Skip to main content

Advertisement

Log in

Water-insoluble camptothecin analogues as potential antiviral drugs

  • Review
  • Published:
Journal of Biomedical Science

Abstract

In addition to being causative agents of infectious diseases in animals and humans, DNA viruses have served as models for the study of eukaryotic molecular mechanisms including replication and transcription. Studies of DNA virus functions utilizing cell-free systems and virus-infected cells in culture, in the presence of the anticancer drug camptothecin (CPT), have demonstrated that CPT is a potent inhibitor of replication, transcription and packaging of double-stranded DNA-containing adenoviruses, papovaviruses and herpesviruses, and the single-stranded DNA-containing autonomous parvoviruses. CPT inhibits viral functions by inhibiting topoisomerase I, a host cell enzyme required for initiation and completion of the viral functions. These findings indicate that CPT analogues could be developed for use as potent drugs against DNA viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alford CA, Britt WJ. Cytomegalovirus. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol. 2. New York, Raven Press, 1981–2010;1990.

    Google Scholar 

  2. Avemann K, Knippers R, Koller T, Sogo JM. Camptothecin, a specific inhibitor of type I DNA topoisomerase, induces DNA breakage at replication forks. Mol Cell Biol 8:3026–3034;1988.

    PubMed  Google Scholar 

  3. Bapat AR, Han F, Liu Z, Zhou B, Cheng Y. Studies on topoisomerases I and II in herpes simplex virus type 2-infected cells. J Gen Virol 68:2231–2237;1987.

    PubMed  Google Scholar 

  4. Bauer WR, Ressner EC, Kates J, Patzke JV. A DNA nicking-enzyme encapsidated in vaccinia virus: Partial purification and properties. Proc Natl Acad Sci USA 74:1841–1845;1977.

    PubMed  Google Scholar 

  5. Berns KI, ed. The parvovirus. New York, Plenum Publishing Corp. 1983.

    Google Scholar 

  6. Berns KI. Parvoviridae and their replication. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol. 2. New York, Raven Press, 1743–1763;1990.

    Google Scholar 

  7. Bharti AK, Olson MOJ, Kufe DW, Rubin E. Identification of a nucleolin binding site in human topoisomerase I. J Biol Chem 271:1993–1997;1996.

    Article  PubMed  Google Scholar 

  8. Brook BR, Walker DL. Progressive multifocal leukoencephalopathy. Neurol Clin 2:299–313;1984.

    PubMed  Google Scholar 

  9. Burke TG. Chemistry of the camptothecins in the bloodstream: Drug stabilization and optimization of activity. Ann NY Acad Sci 803:29–31;1996.

    PubMed  Google Scholar 

  10. Cao Z, Harris N, Kozielski A, Vardeman D, Stehlin JS, Giovanella B. Alkyl esters of camptothecin and 9-nitrocamptothecin: Synthesis, in vitro pharmacokinetics, toxicity, and antitumor activity. J Med Chem 41:31–37;1998.

    Article  PubMed  Google Scholar 

  11. Champoux JJ. Topoisomerase I is preferentially associated with isolated replicating simian virus 40 molecules after treatment of infected cells with camptothecin. J Virol 62:3675–3683;1988.

    PubMed  Google Scholar 

  12. Civitico G, Wang YY, Luscombe C, Bishop N, Tachedjian G, Gust I, Locarnini S. Antiviral strategies in chronic hepatitis B virus infection: II. Inhibition of duck hepatitis virus in vitro using conventional antiviral agents and supercoiled-DNA active compounds. J Med Virol 31:90–97;1990.

    PubMed  Google Scholar 

  13. Duguet M. When helicase and topoisomerase meet. J Cell Sci 110:1345–1350; 1997.

    PubMed  Google Scholar 

  14. Eckhart W. Polyomaviridae and their replication. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol 2. New York, Raven Press, 1593–1607;1990.

    Google Scholar 

  15. Gu M-L, Rhode SL. Autonomous parvovirus DNA replication requires topoisomerase I and its activity is increased during infection. J Virol 65:1662–1665;1991.

    PubMed  Google Scholar 

  16. Haluska P, Saleem A, Edwards TK, Rubin EH. Interaction between the N-terminus of human topoisomerase I and SV40 large T antigen. Nucleic Acids Res 26:1841–1847;1998.

    Article  PubMed  Google Scholar 

  17. Hollinger FB. Hepatitis B virus. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol 2. New York, Raven Press, 2171–2236;1990.

    Google Scholar 

  18. Horwitz MS. Adenoviridae and their replication. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol 2. New York, Raven Press, 167–172;1990.

    Google Scholar 

  19. Ishimi Y, Nishizawa M, Ando T. Characterization of a camptothecin-resistant human DNA topoisomerase I in an in vitro system for simian virus 40 DNA replication. Eur J Biochem 202:835–839;1991.

    Article  PubMed  Google Scholar 

  20. Jaxel C, Kohn KW, Pommier Y. Topoisomerase I interaction with SV40 DNA in the presence and absence of camptothecin. Nucleic Acids Res 16:11157–11170;1988.

    PubMed  Google Scholar 

  21. Kawanishi M. Topoisomerase I and II activities are required for Epstein-Barr replication. J Gen Virol 74:2263–2268;1993.

    PubMed  Google Scholar 

  22. Kerr DA, Chang C-F, Gordon J, Bjornsti M-A, Khalili K. Inhibition of human neurotropic virus (JCV) DNA replication in glial cells by camptothecin. Virology 196:612–618;1993.

    Article  PubMed  Google Scholar 

  23. Kessel D, Bosmann HB, Lohr K. Camptothecin effects on DNA synthesis of murine leukemia cells. Biochim Biophys Acta 269:210–216;1972.

    PubMed  Google Scholar 

  24. Kieff E, Liebowitz D. Oncogenesis by Herpesviruses. In: Weinberg RA, ed. Oncogenes and the Molecular Origins of Cancer. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, 259–280;1989.

    Google Scholar 

  25. Kieff E, Liebowitz D. Epstein-Barr virus and its replication. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol 2. New York, Raven Press, 1889–1920;1990.

    Google Scholar 

  26. Krupp LB, Lipton RB, Swerdlow ML, Leeds NE, Llena J. Progressive multifocal leukoencephalopathy: Clinical and radiographic features. Ann Neurol 17:344–349;1985.

    Article  PubMed  Google Scholar 

  27. Levac P, Moss T. Inactivation of topoisomerase I and II may lead to recombination or to aberrant replication termination on both SV40 and yeast 2 micron DNA. Chromosoma 105:250–260;1996.

    Article  PubMed  Google Scholar 

  28. Liu LF, Wang JC. Biochemistry of DNA topoisomerases and their poisons. In: Potmesil M, Kohn KW, eds. DNA Topoisomerases in Cancer. New York, Oxford University Press, 13–22;1991.

    Google Scholar 

  29. Liu LF, Duann P, Lin C-T, D'Arpa P, Wu J. Mechanism of action of camptothecin. Ann NY Acad Sci 803:44–49;1996.

    PubMed  Google Scholar 

  30. Miller G. Epstein-Barr virus: Biology, pathogenesis, and medical aspects. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol. 2. New York, Raven Press, 1921–1958;1990.

    Google Scholar 

  31. Moulton S, Pantazis P, Epstein JS, Sadaie MR. 9-Nitrocamptothecin inhibits tumor necrosis factor-mediated activation of the human immunodeficiency virus type 1 (HIV-1) and enhances apoptosis in a latently infected T-cell clone. AIDS Res Hum Retrov 14:39–49;1998.

    Google Scholar 

  32. Muggia FM. Twenty years later: Review of clinical trials with camptothecin sodium (NSC-100880). In: Potmesil MH, Pinedo H, eds. Camptothecins: New Anticancer Agents. Boca Raton, CRC Press, 43–50;1995.

    Google Scholar 

  33. Muller MT, Bolles CS, Parris DS. Association of type I DNA topoisomerase with herpes simplex virus. J Gen Virol 66:1565–1574;1985.

    PubMed  Google Scholar 

  34. Nagata K, Guggenheimer RA, Hurwitz J. Adenovirus DNA replication in vitro: Synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci USA 80:4266–4270;1983.

    PubMed  Google Scholar 

  35. Natelson EA, Giovanella BC, Verschraegen CF, Felix KM, deIpolyi PD, Harris N, Stehlin JS. Phase I clinical and pharmacological studies of 20-(S)-camptothecin and 20-(S)-9-nitrocamptothecin as anticancer agents. Ann NY Acad Sci 803:224–230;1996.

    PubMed  Google Scholar 

  36. Nesper J, Smith RW, Kautz AP, Sock E, Wegner M, Grummt F, Nasheuer HP. A cell-free replication system for human polyomavirus JC DNA. J Virol 71:7421–7428;1997.

    PubMed  Google Scholar 

  37. Padgett BJ, Walker DL, Zu Rhein GM, Eckroade RJ, Dessel BH. Cultivation of papova-like virus from human brain with progressive multifocal leukoencephalopathy. Lancet i:1257–1260;1971.

    Article  Google Scholar 

  38. Pallesen G, Hamilton-Dutoid SJ, Zhou X. The association of Epstein-Barr virus (EBV) with T cell lymphoproliferations and Hodgkin's disease: Two new developments in the EBV field. Adv Cancer Res 62:79–239;1993.

    Google Scholar 

  39. Pantazis P. The water-insoluble camptothecin analogues: Promising drugs for the effective treatment of haematological malignancies. Leuk Res 19:775–788;1995.

    Article  PubMed  Google Scholar 

  40. Pantazis P. Water-insoluble camptothecin congeners: Cytotoxicity, development of resistance, and combination treatments. Clin Cancer Res 1:1235–1244;1995.

    PubMed  Google Scholar 

  41. Pantazis P. Camptothecin: A promising antiretroviral drug. J Biomed Sci 3:14–19;1996.

    Article  PubMed  Google Scholar 

  42. Pantazis P, Early JA, Mendoza JT, DeJesus AR, Giovanella BC. Cytotoxic efficacy of 9-nitrocamptothecin in the treatment of human malignant melanoma cells in vitro. Cancer Res 54:771–776;1994.

    PubMed  Google Scholar 

  43. Pantazis P, Early JA, Kozielski AJ, Mendoza JT, Hinz HR, Giovanella BC. Regression of human breast carcinoma tumors in immunodeficient mice treated with 9-nitro-camptothecin: Differential response of nontumorigenic and tumorigenic human breast cells in vitro. Cancer Res 53:1577–1582;1993.

    PubMed  Google Scholar 

  44. Pantazis P, Kozielski AJ, Mendoza JT, Early JA, Hinz HR, Giovanella BC. Camptothecin derivatives induce regression of human ovarian carcinomas grown in nude mice and distinguish between non-tumorigenic and tumorigenic cells in vitro. Intl J Cancer 53:863–871;1993.

    Google Scholar 

  45. Potmesil M, Pinedo H, eds. Camptothecins: New Anticancer Agents. Boca Raton, CRC Press, 1995.

    Google Scholar 

  46. Richardson EP. Progressive multifocal leukoencephalopathy 30 years later. N Engl J Med 318:315–316;1988.

    PubMed  Google Scholar 

  47. Roizman B, Sears AE. Herpes simplex viruses and their replication. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol 2. New York, Raven Press, 1795–1841;1990.

    Google Scholar 

  48. Rubin E, Stone R, Xu G, Supko J, Kinchla N, Lynch T, Hurwitz S, Rodriguez D, Shapiro C, Toppmeyer D, Grossbard M, Vosburg E, Huberman M, Schnipper L, Shulman L, Kufe DW. Trials of 9-amino-20(S)-camptothecin in Boston. Ann NY Acad Sci 803:247–255;1996.

    PubMed  Google Scholar 

  49. Schaack J, Schedl P, Shenk T. Topoisomerase I and II cleavage of adenovirus DNA in vivo. Both topoisomerase activities appear to be required for adenovirus DNA replication. J Virol 64:78–85;1990.

    PubMed  Google Scholar 

  50. Schaak J, Schedl P, Shenk T. Transcription of adenovirus and HeLa cell genes in the presence of drugs that inhibit topoisomerase I and II function. Nucleic Acids Res 18:1499–1508;1990.

    PubMed  Google Scholar 

  51. Shaffer R, Traktman P. Vaccinia virus encapsidates a novel to poisomerase with the properties of a eucaryotic type I enzyme. J Biol Chem 262:9309–9315;1987.

    PubMed  Google Scholar 

  52. Shah KW. Polyomaviruses. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol 2. New York, Raven Press, 1609–1623;1990.

    Google Scholar 

  53. Shin CG, Snapka RM. Exposure of camptothecin breaks leading and lagging strand simian virus 40 DNA replication forks. Biochem Biophys Res Commun 168:135–140;1990.

    Article  PubMed  Google Scholar 

  54. Shuman S, Golder M, Moss B. Characterization of vaccinia virus DNA topoisomerase I expressed inEscherichia coli. J Biol Chem 263:16401–16407;1988.

    PubMed  Google Scholar 

  55. Sidwell RW, Arnett G, Schabel FM. In vitro effect of biologically active compounds on human cytomegalovirus. Chemotherapy 17:259–282;1972.

    PubMed  Google Scholar 

  56. Simmons DT, Melendy T, Usher D, Stillman B. Simian virus 40 large T antigen binds to topoisomerase I. Virology 222:365–374;1996.

    Article  PubMed  Google Scholar 

  57. Snapka RM. Topoisomerase inhibitors can selectively interfere with different stages of simian virus DNA replication. Molec Cell Biol 6:4221–4227;1986.

    PubMed  Google Scholar 

  58. Stinski MF. Cytomegalovirus and its replication. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol 2. New York, Raven Press, 1959–1980;1990.

    Google Scholar 

  59. Tsao Y-P, Russo A, Nyamuswa G, Silber R, Liu LF. Interaction between replication forks and topoisomerase I-DNA cleavable complexes: Studies in a cell-free SV40 DNA replication system. Cancer Res 53:5908–5914;1993.

    PubMed  Google Scholar 

  60. Wall ME, Wani MC. Camptothecin: Discovery to clinic. Ann NY Acad Sci 803:1–12;1996.

    Google Scholar 

  61. Wang HP, Rogler CE. Topoisomerase I-mediated integration hepadnavirus DNA in vitro Virol 65:2381–2392;1991.

    Google Scholar 

  62. Whitley RJ. Herpes simplex viruses. In: Fields BN, Knipe DM, Chanock RM, Hirsch MS, Melnick JL, Monath TP, Roizman B, eds. Virology, vol. 2. New York, Raven Press, 1843–1877;1990.

    Google Scholar 

  63. Wobbe CR, Dean F, Weissbach L, Hurwitz J. In vitro replication of duplex circular DNA containing the simian virus 40 DNA origin site. Proc Natl Acad Sci USA 82:5710–5714;1985.

    PubMed  Google Scholar 

  64. Wong M-L, Hsu MT. Involvement of topoisomerases in replication, transcription, and packaging of the linear adenovirus genome. J Virol 64:691–699;1990.

    PubMed  Google Scholar 

  65. Yamada Y, Yamamoto N, Maeno K, Nishiyama Y. Role of DNA topoisomerase I in the replication of herpes simplex virus type 2. Arch Virol 110:121–127;1990.

    Article  PubMed  Google Scholar 

  66. Yen TSB. Hepadnaviral X-protein: Review of recent progress. J Biomed Sci 3:20–30;1996.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantazis, P., Han, Z., Chatterjee, D. et al. Water-insoluble camptothecin analogues as potential antiviral drugs. J Biomed Sci 6, 1–7 (1999). https://doi.org/10.1007/BF02256417

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256417

Key words

Navigation