Skip to main content

Advertisement

Log in

Tissue Distribution and Regulation of Plasminogen Activator Inhibitor-1 in Obese Mice

  • Original Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Background

Although elevated plasminogen activator inhibitor-1 (PAI-1) is associated with obesity and may be a risk factor for cardiovascular disease, the mechanism(s) that lead to this elevation, and the tissue/cellular origins of this increase, remain to be defined. In this report, we have addressed these questions using genetically obese mice (ob/ob) and their lean counterparts (+/?).

Materials and Methods

PAI-1 activity and antigen levels were determined using a tissue-type plasminogen activator (t-PA) binding assay and Western blotting. The concentration of PAI-1 mRNA in tissues was determined by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), and the cellular localization of PAI-1 was evaluated using in situ hybridization, immunohistochemistry, and cell fractionation.

Results

PAI-1 activity was approximately 4-fold higher in plasma from ob/ob mice than in that obtained from their lean counterparts, and this difference increased further with age (i.e., 6-fold at 3 months). PAI-1 mRNA levels were elevated 4- to 5-fold in the adipose tissues of obese mice, and these differences in mRNA also increased with age. The elevated PAI-1 mRNA in the adipose tissues of obese mice was localized to mature adipocytes as well as to vascular smooth muscle cells and occasional endothelial cells. Obesity is often associated with hyperinsulinemia, and acute injection of insulin into lean mice increased PAI-1 mRNA 6- to 8-fold in the epididymal fat in cells that morphologically resembled adipocytes. Insulin did not increase PAI-1 in large vessel endothelial or smooth muscle cells. The adipocyte response to insulin was confirmed in cell culture studies where PAI-1 synthesis by mature 3T3-L1 adipocytes was increased 5- to 6-fold by insulin.

Conclusions

Our results suggest that elevated PAI-1 associated with obesity may result in part from insulin-induced induction of PAI-1 specifically by adipocytes within the fat itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Larsson B. (1991) Obesity, fat distribution and cardiovascular disease. Int. J. Obesity 15: 53–57.

    Google Scholar 

  2. Björntorp P. (1992) Abdominal fat distribution and disease: An overview of epidemiological data. Ann. Med. 24: 15–18.

    Article  PubMed  Google Scholar 

  3. DeFronzo RA, Ferrannini E. (1991) Insulin resistance: A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14: 173–194.

    Article  CAS  PubMed  Google Scholar 

  4. McGill JB, Schneider DJ, Arfken CL, Lucore CL, Sobel BE. (1994) Factors responsible for impaired fibrinolysis in obese subjects and NIDDM patients. Diabetes 43: 104–109.

    Article  CAS  PubMed  Google Scholar 

  5. Potter van Loon BJ, Kluft C, Radder JK, Blankenstein MA, Meinders AE. (1993) The cardiovascular risk factor plasminogen activator inhibitor type 1 is related to insulin resistance. Metabolism 42: 945–949.

    Article  Google Scholar 

  6. Legnani C, Maccaferri M, Tonini P, Cassio A, Cacciari E, Coccheri S. (1988) Reduced fibrinolytic response in obese children: Association with high baseline activity of the fast acting plasminogen activator inhibitor (PAI-1). Fibrinolysis 2: 211–214.

    Article  Google Scholar 

  7. Vague P, Juhan-Vague I, Chabert V, Alessi MC, Atlan C. (1989) Fat distribution and plasminogen activator inhibitor activity in nondiabetic obese women. Metabolism 38: 913–915.

    Article  CAS  PubMed  Google Scholar 

  8. Takada Y, Urano T, Watanabe I, Taminato A, Yoshimi T, Takada A. (1993) Changes in fibrinolytic parameters in male patients with type 2 (non-insulin-dependent) diabetes mellitus. Thromb. Res. 71: 405–415.

    Article  CAS  PubMed  Google Scholar 

  9. Wada H, Mori Y, Kaneko T, et al. (1993) Elevated plasma levels of vascular endothelial cell markers in patients with hypercholesterolemia. Am. J. Hematol. 44: 112–116.

    Article  CAS  PubMed  Google Scholar 

  10. Juhan-Vague I, Moerman B, De Cock F, Aillaud MF, Collen D. (1984) Plasma levels of a specific inhibitor of tissue-type plasminogen activator (and urokinase) in normal and pathological conditions. Thromb. Res. 33: 523–530.

    Article  CAS  PubMed  Google Scholar 

  11. Sundell IB, Nilsson TK, Hallmans G, Hellsten G, Dahlen GH. (1989) Interrelationship between plasma levels of plasminogen activator inhibitor, tissue plasminogen activator, lipoprotein(a), and established cardiovascular risk factors in a North Swedish population. Atherosclerosis 80: 9–16.

    Article  CAS  PubMed  Google Scholar 

  12. Primrose JN, Davies JA, Prentice CRM, Hughes R, Johnston D. (1992) Reduction in factor VII, fibrinogen and plasminogen activator inhibitor-1 activity after surgical treatment of morbid obesity. Thromb. Haemost. 68: 396–399.

    Article  CAS  PubMed  Google Scholar 

  13. Sawdey MS, Loskutoff DJ. (1991) Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo: Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-α, and transforming growth factor-β. J. Clin. Invest. 88: 1346–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reaven GM. (1995) Pathophysiology of insulin resistance in human disease. Physiol. Rev. 75: 473–486.

    Article  CAS  PubMed  Google Scholar 

  15. Asplund-Carlson A, Hamsten A, Wiman B, Carlson LA. (1993) Relationship between plasma plasminogen activator inhibitor-1 activity and VLDL triglyceride concentration, insulin levels and insulin sensitivity: Studies in randomly selected normo- and hypertrig-lyceridaemic men. Diabetologia 36: 817–825.

    Article  CAS  PubMed  Google Scholar 

  16. Juhan-Vague I, Roul C, Alessi MC, Ardissone JP, Heim M, Vague P. (1989) Increased plasminogen activator inhibitor activity in non-insulin-dependent diabetic patients: Relationship with plasma insulin. Thromb. Haemostas. 61: 370–373.

    CAS  Google Scholar 

  17. Vague P, Juhan-Vague I, Aillaud MF, et al. (1986) Correlation between blood fibrinolytic activity, plasminogen activator inhibitor level, plasma insulin level, and relative body weight in normal and obese subjects. Metabolism 35: 250–253.

    Article  CAS  PubMed  Google Scholar 

  18. Mykkänen L, Rönnemaa T, Marniemi J, Haffner SM, Bergman R, Laakso M. (1994) Insulin sensitivity is not an independent determinant of plasma plasminogen activator inhibitor-1 activity. Arterioscler. Thromb. 14: 1264–1271.

    Article  PubMed  Google Scholar 

  19. Jain SK, Nagi DK, Slavin BM, Lumb PJ, Yudkin JS. (1993) Insulin therapy in type 2 diabetic subjects suppresses plasminogen activator inhibitor (PAI-1) activity and proinsulin-like molecules independently of glycaemic control. Diabet. Med. 10: 27–32.

    Article  CAS  PubMed  Google Scholar 

  20. Alessi MC, Juhan-Vague I, Kooistra T, Declerck PJ, Collen D. (1988) Insulin stimulates the synthesis of plasminogen activator inhibitor 1 by the human hepatocellular cell line Hep G2. Thromb. Haemost. 60: 491–494.

    Article  CAS  PubMed  Google Scholar 

  21. Alessi MC, Anfosso F, Henry M, Peiretti F, Nalbone G, Juhan-Vague I. (1995) Up-regulation of PAI-1 synthesis by insulin and proinsulin in HEP G2 cells but not in endothelial cells. Fibrinolysis 9: 237–242.

    Article  CAS  Google Scholar 

  22. Schneider DJ, Sobel BE. (1991) Augmentation of synthesis of plasminogen activator inhibitor type 1 by insulin and insulin-like growth factor type I: Implications for vascular disease in hyperinsulinemic states. Proc. Natl. Acad. Sci. U.S.A. 88: 9959–9963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hotamisligil GS, Shargill NS, Spiegelman BM. (1993) Adipose expression of tumor necrosis factor-α: Direct role in obesity-linked insulin resistance. Science 259: 87–91.

    Article  CAS  PubMed  Google Scholar 

  24. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. (1995) Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J. Clin. Invest. 95: 2409–2415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Hinsbergh VW, Kooistra T, van den Berg EA, Princen HM, Fiers W, Emeis JJ. (1988) Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo. Blood 72: 1467–1473.

    PubMed  Google Scholar 

  26. Kooistra T. (1990) The use of cultured human endothelial cells and hepatocytes as an in vitro model system to study modulation of endogenous fibrinolysis. Fibrinolysis 4: 33–39.

    Article  CAS  Google Scholar 

  27. Samad F, Yamamoto K, Loskutoff DJ. (1996) Distribution and regulation of plasminogen activator inhibitor-1 in murine adipose tissue in vivo: Induction by tumor necrosis factor-α and lipopolysaccharide. J. Clin. Invest. 97: 37–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schleef RR, Sinha M, Loskutoff DJ. (1985) Immunoradiometric assay to measure the binding of a specific inhibitor to tissue-type plasminogen activator. J. Lab. Clin. Med. 106: 408–415.

    PubMed  CAS  Google Scholar 

  29. Chomczynski P, Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thyiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156–159.

    Article  CAS  PubMed  Google Scholar 

  30. Sawdey M, Podor TJ, Loskutoff DJ. (1989) Regulation of type 1 plasminogen activator inhibitor gene expression in cultured bovine aortic endothelial cells: Induction by transforming growth factor-β, lipopolysaccharide, and tumor necrosis factor-α. J. Biol. Chem. 264: 10396–10401.

    PubMed  CAS  Google Scholar 

  31. Feinberg AP, Vogelstein B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.

    Article  CAS  PubMed  Google Scholar 

  32. Wang AM, Doyle MV, Mark DF. (1989) Quantitation of mRNA by the polymerase chain reaction. Proc. Natl. Acad. Sci. U.S.A. 86: 9717–9721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamamoto K, Loskutoff DJ. (1996) Fibrin deposition in tissues from endotoxin-treated mice correlates with decreases in the expression of urokinase-type but not tissue-type plasminogen activator. J. Clin. Invest. 97: 2440–2451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vanden Heuvel JP, Tyson FL, Bell DA. (1993) Construction of recombinant RNA templates for use as internal standards in quantitative RT-PCR. BioTechniques 14: 395–398.

    Google Scholar 

  35. Keeton M, Eguchi Y, Sawdey M, Ahn C, Loskutoff DJ. (1993) Cellular localization of type 1 plasminogen activator inhibitor messenger RNA and protein in murine renal tissue. Am. J. Pathol. 142: 59–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Reik LM, Maines SM, Ryan DE, Levin W, Bandiera S, Thomas PE. (1987) Isolation of monoclonal antibodies against cytochrome P450 isozymes. J. Immun. Methods 100: 123–130.

    Article  CAS  Google Scholar 

  37. Rodbell M. (1964) Metabolism of isolated fat cells: I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 239: 375–380.

    PubMed  CAS  Google Scholar 

  38. Green H, Kehinde O. (1975) An established preadipose cell line and its differentiation in culture: II. Factors affecting the adipose conversion. Cell 5: 19–27.

    Article  CAS  PubMed  Google Scholar 

  39. Markman B. (1989) Anatomy and physiology of adipose tissue. Clinics in Plastic Surgery 16: 235–243.

    PubMed  CAS  Google Scholar 

  40. Jaffe EA, Nachman RL, Becker CG, Minick CR. (1973) Culture of human endothelial cells derived from umbilical cord veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52: 2745–2756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Herberg L, Coleman DL. (1977) Laboratory animals exhibiting obesity and diabetes syndromes. Metabolism 26: 59–99.

    Article  CAS  PubMed  Google Scholar 

  42. Remacle C, Gregoire F. (1992) Cellular and molecular biology in the study of the physiopathology of obesity. Acta Clin. Belg. 14(Suppl): 3–12.

    CAS  Google Scholar 

  43. Nordt TK, Sawa H, Fujii S, Sobel BE. (1995) Induction of plasminogen activator inhibitor type-1 (PAI-1) by proinsulin and insulin in vivo. Circulation 91: 764–770.

    Article  CAS  PubMed  Google Scholar 

  44. Grant PJ, Ruegg M, Medcalf RL. (1991) Basal expression and insulin-mediated induction of PAI-1 mRNA in Hep G2 cells. Fibrinolysis 5: 81–86.

    Article  Google Scholar 

  45. Kooistra T, Bosma PJ, Tons HAM, van den Berg AP, Meyer P, Princen HMG. (1989) Plasminogen activator inhibitor 1: Biosynthesis and mRNA level are increased by insulin in cultured human hepatocytes. Thromb. Haemost. 62: 723–728.

    PubMed  CAS  Google Scholar 

  46. Schneider DJ, Nordt TK, Sobel BE. (1993) Attenuated fibrinolysis and accelerated atherogenesis in type II diabetic patients. Diabetes 42: 1–7.

    Article  CAS  PubMed  Google Scholar 

  47. Medvescek M, Keber D, Stegnar M, Borovnicar A. (1990) Plasminogen activator inhibitor 1 response to a carbohydrate meal in obese subjects. Fibrinolysis 4(Suppl 2): 89–90.

    Article  CAS  Google Scholar 

  48. Vague PH, Juhan-Vague I, Alessi MC, Badier C, Valadier J. (1987) Metformin decreases the high plasminogen activator inhibition capacity, plasma insulin and triglyceride levels in non-diabetic obese subjects. Thromb. Haemost. 58: 326–328.

    Google Scholar 

  49. Grant PJ, Kruithof EKO, Felley CP, Felber JP, Backmann F. (1990) Short-term infusions of insulin, triacylglycerol and glucose do not cause acute increases in plasminogen activator inhibitor-1 concentrations in man. Clin. Sci. 79: 513–516.

    Article  CAS  PubMed  Google Scholar 

  50. Landin K, Tengborn L, Chmielewska J, von Schenck H, Smith U. (1991) The acute effect of insulin on tissue plasminogen activator and plasminogen activator inhibitor in man. Thromb. Haemostas. 65: 130–133.

    Article  CAS  Google Scholar 

  51. Vuorinen-Markkola H, Puhakainen I, Yki-Jarvinen H. (1992) No evidence for short-term regulation of plasminogen activator inhibitor activity by insulin in man. Thromb. Haemost. 67: 117–120.

    Article  CAS  PubMed  Google Scholar 

  52. Potter van Loon BJ, De Bart ACW, Radder JK, Frölich M, Kluft C, Meinders AE. (1990) Acute exogenous hyperinsulinemia does not result in elevation of plasma plasminogen activator inhibitor-1 (PAI-1) in humans. Fibrinolysis 4(Suppl 2): 93–94.

    Article  Google Scholar 

  53. Juhan-Vague I, Vague P. (1991) Hypofibrinolysis and insulin-resistance. Diabete Metab. 17: 96–100.

    PubMed  CAS  Google Scholar 

  54. Teufelsbauer H, Proidl S, Havel M, Vukovich T. (1992) Early activation of hemostasis during cardiopulmonary bypass: Evidence for thrombin mediated hyperfibrinolysis. Thromb. Haemost. 68: 250–252.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank T. Thinnes and M. Pandey for their technical assistance. In addition we wish to thank M. McRae for her expert secretarial skills. This work was supported by National Institutes of Health Grant HL 47819 to DJL.

Author information

Authors and Affiliations

Authors

Additional information

This work was presented in part at the XIIth International Congress on Fibrinolysis, September 1994, in Leuven, Belgium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samad, F., Loskutoff, D.J. Tissue Distribution and Regulation of Plasminogen Activator Inhibitor-1 in Obese Mice. Mol Med 2, 568–582 (1996). https://doi.org/10.1007/BF03401641

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401641

Navigation