Skip to main content

Advertisement

Log in

High blood ketone body concentration in Type 2 non-insulin dependent diabetic patients

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

To assess the metabolic disturbances, and, in particular, the occurrence of high blood ketone body concentration in post-absorptive Type 2 (non-insulin-dependent) diabetic patients as compared to a matched normal population, a study was carried out in a group of 78 Type 2 diabetic outpatients matched for age and sex and in 78 normal individuals. In all subjects we measured HbA1c, and fasting levels of glucose, FFA, lactate, pyruvate, glycerol, alanine, 3-hydroxybutyrate, acetoacetate, uric acid, total cholesterol, triglycerides, creatinine, growth hormone, Cortisol, glucagon, free insulin, and C-peptide. Multistix strips were used for urine ketone determination. As expected HbA1c, and plasma glucose were higher in Type 2 diabetics. This was associated with multiple metabolic disturbances as shown by higher circulating concentrations of FFA, glycerol and gluconeogenic precursors. Similarly, blood levels of ketones (351 ± 29 vs 159 ± 15 umol/I; p<0.0001) were increased, in spite of higher plasma free-insulin (77 ± 7 vs. 49 ± 14 pmol/I; p<0.0001) and C-peptide concentration (0.63 ± 0.03 vs. 0.46 ± 0.07 nmol/I; p<0.05) and no differences in plasma levels of Cortisol, and growth hormone. Plasma glucagon levels were higher in Type 2 diabetics. Blood ketone body levels were directly correlated with both plasma glucose and FFA concentrations. These observations clearly show that Type 2 diabetes is a pathologic condition characterised by multiple metabolic disturbances which are fully apparent in the basal state. Furthermore, we emphasise that Type 2 diabetic patients, though not insulin deficient, may present a significant increase in their fasting levels of ketone bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Fronzo R.A., Bonadonna R.C., Ferrannini E. Pathogenesis of Type 2. A balanced overview. Diabetes Care 15: 318, 1992.

    Article  Google Scholar 

  2. Groop L.C., Bonadonna R.C., Del Prato S., Ratheiser K., Zyck K., Ferrannini E, De Fronzo R.A. Glucose and free fatty acid metabolism in non-insulin dependent diabetes: evidence for multiple sites of insulin resistance. J.Clin. Invest. 84: 205, 1989.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Consoli A., Nurjahan N., Reilly J.J., Bier D.M., Gerich J.E. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans. Am. J. Physiol. 259: E677, 1990.

    PubMed  CAS  Google Scholar 

  4. Capaldo B., Napoli R., Di Bonito P., Albano G., Saccà L. Glucose and gluconeogenic substrate exchange by the forearm skeletal muscle in hyperglycemic and insulin-treated type II diabetic patients. J. Clin. Endocrinol. Metab. 71: 1220, 1990.

    Article  PubMed  CAS  Google Scholar 

  5. Del Prato S., Enzi G., Vigili De Kreutzenberg S., Lisato G., Riccio A., Maifreni L, Iori E., Zurlo F., Sergi G., Tiengo A. Insulin regulation of glucose and lipid metabolism in massive obesity. Diabetologia 33: 228, 1990.

    Article  PubMed  Google Scholar 

  6. Dagenais G.R., Tancredi R.G., Zierler K.L. Free fatty acid oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in the human forearm. J.Clin. Invest. 58: 421, 1976.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Avogaro A., Valerio A., Gnudi L, Maran A., Zolli M., Duner E., Riccio A., DelPrato S., Tiengo A., Nosadini R. Ketone body metabolism in Type 2 diabetes. Effect of sulfonylurea treatment. Diabetes 41: 968, 1992.

    CAS  Google Scholar 

  8. Banerji M.A., Chaiken R.L., Huey H., Tuomi T., Norin A.J., Mackay I.R., Rowley M.J., Zimmet P.Z., Lebovitz H.E. GAD antibody negative Type 2 in adult black subjects with diabetic ketoacidosis and increased frequency of human leucocyte antigen DR3 and DR4. Flatbush Diabetes. Diabetes 43: 741, 1994.

    CAS  Google Scholar 

  9. Papadakis M., Grunfeld C. Ketonuria in hospitalized patients with non-insulin-dependent diabetes mellitus. Diabetes Care 9: 596, 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz H.C., King K.C., Schwartz A.L., Edmund D., Schwartz R. Effect of pregnancy on hemoglobin A1c in normal gestational diabetic and diabetic women. Diabetes 25: 1118, 1976.

    Article  PubMed  CAS  Google Scholar 

  11. Huggett A.S., Nixon D.A. Use of glucose oxidase, peroxidase and O-dianisidine in the determination of blood and urine glucose. Lancet 2: 368, 1957.

    Article  Google Scholar 

  12. Shimuzu S., Inque K., Tani Y., Yamada H. Enzymatic microdetermination of serum free fatty acids. Anal. Biochem. 98: 341, 1979.

    Article  Google Scholar 

  13. Lloyd B., Burrin J., Smythe P., Alberti K.G.M.M. Enzymic fluorometric continuous-flow assay for blood glucose, lactate, pyruvate, alanine, glycerol, and 3-hydroxybutyrate. Clin. Chem. 24: 1724, 1978.

    PubMed  CAS  Google Scholar 

  14. Price C.P., Lloyd B., Alberti K.G.M.M. A kinetic spectrophotometric assay for rapid determination of acetoacetate in blood. Clin. Chem. 23: 1893, 1977.

    PubMed  CAS  Google Scholar 

  15. Kessler G., Rush R., Leon L., Delea A., Cupiola R. Advances in automated analysis. Technicon International Congress. 1970. Thurman Associates, 1979, Vol. 1. p. 67.

  16. Allain C.C., Poon L.S., Chan C.S., Richmond W., Fu P.C. Enzymatic determination of total serum cholesterol. Clin. Chem. 20: 470, 1974.

    PubMed  CAS  Google Scholar 

  17. Bucolo G., David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin. Chem. 19: 476, 1973.

    PubMed  CAS  Google Scholar 

  18. Schalch D., Parker M. A sensitive double antibody radioimmunoassay for growth hormone in plasma. Nature 203: 1141, 1974.

    Article  Google Scholar 

  19. Farmer R.W., Pierce C.E. Plasma Cortisol determination: radioimmunoassay and competitive binding compared. Clin. Chem. 20: 411, 1974.

    PubMed  CAS  Google Scholar 

  20. Faloona G.R., Unger R.H. In: Jaffe B.M., Behrmann H.R. (Eds.), Methods of hormone radioimmunoassay. Academic Press, New York, 1974, p. 317.

  21. Kuzuya H., Blix P.M., Horwitz D.L., Steiner D.F., Rubestein A.H. Determination of free and total insulin and C-peptide in insulin treated diabetics. Diabetes 26: 22, 1977.

    Article  PubMed  CAS  Google Scholar 

  22. Consoli A., Nurjahan N., Reilly J.J., Bier D.M., Gerich J.E. Mechanism of increased gluconeogenesis in noninsulin-dependent diabetes mellitus. Role of alterations in systemic, hepatic, and muscle lactate and alanine metabolism. J.Clin. Invest. 86: 2038, 1990.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Consoli A., Nurjahan N., Capani F., Gerich J.E. Predominant role of gluconeogenesis in increased hepatic glucose production in Type 2 diabetes. Diabetes 38: 550, 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Ferrannini E., Barrett E., Bevilacqua S., De Fronzo R.A. Effect of fatty acids on glucose production and utilization in men. J. Clin. Invest. 72: 1737, 1983.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Clore J.N., Glickman P.S., Helm ST., Nestler J.E., Blackard W.G. Evidence for dual control mechanism regulating hepatic glucose output in nondiabetic men. Diabetes 40: 1033, 1991.

    Article  PubMed  CAS  Google Scholar 

  26. Avogaro A., Gnudi L, Valerio A., Maran A., Miola M., Opportuno A., Tiengo A., Bier D.M. Effects of different plasma glucose concentrations on lipolytic and ketogenic responsiveness to epinephrine in type 1 (insulin-dependent) diabetic subjects. J. Clin. Endocrinol. Metab. 76: 845, 1993.

    PubMed  CAS  Google Scholar 

  27. Riou J.P., Beylot M., Laville M., De Parscau L., Delinger J., Sautot G., Sautot G., Mornex R. Antiketogenetic effect of glucose per se in vivo in man and in vitro in isolated rat liver cells. Metab. Clin. Exp. 35: 608, 1986.

    Article  PubMed  CAS  Google Scholar 

  28. Soling H.D., Zahlten R., Reinold W.V., Willms B. Utilization of ketone bodies by adipose tissue and its regulation on carbohydrate metabolism. Horm. Metab. Res. 2: 56, 1969.

    Article  Google Scholar 

  29. Sonnenberg G.E., Stauffacher W., Keller U. Failure of glucagon to stimulate ketone body production during acute insulin deficiency or insulin replacement in man. Diabetologia 23: 94, 1982.

    Article  PubMed  CAS  Google Scholar 

  30. Avogaro A., Cryer P.E., Bier D.M. Epinephrine’s ketogenic effect in humans is mediated principally by lipolysis. Am. J. Physiol. 263: E250, 1992.

    PubMed  CAS  Google Scholar 

  31. Keller U., Shulman G. Effect of glucagon on hepatic fatty acid oxidation and ketogenesis in conscious dogs. Am. J. Physiol. 237: E121, 1979.

    PubMed  CAS  Google Scholar 

  32. Matsuda M., Consoli A., Bressler P., De Fronzo R.A., Del Prato S. Sustained response of hepatic glucose production (HGP) to glucagon in type 2 diabetic subjects. Diabetologia 35(Suppl.1): A37, 1992.

    Google Scholar 

  33. Wildenhoff KE. Tubular reabsorpffon and urinary excretion of acetoacetate and 3-hydroxybutyrate in normal subjects and juvenile diabetics. Acta Med. Scand. 201: 63, 1977.

    Article  PubMed  CAS  Google Scholar 

  34. Sapir D.G., Owen O.E. Renal conservation of ketone bodies during starvation. Metab. Clin. Exp. 24: 23, 1975.

    Article  PubMed  CAS  Google Scholar 

  35. Abdelaziz H.M., Billet H.H. Follow-up testing for ketonuria. Is it necessary? Am. J. Clin. Pathol. 101: 346, 1994.

    CAS  Google Scholar 

  36. Avogaro A., Nosadini R., Doria A., Fioretto P., Velussi M., Vigorito C., Sacca L, Toffolo G., Cobelli C., Trevisan R., Duner E., Razzolini R., Rengo F., Crepaldi G. Myocardial metabolism in insulin deficient diabetic humans without coronary artery disease Am. J. Physiol. 258: E606, 1990.

    CAS  Google Scholar 

  37. Rändle P.J., Garland P.B., Hales C.N., Newsholm E.A. The glucose fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785, 1963.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avogaro, A., Crepaldi, C., Miola, M. et al. High blood ketone body concentration in Type 2 non-insulin dependent diabetic patients. J Endocrinol Invest 19, 99–105 (1996). https://doi.org/10.1007/BF03349844

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349844

Key-words

Navigation