) ≥ 0.

On the other hand, we have I(S, X) = ∇ iψ∇ jψXi X j = (∇Xψ)
2 ≥ 0. Hence, (4) holds.

Therefore, Theorems A, B, C, D and E just correspond to the result proved by Fang [6].
Notice also that, under the situation on Theorem D, we particularly have the following by
(5) and (7):

Ri j − 2∇iψ∇ jψ = −1

t
gi j , ∇u = 0, �ψ + ∇ iψ∇i u = 0.

Since it follows that �ψ = 0, ψ must be a harmonic function on the closed manifold M .
This implies that ψ is a constant for the time t . Therefore, we have Ri j = − 1

t gi j , i.e., M is
Einstein.

2.3 Rent Müller’s flow

Let (Y, h) be a fixed Riemannian manifold. Let (g(t), φ(t)) be the couple consisting of a
family of metric g(t) on M and a family of maps φ(t) from M to Y . We call (g(t), φ(t))
a solution of Rent Müller’s flow [16] (also known as the Ricci flow coupled with harmonic
map heat flow) with coupling function α(t) ≥ 0 if

∂

∂t
gi j = −2Ri j + 2α(t)∇iφ∇ jφ,

∂φ

∂t
= τgφ,

where τgφ is the tension field of the map φ with respect to the metric g(t). List’s flow is a
special case of this flow. If we set Si j = Ri j − α(t)∇iφ∇ jφ, the first of Müller’s flow has
the form (1). Notice that S = R − 2α(t)|∇φ|2 holds. Müller [16] proved that S satisfies

∂S

∂t
−�S − 2|Si j |2 = 2α(t)|τgφ|2 −

(
∂α(t)

∂t

)
|∇φ|2.

Since we are able to get 2∇ i Si� − ∇�S = −2α(t)τgφ∇�φ, the following holds:

E(S, X) = 2α(t)|τgφ|2 −
(
∂α(t)

∂t

)
|∇φ|2 + 4α(t)τgφ∇�φX� + 2α(t)∇ iφ∇ jφXi X j

= 2α(t)
∣∣τgφ + ∇Xφ

∣∣2 −
(
∂α(t)

∂t

)
|∇φ|2.
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Therefore, E(S, X) ≥ 0 holds if α(t) ≥ 0 is non-increasing. In this case, (3) is particularly
satisfied if

H(S, X) ≥ 0.

Notice also that I(S, X) = α(t)∇ iφ∇ jφXi X j = α(t)(∇Xφ)
2 ≥ 0. Hence, (4) holds. To the

best of our knowledge, Theorems A, B, C, D and E in the case where Si j = Ri j −α(t)∇iφ∇ jφ

are new.
On the other hand, under the situation on Theorem D, we have the following by (5) and

the above computation if α(t) is constant:

Ri j − 2∇iφ∇ jφ = −1

t
gi j , ∇u = 0, τgφ + ∇ iφ∇i u = 0.

Therefore, we have Ri j − 2∇iφ∇ jφ = − 1
t gi j and τgφ = 0. In particular, φ must be a

harmonic map.

3 Proofs of Theorems A and B

Let f be a positive solution of the following heat equation with potential:

∂ f

∂t
= � f − cS f, (8)

where c is a constant. In what follows, let u = − log f . By a direct computation, we are able
to see that u satisfies

∂u

∂t
= �u − |∇u|2 + cS. (9)

Let us introduce the following:

Definition 2 Suppose that g(t) evolves by (1) and let S be the trace of Si j . Let X = Xi ∂
∂xi ∈

�(T X) be a vector field on M . We define

D(a,α,β)(S, X) = a

(
∂S

∂t
−�S − 2|Si j |2

)
+ α(2∇ i Si� − ∇�S)X�

+2β(Ri j − Si j )Xi X j ,

where a, α and β are constants.

Notice that we have E(S, X) = D(1,−2,1)(S, X).

Lemma 1 Let g(t) be a solution to the geometric flow (1) and u satisfies (9). Let

HS = α�u − β|∇u|2 + aS − b
u

t
− d

n

t
, (10)

where α, β, a, b and d are constants. Then, HS satisfies

∂HS

∂t
= �HS − 2∇ i HS∇i u + 2(a − βc)∇ i S∇i u − 2(α − β)|∇∇u|2

−2αRi j∇i u∇ j u + 2αSi j∇i∇ j u + αc�S − b

t
|∇u|2 − b

t
cS + b

t2 u + d
n

t2

+2a|Si j |2 + D(a,α,β)(S,∇u).
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Proof First of all, notice that we have the following three evolution equations, which follow
from standard computation:

∂

∂t
(�u) = 2Si j∇i∇ j u +�

(
∂u

∂t

)
− gi j

(
∂

∂t
�k

i j

)
∇ku,

∂

∂t
(|∇u|2) = 2Si j∇i u∇ j u + 2∇ i

(
∂u

∂t

)
∇i u,

gi j
(
∂

∂t
�k

i j

)
= −gk�(2∇ i Si� − ∇�S).

By (9), (10) and these equations, we are able to obtain

∂HS

∂t
= α

∂

∂t
(�u)− β

∂

∂t
(|∇u|2)+ a

∂S

∂t
− b

t

∂u

∂t
+ b

t2 u + d
n

t2

= α

(
2Si j∇i∇ j u +�

(
∂u

∂t

)
− gi j

(
∂

∂t
�k

i j

)
∇ku

)

−β
(

2Si j∇i u∇ j u + 2∇ i
(
∂u

∂t

)
∇i u

)
+ a

∂S

∂t
− b

t

∂u

∂t
+ b

t2 u + d
n

t2

= α(2Si j∇i∇ j u +�(�u − |∇u|2 + cS)+ gk�(2∇ i Si� − ∇�S)∇ku)

−β(2Si j∇i u∇ j u + 2∇ i (�u − |∇u|2 + cS)∇i u)+ a
∂S

∂t

−b

t
(�u − |∇u|2 + cS)+ b

t2 u + d
n

t2

= 2αSi j∇i∇ j u + α�(�u)− α�(|∇u|2)+ αc�S + α(2∇ i Si� − ∇�S)∇�u

−2βSi j∇i u∇ j u − 2β∇ i (�u)∇i u + 2β∇ i (|∇u|2)∇i u − 2βc∇ i S∇i u

+b

t
|∇u|2 − b

t
cS + b

t2 u + d
n

t2 + a
∂S

∂t
− b

t
�u.

On the other hand, we also have the following by (10):

�HS = α�(�u)− β�(|∇u|2)+ a�S − b

t
�u.

∇ i HS = α∇ i (�u)− β∇ i (|∇u|2)+ a∇ i S − b

t
∇ i u

Therefore, we get

�HS − 2∇ i HS∇i u = α�(�u)− β�(|∇u|2)+ a�S − b

t
�u

−2α∇ i (�u)∇i u + 2β∇ i (|∇u|2)∇i u − 2a∇ i S∇i u + 2b

t
|∇u|2.

Using this, we are able to obtain

∂HS

∂t
= �HS − 2∇ i H∇i u + 2αSi j∇i∇ j u − 2βSi j∇i u∇ j u − (α − β)�(|∇u|2)

+(αc − a)�S + α(2∇ i Si� − ∇�S)∇�u + 2(α − β)∇ i (�u)∇i u

+2(a − βc)∇ i S∇i u − b

t
|∇u|2 + a

∂S

∂t
− b

t
cS + b

t2 u + d
n

t2 .

On the other hand, we also have the following Bochner–Weitzenbock type formula:

�(|∇u|2) = 2|∇∇u|2 + 2∇ i (�u)∇i u + 2Ri j∇i u∇ j u.
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Using this formula, we get

∂HS

∂t
= �HS − 2∇ i HS∇i u + 2(a − βc)∇ i S∇i u − 2(α − β)|∇∇u|2

−2αRi j∇i u∇ j u + 2αSi j∇i∇ j u + αc�S − b

t
|∇u|2 − b

t
cS + b

t2 u + d
n

t2

+2a|Si j |2 + a

(
∂S

∂t
−�S − 2|Si j |2

)
+ α(2∇ i Si� − ∇�S)∇�u

+2β(Ri j − Si j )∇i u∇ j u

= �HS − 2∇ i HS∇i u + 2(a − βc)∇ i S∇i u − 2(α − β)|∇∇u|2

−2αRi j∇i u∇ j u + 2αSi j∇i∇ j u + αc�S − b

t
|∇u|2 − b

t
cS + b

t2 u + d
n

t2

+2a|Si j |2 + D(a,α,β)(S,∇u),

where notice that Definition 2. ��

In particular, we shall use Lemma 1 to prove Theorem B. The following result is used to
prove Theorem A.

Proposition 1 The evolution equation in Lemma 1 can be rewritten as follows:

∂HS

∂t
= �HS − 2∇i HS∇i u − 2(α − β)

∣∣∣∣∇i ∇ j u − α

2(α − β)
Si j − λ

2t
gi j

∣∣∣∣
2

+2(a − βc)∇i u∇i S − 2(α − β)

α

λ

t
HS + (α − β)nλ2

2t2 −
(

b + 2(α − β)λβ

α

) |∇u|2
t

+
(

2a + α2

2(α − β)

)
|Si j |2 +

(
αλ− bc + 2(α − β)λa

α

)
S

t
+

(
1 − 2(α − β)λ

α

)
b

t2 u

+
(

1 − 2(α − β)λ

α

)
d

t2 n + αc�S − 2αRi j ∇i u∇ j u + D(a,α,β)(S,∇u),

where λ is a constant, α 	= 0 and α 	= β.

Proof A direct computation implies

−2(α − β)

∣∣∣∣∇i∇ j u − α

2(α − β)
Si j − λ

2t
gi j

∣∣∣∣
2

= −2(α − β)|∇∇u|2 + 2αSi j∇i∇ j u

+2(α − β)
λ

t
�u − λ

t
S − α2

2(α − β)
|Si j |2 − (α − β)λ2n

2t2 .

Therefore, we get

−2(α − β)|∇∇u|2 + 2αSi j∇i∇ j u + 2a|Si j |2

= −2(α − β)

∣∣∣∣∇i∇ j u − α

2(α − β)
Si j − λ

2t
gi j

∣∣∣∣
2

− 2(α − β)
λ

t

(
�u − αS

2(α − β)

)

+ (α − β)λ2n

2t2 +
(

2a + α2

2(α − β)

)
|Si j |2.
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By this and Lemma 1, we obtain

∂HS

∂t
= �HS − 2∇ i HS∇i u − 2(α − β)

∣∣∣∣∇i∇ j u − α

2(α − β)
Si j − λ

2t
gi j

∣∣∣∣
2

+2(a − βc)∇ i S∇i u − 2(α − β)
λ

t

(
�u − αS

2(α − β)

)
+ (α − β)λ2n

2t2

+
(

2a + α2

2(α − β)

)
|Si j |2 + αc�S − 2αRi j∇i u∇ j u − b

t
|∇u|2 − b

t
cS

+ b

t2 u + d
n

t2 + D(a,α,β)(S,∇u).

The desired result now follows from the above equation and the following:

−2(α − β)
λ

t

(
�u − αS

2(α − β)

)
− b

t
|∇u|2 − b

t
cS + b

t2 u + d
n

t2

= −2(α − β)

α

λ

t
HS −

(
b + 2(α − β)λβ

α

) |∇u|2
t

+
(

1 − 2(α − β)λ

α

)
b

t2 u

+
(
αλ− bc + 2(α − β)λa

α

)
S

t
+

(
1 − 2(α − β)λ

α

)
d

t2 n.

This equation also follows from a direct computation. ��
As a corollary of the above proposition, we obtain the following result which is a key to

prove Theorem A:

Corollary 1 Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth
n-manifold M. Let f be a positive solution to the heat equation (8) with c = −1, u = − log f
and

HS = 2�u − |∇u|2 − 3S − 2n

t
.

Then,

∂HS

∂t
= �HS − 2∇ i HS∇i u − 2

∣∣∣∣∇i∇ j u − Si j − 1

t
gi j

∣∣∣∣
2

− 2

t
HS − 2

t
|∇u|2

− (2H(S,∇u)+ E(S,∇u)) .

Proof By Proposition 1 in the case where α = 2, β = 1, a = −3, c = −1, λ = 2, b = 0
and d = 2, we get the desired result as follows:

∂HS

∂t
= �HS − 2∇ i HS∇i u − 2

∣∣∣∣∇i∇ j u − Si j − 1

t
gi j

∣∣∣∣
2

− 2

t
HS − 2

t
|∇u|2

−4∇i S∇ i u − 4|Si j |2 − 2
S

t
− 2�S − 4Ri j∇i u∇ j u + D(−3,2,1)(S,∇u)

= �HS − 2∇ i HS∇i u − 2

∣∣∣∣∇i∇ j u − Si j − 1

t
gi j

∣∣∣∣
2

− 2

t
HS − 2

t
|∇u|2

−2

(
∂S

∂t
+ S

t
+ 2∇i S∇ i u + 2Si j∇i u∇ j u

)
+ 2

∂S

∂t
+ 4(Si j − Ri j )∇i u∇ j u

−4|Si j |2 − 2�S + D(−3,2,1)(S,∇u)
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= �HS − 2∇ i HS∇i u − 2

∣∣∣∣∇i∇ j u − Si j − 1

t
gi j

∣∣∣∣
2

− 2

t
HS − 2

t
|∇u|2

−2

(
∂S

∂t
+ S

t
+ 2∇i S∇ i u + 2Si j∇i u∇ j u

)
+ 2

(
∂S

∂t
−�S − 2|Si j |2

)

−4(Ri j − Si j )∇i u∇ j u − 3

(
∂S

∂t
−�S − 2|Si j |2

)
+ 2(2∇ i Si� − ∇�S)∇�u

+2(Ri j − Si j )∇i u∇ j u

= �HS − 2∇ i HS∇i u − 2

∣∣∣∣∇i∇ j u − Si j − 1

t
gi j

∣∣∣∣
2

− 2

t
H − 2

t
|∇u|2

−2

(
∂S

∂t
+ S

t
+ 2∇i S∇ i u + 2Si j∇i u∇ j u

)

−
(
∂S

∂t
−�S − 2|Si j |2

)
+ 2(2∇ i Si� − ∇�S)∇�u − 2(Ri j − Si j )∇i u∇ j u

= �HS − 2∇ i HS∇i u − 2

∣∣∣∣∇i∇ j u − Si j − 1

t
gi j

∣∣∣∣
2

− 2

t
HS − 2

t
|∇u|2

− (2H(S,∇u)+ E(S,∇u)),

where we used Definition 2. ��
We are now in a position to prove Theorem A. First of all, notice that, for t small enough,

we get HS < 0. Since we assumed that (3) holds, the maximal principle and Corollary 1 tell
us that

HS ≤ 0

for all time t ∈ (0, T ). Hence, we have proved Theorem A.
By Theorem A and integrating along a space-time path, we are able to get a classical Harnack
inequality as follows:

Corollary 2 Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth
n-manifold M and 2H(S, X) + E(S, X) ≥ 0 holds for all vector fields X and all time
t ∈ [0, T ) for which the flow exists. Let f be a positive solution to the heat equation (2).
Assume that (x1, t1) and (x2, t2) are two points in M × (0, T ), where 0 < t1 < t2. Let

L = inf
�

t2∫

t1

(|�̇|2 + S
)

dt,

where � is any space-time path joining (x1, t1) and (x2, t2). Then,

f (x1, t1) ≤ f (x2, t2)

(
t2
t1

)n

exp

(
L

2

)
. (11)

Proof The strategy of the proof is now standard. For the reader, let us include the proof. First
of all, we have HS ≤ 0 by Theorem A. And u = − log f satisfies (9) with c = −1, i.e.,

∂u

∂t
= �u − |∇u|2 − S.

Therefore, we get

2
∂u

∂t
+ |∇u|2 − S − 2

n

t
= HS ≤ 0. (12)
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Pick a space-time path �(x, t) joining (x1, t1) and (x2, t2). Then, we obtain the following
along the path �(x, t) using (12):

du

dt
= ∂u

∂t
+ ∇u · �̇

≤ S

2
+ n

t
− |∇u|2

2
+ ∇u · �̇

≤ n

t
+ 1

2

(|�̇|2 + S
)
.

This implies

u(x2, t1)− u(x1, t1) ≤ L

2
+ n log

(
t2
t1

)
.

This tells us that (11) holds. ��
Let us close this section with the proof of Theorem B. Let f be a positive solution to

linear heat equation ∂ f
∂t = � f . Then, we may assume that f < 1 by the linearity. Then,

u = − log f satisfies (9) with c = 0. Therefore, by taking α = 0, β = −1, a = c = 0,
λ = 2, b = 1 and d = 0 in Lemma 1, we have

HS = |∇u|2 − u

t

and

∂HS

∂t
= �HS − 2∇ i HS∇i u − 2|∇∇u|2 − 1

t
|∇u|2 + 1

t2 u + D(0,0,−1)

= �HS − 2∇ i HS∇i u − 1

t
HS − 2|∇∇u|2 − 2I(S,∇u).

Notice that as t small enough, HS < 0. By the maximal principle and this evolution equation,
Theorem B follows as desired.

4 Proof of Theorem C

Let f be a positive solution of (8). In what follows, let v = − log f − n
2 log(4π t). By a direct

computation, we see that v satisfies

∂v

∂t
= �v − |∇v|2 + cS − n

2t
. (13)

Then, we have

Proposition 2 Let g(t) be a solution to the geometric flow (1) and v satisfies (13). Let

PS = α�v − β|∇v|2 + aS − b
v

t
− d

n

t
, (14)

where α, β, a, b and d are constants. Then, PS satisfies

∂PS

∂t
= �PS − 2∇ i PS∇iv − 2(α − β)

∣∣∣∣∇i∇ jv − α

2(α − β)
Si j − λ

2t
gi j

∣∣∣∣
2

+2(a − βc)∇ iv∇i S− 2(α − β)

α

λ

t
PS + (α − β)nλ2

2t2 −
(

b + 2(α − β)λβ

α

) |∇v|2
t
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+
(

2a+ α2

2(α − β)

)
|Si j |2+

(
αλ− bc+ 2(α − β)λa

α

)
S

t
+

(
1− 2(α−β)λ

α

)
b

t2 v

+
(

1 − 2(α − β)λ

α

)
d

t2 n + αc�S − 2αRi j∇iv∇ jv + bn

2t2 + D(a,α,β)(S,∇v),

where λ is a constant, α 	= 0 and α 	= β.

Proof A similar computation with Proposition 1 enables us to prove this result. In fact, notice
that we have v = u − n

2 log(4π t). Therefore, we get ∇u = ∇v and�u = �v. We also have
PS = HS + bn

2t log(4π t). Then, Proposition 1 and a direct computation imply

∂PS

∂t
= ∂HS

∂t
− bn

2t2 log(4π t)+ bn

2t2

= �PS − 2∇i PS∇iv − 2(α − β)

∣∣∣∣∇i ∇ jv − α

2(α − β)
Si j − λ

2t
gi j

∣∣∣∣
2

+2(a − βc)∇iv∇i S − 2(α − β)

α

λ

t
PS + (α − β)nλ2

2t2 −
(

b + 2(α − β)λβ

α

) |∇v|2
t

+
(

2a + α2

2(α − β)

)
|Si j |2+

(
αλ− bc+ 2(α − β)λa

α

)
S

t
+

(
1 − 2(α − β)λ

α

)
b

t2 v

+
(

1 − 2(α − β)λ

α

)
d

t2 n + αc�S − 2αRi j ∇iv∇ jv + bn

2t2 + D(a,α,β)(S,∇v).

Hence we obtained the desired result. ��
As a special case of Proposition 2, we get

Corollary 3 Suppose that g(t) evolves by the geometric flow (1) on a closed oriented smooth
n-manifold M. Let f be a positive solution to the heat equation (8) with c = −1, v =
− log f − n

2 log(4π t) and

PS = 2�v − |∇v|2 − 3S + v

t
− d

n

t
.

Then,

∂PS

∂t
+ 1

t
PS = �PS − 2∇ i PS∇iv − 2

∣∣∣∣∇i∇ jv − Si j − 1

2t
gi j

∣∣∣∣
2

− (2H(S,∇v)+ E(S,∇v)) .
��

Proof By Proposition 2 in the case where α = 2, β = 1, a = −3, b = −1, c = −1, λ = 1,
we obtain

∂PS

∂t
= �PS − 2∇ i PS∇iv − 2

∣∣∣∣∇i∇ jv − Si j − 1

2t
gi j

∣∣∣∣
2

− 1

t
PS

−4∇i S∇ i u − 4|Si j |2 − 2
S

t
− 2�S − 4Ri j∇i u∇ j u

+D(−3,2,1)(S,∇u)

= �PS − 2∇ i PS∇iv − 2

∣∣∣∣∇i∇ jv − Si j − 1

2t
gi j

∣∣∣∣
2

− 1

t
PS
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−2

(
∂S

∂t
+ S

t
+ 2∇i S∇ i u + 2Si j∇i u∇ j u

)
+ 2

(
∂S

∂t
−�S − 2|Si j |2

)

+4(Si j − Ri j )∇i u∇ j u + D(−3,2,1)(S,∇u)

= �PS − 2∇ i PS∇iv − 2

∣∣∣∣∇i∇ jv − Si j − 1

t
gi j

∣∣∣∣
2

− 1

t
PS

−2

(
∂S

∂t
+ S

t
+ 2∇i S∇ iv + 2Si j∇iv∇ jv

)
+ 2

(
∂S

∂t
−�S − 2|Si j |2

)

−4(Ri j − Si j )∇i u∇ jv − 3

(
∂S

∂t
−�S − 2|Si j |2

)
+ 2(2∇ i Si� − ∇�S)∇�u

+2(Ri j − Si j )∇i u∇ j u

= �PS − 2∇ i PS∇iv − 2

∣∣∣∣∇i∇ jv − Si j − 1

t
gi j

∣∣∣∣
2

− 1

t
PS

−2

(
∂S

∂t
+ S

t
+ 2∇i S∇ iv + 2Si j∇iv∇ jv

)

−
(
∂S

∂t
−�S − 2|Si j |2

)
+ 2(2∇ i Si� − ∇�S)∇�u − 2(Ri j − Si j )∇i u∇ j u

= �PS − 2∇ i PS∇iv − 2

∣∣∣∣∇i∇ jv − Si j − 1

2t
gi j

∣∣∣∣
2

− 1

t
PS

− (2H(S,∇v)+ E(S,∇v)) .

Therefore, the desired result follows. ��

We shall prove Theorem C as follows. In fact, we are able to obtain the following by
Corollary 3:

∂

∂t
(t PS) = t

∂PS

∂t
+ PS = �(t PS)− 2∇ i (t PS)∇iv − 2t

∣∣∣∣∇i∇ jv − Si j − 1

2t
gi j

∣∣∣∣
2

−t (2H(S,∇v)+ E(S,∇v)) .

Furthermore, the monotonicity of max(t PS) follows from this equation and the maximal
principle.

5 Proof of Theorem D

First of all, notice that FS ≤ 0 follows from the definition of FS and HS ≤ 0, where we used
Theorem A. Let us consider the following quantity:

A = 2te−u HS − t2e−u ∂u

∂t
HS + t2e−u ∂HS

∂t
− St2e−u HS .

On the other hand, a direct computation tells us that the following holds:

�(t2e−u HS) = t2e−u(�HS − 2∇ i HS∇i u − HS�u + HS |∇u|2). (15)
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By (9) with c = −1, Corollary 1 and (15), we get

A = 2te−u HS − t2e−u (
�u − |∇u|2 − S

)
HS

+t2e−u

(
�HS − 2∇ i HS∇i u − 2

∣∣∣∣∇i∇ j u − Si j − 1

t
gi j

∣∣∣∣
2

− 2

t
HS − 2

t
|∇u|2

−(2H(S,∇u)+ E(S,∇u))

)

−St2e−u HS

= �(t2e−u HS)− 2t2e−u
∣∣∣∣∇i∇ j u − Si j − 1

t
gi j

∣∣∣∣
2

− 2te−u |∇u|2

−t2e−u (2H(S,∇u)+ E(S,∇u)).

On the other hand, notice that we have

d

dt
FS = d

dt

⎛
⎝

∫

M

t2e−u HSdμg

⎞
⎠ =

∫

M

Adμg.

Therefore, the following holds:

d

dt
FS =

∫

M

(
�(t2e−u HS)− 2t2e−u

∣∣∣∣∇i∇ j u − Si j − 1

t
gi j

∣∣∣∣
2

− 2te−u |∇u|2

− t2e−u(2H(S,∇u)+ E(S,∇u))

)
dμg

= −
∫

M

(
2t2e−u

∣∣∣∣∇i∇ j u − Si j − 1

t
gi j

∣∣∣∣
2

+ 2te−u |∇u|2

+ t2e−u(2H(S,∇u)+ E(S,∇u))

)
dμg ≤ 0.

Assume moreover that H(S, X) ≥ 0 and E(S, X) ≥ 0 holds. Suppose also that d
dt FS = 0

holds for some time t . Then, we obtain

∇i∇ j u − Si j − 1

t
gi j = 0, ∇u = 0, H(S,∇u) = 0, E(S,∇u) = 0.

These imply (5) as desired. We proved Theorem D.

6 Proof of Theorem E

Let us consider the following quantity:

B = e−vPS + te−v ∂PS

∂t
− n

2
e−vPS − te−v ∂v

∂t
PS − Ste−vPS .

A direct computation tells us that the following holds:

�(te−vPS) = te−v(�PS − 2∇ i PS∇iv − PS�v + PS |∇v|2) (16)
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By (13) with c = −1, Corollary 3 and (16), we obtain the following:

B = e−vPS + te−v(�PS − 2∇ i PS∇iv − 2

∣∣∣∣∇i∇ jv − Si j − 1

2t
gi j

∣∣∣∣
2

− 1

t
PS

− (2H(S,∇v)+ E(S,∇v))− n

2
e−vPS − te−vPS

(
�v − |∇v|2 − S − n

2t

)

− Ste−vPS

= �(te−vPS)− 2te−v
∣∣∣∣∇i∇ jv − Si j − 1

2t
gi j

∣∣∣∣
2

− te−v (2H(S,∇v)+ E(S,∇v)).

By a direct computation, we also have

d

dt
WS = d

dt

⎛
⎝

∫

M

t PS(4π t)−
n
2 e−vdμg

⎞
⎠ =

∫

M

B(4π t)−
n
2 dμg.

Therefore, we obtain

d

dt
WS =

∫

M

(�(te−vPS)− 2te−v
∣∣∣∣∇i∇ jv − Si j − 1

2t
gi j

∣∣∣∣
2

− te−v(2H(S,∇v)+ E(S,∇v)))(4π t)−
n
2 dμg

= −
∫

M

(
2te−v

∣∣∣∣∇i∇ jv − Si j − 1

2t
gi j

∣∣∣∣
2

+ te−v(2H(S,∇v)+ E(S,∇v))
)
(4π t)−

n
2 dμg ≤ 0.

Assume moreover that H(S, X) ≥ 0 and E(S, X) ≥ 0. Suppose also that d
dt WS = 0 for

some time t . Then, we obtain

Si j − ∇i∇ jv + 1

2t
gi j = 0, H(S,∇v) = 0, E(S,∇v) = 0.

Hence, we have proved Theorem E.
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