Skip to main content
Log in

Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense

Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The microalga Chlorella sorokiniana and the microalgae growth-promoting bacteria (MGPB) Azospirillum brasilense have a mutualistic interaction that can begin within the first hours of co-incubation; however, the metabolites participating in this initial interaction are not yet identified. Nuclear magnetic resonance (NMR) was used in the present study to characterize the metabolites exuded by two strains of C. sorokiniana (UTEX 2714 and UTEX 2805) and A. brasilense Cd when grown together in an oligotrophic medium. Lactate and myo-inositol were identified as carbon metabolites exuded by the two strains of C. sorokiniana; however, only the UTEX 2714 strain exuded glycerol as the main carbon compound. In turn, A. brasilense exuded uracil when grown on the exudates of either microalga, and both microalga strains were able to utilize uracil as a nitrogen source. Interestingly, although the total carbohydrate content was higher in exudates from C. sorokiniana UTEX 2805 than from C. sorokiniana UTEX 2714, the growth of A. brasilense was greater in the exudates from the UTEX 2714 strain. These results highlight the fact that in the exuded carbon compounds differ between strains of the same species of microalgae and suggest that the type, rather than the quantity, of carbon source is more important for sustaining the growth of the partner bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Kouzuma A, Watanabe K (2015) Exploring the potential of algae/bacteria interactions. Curr. Opin. Biotech. 33:125–129

    Article  CAS  PubMed  Google Scholar 

  2. Fuentes JL, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, Vílchez C (2016) Impact of microalgae-bacteria interactions on the production of alga biomass and associated compounds. Mar. Drugs 14:100

    Article  PubMed  PubMed Central  Google Scholar 

  3. Herzi F, Hlaili AS, Le Poupon C, Mabrouk HH, Mounier S (2013) Characterization of exudates release by the marine diatom Skeletonema costatum exposed to copper stress: a 3D-fluorescence spectroscopy approach. Biometals 26:773–781

    Article  CAS  PubMed  Google Scholar 

  4. Huang X-G, Sx Li, Liu F-J, Lan W-R (2018) Regulated effects of Prorocentrum donghaiense Lu exudate on nickel bioavailability when cultured with different nitrogen sources. Chemosphere 197:57–64

    Article  CAS  PubMed  Google Scholar 

  5. Qi W, Mei S, Yuan Y, Li X, Tang T, Zhao Q et al (2018) Enhancing fermentation wastewater treatment by co-culture of microalgae with volatile fatty acid and alcohol-degrading bacteria. Algal. Res. 31:31–39

    Article  Google Scholar 

  6. Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A (2018) Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. J. Appl. Microbiol. 126:359–368

    Article  PubMed  Google Scholar 

  7. Lopez BR, Palacios OA, Bashan Y, Hernández-Sandoval FE, de-Bashan LE (2019) Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions. Algal. Res. 44:101696

    Article  Google Scholar 

  8. Palacios OA, Gomez-Anduro G, Bashan Y, de-Bashan LE (2016) Tryptophan, thiamine and índole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol. Ecol. 92:fiw077

  9. de-Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM et al (2016) Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical interaction (Fluorescent in situ hybridization). Algal. Res. 15:179–186

    Article  Google Scholar 

  10. González-González LM, de-Bashan LE (2021) Toward the enhancement of microalgal metabolite production through microalgae-bacteria consortia. Biology 10:282

    Article  PubMed  PubMed Central  Google Scholar 

  11. de-Bashan LE, Moreno M, Hernandez J-P, Bashan Y (2002) Removal of ammonium and phosphorous ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azopirillum brasilense. Water Res. 36:2941–2948

    Article  CAS  PubMed  Google Scholar 

  12. Hernandez J-P, de-Bashan LE, Bashan Y (2006) Starvation enhances phosphorous removal from wastewater by the microalgae Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme Microb. Tech. 38:190–198

    Article  CAS  Google Scholar 

  13. Choix FJ, de-Bashan LE, Bashan Y (2012) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic Cond. Enzym. Microb. Tech. 51:300–309

    Article  CAS  Google Scholar 

  14. Peng H, de-Bashan LE, Higgins BT (2021) Comparison of algae growth and symbiotic mechanisms in the presence of plant growth promoting bacteria and non-plant growth promoting bacteria. Algal. Res. 53:102156

    Article  Google Scholar 

  15. Palacios OA, Lopez BR, Bashan Y, de-Bashan LE (2019) Early changes in nutritional conditions affect formation of synthetic mutualism between Chlorella sorokiniana and the bacterium Azospirillum brasilense. Microbial. Ecol. 77:980–992

    Article  CAS  Google Scholar 

  16. Bashan Y, Lopez BR, Huss VAR, Amavizca E, de-Bashan LE (2016) Chlorella sorokiniana (formely C. vulgaris) UTEX 2714, a non-thermotolerant microalga useful for biotechnological applications and as a reference strain. J. Appl. Phycol. 28:113–121

    Article  CAS  Google Scholar 

  17. Seymour JR, Amin SA, Raina J-B, Stocker R (2017) Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2:17065

    Article  CAS  PubMed  Google Scholar 

  18. Sapp M, Schwaderer AS, Wiltshire KH, Hoppe H-G, Gerdts G, Wichels A (2007) Specie-specific bacterial communities in the phycosphere of microalgae? Microbial. Ecol. 53:683–699

    Article  Google Scholar 

  19. Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37:384–406

    Article  CAS  PubMed  Google Scholar 

  20. Leandro SM, Gil MC, Delgadillo I (2003) Partial characterization of exopolysaccharides exuded by planktonic diatoms maintained in batch culture. Acta. Oecol. 24:S49–S55

    Article  Google Scholar 

  21. Kirkwood AE, Nalewajko C, Fulthorpe RR (2006) The effects of cyanobacterial exudates on bacterial growth and biodegradation of organic contaminants. Microbial. Ecol. 51:4–12

    Article  CAS  Google Scholar 

  22. Pivokonsky M, Safarikova J, Maresova M, Pivokonska L, Kopecka I (2014) A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga. Water Res. 51:37–46

    Article  CAS  PubMed  Google Scholar 

  23. de-Bashan LE, Trejo A, Volker ARH, Hernandez J-P, Bashan Y (2008) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresource Technol. 99:4980–4989

    Article  CAS  Google Scholar 

  24. González LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorous removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technol. 60:259–262

    Article  Google Scholar 

  25. Bashan Y, Trejo A, de-Bashan LE (2011) Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biol. Fert. Soils 47:963–969

    Article  CAS  Google Scholar 

  26. Chrzanowski TH, Crotty RD, Hubbard JG, Welch RP (1984) Applicability of fluorescein diacetate method of detecting active bacteria in freshwater. Microb. Ecol. 10:179–185

    Article  CAS  PubMed  Google Scholar 

  27. Wishart DS (2019) NMR metabolomics: a look ahead. J. Magn. Reason 306:155–161

    Article  CAS  Google Scholar 

  28. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 46:D608–D617

    Article  CAS  PubMed  Google Scholar 

  29. Cui Q, Lewis IA, Hegeman D, Anderson ME, Li J, Schulte CF, Westler WM, Eghbalnia HR, Sussman MR, Markley JL (2008) Metabolite identification via the Madison metabolomics consortium database. Nat Biotechnol 26:162–164

    Article  CAS  PubMed  Google Scholar 

  30. Ulrich EL, Akutsu H, Doreleijers JF, Harano Y et al (2008) BioMagResBank. Nucleic Acids Res. 36:D402–D408

    Article  CAS  PubMed  Google Scholar 

  31. Bharti SK, Roy R (2012) Quantitative 1H NMR spectroscopy. TRAC-Trend Anal. Chem. 35:5–26

    Article  CAS  Google Scholar 

  32. Harcombe WR, Riehl WJ, Dukovsky I, Granger BR, Betts A, Lang AH et al (2014) Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7:1104–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. da Silva ML, Franco AOR, Odebrecht C, Giroldo D, Abreu PC (2016) Carbohydrates produced in batch cultures of the surf zone diatom Asterionellopsis glacialis sensu lato: influence in vertical migration of the microalga and bacterial abundance. J. Exp. Mar. Biol. Ecol. 474:126–132

    Article  Google Scholar 

  34. Smith DJ, Underwood GJC (2000) The production of extracellular carbohydrates by estuarine benthic diatoms. The effect of growth phase and light and dark treatment. J. Phycol. 36:321–333

    Article  CAS  Google Scholar 

  35. Gruber PJ, Frederick SE, Tolbert NE (1974) Enzymes related to lactate metabolism in green algae and lower land plants. Plant Physiol. 53:167–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sullivan JT, Brown SD, Ronson CW (2013) The NifA-RpoN regulon of Mesorhizobium loti strain R7A and its symbiotic activation by a novel Lacl/GalR-family regulator. PLoS ONE 8:e53762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shariati M, Lilley RMcC (1994) Loss of intracellular glycerol from Dunaliella by electroporation at constant osmotic pressure: subsequent restoration of glycerol content and associated volume changes. Plant Cell Environ. 17:1295–1304

    Article  CAS  Google Scholar 

  38. Wang L, Huang X, Lim DJ, Carrasco-Laserma AK, Yau-Li SF (2019) Uptake and toxic effects of triphenyl phosphate on freshwater microalgae Chlorella vulgaris and Scenedesmus obliquus: Insights from untargeted metabolomics. Sci. Total Environ. 650:1239–1249

    Article  CAS  PubMed  Google Scholar 

  39. Loewus FA, Murthy PPN (2000) myo-Inositol metabolism in plants. Plant Sci. 150:1–19

    Article  CAS  Google Scholar 

  40. Nelson DE, Koukoumanos M, Bohnert HJ (1999) Myo-Inositol-dependent sodium uptake in ice plant. Plant Physiol. 119:165–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanner W (2000) The chlorella hexose/H+-symporters. Int. Rev. Cytol. 200:101–141

    Article  CAS  PubMed  Google Scholar 

  42. Morales-Sánchez D, Martinez-Rodriguez OA, Kyndt J, Martinez A (2015) Heterotrophic growth of microalgae: metabolic aspects. World J. Microb. Biot. 31:1–9

    Article  Google Scholar 

  43. Talarsky A, Manning SR, La Claire JW (2016) Transcriptome analysis of the euryhaline alga, Prymnesium parvum (Prymnesiophyceae): effects of salinity on differential gene expression. Phycologia 55:33–44

    Article  Google Scholar 

  44. Perez-Garcia O, Bashan Y (2015) Microalgae heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. In Prokop A, Bajpai R, Zappi M (eds) Algal Biorefineries Vol. 2: Products and refinery design. Switzerland: Springer International Publishing, 61–131

  45. Lee S-M, Kim S-K, Lee N, Ahn C-Y, Ryu C-M (2020) D-Lactic acid secreted by Chlorella fusca primes pattern-triggered immunity against Pseudomonas syringae in Arabidopsis. Plant J 102:761–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Singh VS, Dubey AP, Gupta A, Singh S, Singh BN, Tripathi AK (2017) Regulation of a glycerol-induced quinoprotein alcohol dehydrogenase by σ54 and a LuxR-Type regulator in Azospirillum brasilense SP7. J Bacteriol 199:e00035-e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Galbraith MP, Feng SF, Borneman J, Triplett EW, de Bruijn FJ, Rossbach S (1998) A functional myo-inositol catabolism pathway is essential for rhizopine utilization by Sinorhizobium meliloti. Microbiology 144:2915–2924

    Article  CAS  PubMed  Google Scholar 

  48. Jiang G, Krishnan AH, Kim Y-W, Wacek TJ, Krishnan HB (2001) A functional myo-inositol dehydrogenase gene is required for efficient nitrogen fixation and competitiveness of Sinorhizobium fredii USDA191 to nodulate soybean (Glycine max [L.] Merr.). J. Bacteriol. 183:2595–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wisniewsky-Dyé F, Lozano L, Acosta-Cruz E, Borland S, Drogue B, Prigent-Combaret C et al (2012) Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes 3:576–602

    Article  Google Scholar 

  50. Reis VM, Baldani VLD, Baldani JI (2015) Isolation, identification and biochemical characterization of Azospirillum spp. and other nitrogen-fixing bacteria. In Cassán FD, Okon Y, Creus CM (eds) Hanbook of Azospirillum. Technical issues and protocols. Switzerland: Springer International Publishing, 3–26

  51. Westby CA, Cutshall DS, Vigil GV (1983) Metabolism of various carbon sources by Azospirillum brasilense. J Bacteriol 156:1369–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O´Neil L, Mukherjee Y, Alexandre G (2018) Analyzing chemotaxis and relate behaviors of Azospirillum brasilense. Curr. Protocol. Microbiol. 48:3E.3.1-3E.3.11

    Google Scholar 

  53. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541–556

    Article  CAS  PubMed  Google Scholar 

  54. Anderson CM, Parkinson FE (1997) Potential signaling roles for UTP and UDP: sources, regulation and release of uracil nucleotides. Trends Pharmacol. Sci. 18:387–392

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Consejo Nacional de Ciencia y Tecnología of Mexico (CONACYT Basic Science-2017, grant 284562).

Author information

Authors and Affiliations

Authors

Contributions

OP and JCEH participated equally in designing, performing the experiments, analyzing the data and writing the initial draft. AACD analyze and interpret the data from NMR, BRL assisted in the experiments and help with the initial draft of the manuscript. LEdeB discussed the experimental setting, supervised the experiments, and critically revised the article for intellectual content, including the manuscript’s final version. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Luz E. de-Bashan.

Ethics declarations

Ethics Approval

This research does not involve human or animal subjects.

Competing Interests

The authors declare no competing interests.

Additional information

This study is dedicated to the memory of Dr. Yoav Bashan (1953–2018), pioneer in MGPB field and founder of Bashan Institute of Science, USA.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 643 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios, O.A., Espinoza-Hicks, J.C., Camacho-Dávila, A.A. et al. Differences in Exudates Between Strains of Chlorella sorokiniana Affect the Interaction with the Microalga Growth-Promoting Bacteria Azospirillum brasilense. Microb Ecol 85, 1412–1422 (2023). https://doi.org/10.1007/s00248-022-02026-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02026-4

Keywords

Navigation