Skip to main content

Performance Comparison of Machine Learning Techniques in Identifying Dementia from Open Access Clinical Datasets

  • Conference paper
  • First Online:
Advances on Smart and Soft Computing

Abstract

Identified mainly by memory loss and social inability, dementia may result from several different diseases. In the world with ever growing elderly population, the problem of dementia is rising. Despite being one of the prevalent mental health conditions in the community, it is not timely identified, reported and even understood completely. With the massive improvement in the computational power, researchers have developed machine learning (ML) techniques to diagnose and detect neurodegenerative diseases. This current work reports a comparative study of performance of several ML techniques, including support vector machine, logistic regression, artificial neural network, Naive Bayes, decision tree, random forest and K-nearest neighbor, when they are employed in identifying dementia from clinical datasets. It has been found that support vector machine and random forest perform better on datasets coming from open access repositories such as open access series of imaging studies, Alzheimer’s disease neuroimaging initiative and dementia bank datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO, ADI.: Dementia: A Public Health Priority. WHO, Geneva (2012)

    Google Scholar 

  2. Mahmud, M., Kaiser, M.S., Hussain, A., Vassanelli, S.: Applications of deep learning and reinforcement learning to biological data. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  3. Ali, H.M., Kaiser, M.S., Mahmud, M.: Application of convolutional neural network in segmenting brain regions from MRI data. In: Liang, P., Goel, V., Shan, C. (eds.) Brain Informatics, pp. 136–146. Springer, Cham (2019)

    Chapter  Google Scholar 

  4. Noor, M.B.T., et al.: Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In: Liang, P., Goel, V., Shan, C. (eds.) Brain Informatics, pp. 115–125. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  5. Yahaya, S.W., Lotfi, A., Mahmud, M.: A consensus novelty detection ensemble approach for anomaly detection in activities of daily living. Appl. Soft Comput. 83, 105613 (2019)

    Article  Google Scholar 

  6. Orojo, O., Tepper, J., McGinnity, T.M., Mahmud, M.: A multi-recurrent network for crude oil price prediction. In: Proc. IEEE SSCI, pp. 2953–2958 (2019)

    Google Scholar 

  7. Rabby, G., et al.: Teket: a tree-based unsupervised keyphrase extraction technique. Cogn. Comput. (2020), https://doi.org/10.1007/s12559-019-09706-3, [epub ahead of print].

  8. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484 (2016)

    Article  Google Scholar 

  9. Akhund, et al.: Adeptness: Alzheimer’s disease patient management system using pervasive sensors—early prototype and preliminary results. In: Wang, S. (ed.) Brain Informatics, pp. 413–422. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  10. Association, A.: 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dementia 12(4), 459–509 (2016)

    Article  Google Scholar 

  11. Fontana, R., et al.: Early hippocampal hyperexcitability in ps2a pp mice: role of mutant ps2 and app. Neurobiol. Aging 50, 64–76 (2017)

    Article  Google Scholar 

  12. Leparulo, A., et al.: Dampened slow oscillation connectivity anticipates amyloid deposition in the ps2a pp mouse model of Alzheimer’s disease. Cells 9(1), 54 (2020)

    Article  Google Scholar 

  13. Singh, S.K., et al.: Overview of Alzheimer’s disease and some therapeutic approaches targeting aβ by using several synthetic and herbal compounds. Oxidative Med. Cell. Longev. 2016 (2016)

    Google Scholar 

  14. Roman, G.C., Erkinjuntti, T., Wallin, A., Pantoni, L., Chui, H.C.: Subcortical ischaemic vascular dementia. Lancet Neurol. 1(7), 426–436 (2002)

    Article  Google Scholar 

  15. Spillantini, M., et al.: α-synuclein in lewy bodies. Nature 388(6645), 839–840 (1997)

    Article  Google Scholar 

  16. Tsoulos, I., et al.: Application of machine learning in a Parkinson’s disease digital biomarker dataset using neural network construction (nnc) methodology discriminates patient motor status. Front. ICT 6, 10 (2019)

    Article  Google Scholar 

  17. Williams, J.A., et al.: Machine learning techniques for diagnostic differentiation of mild cognitive impairment and dementia. In: 27 AAAI Conference AI, pp. 71–76 (2013)

    Google Scholar 

  18. Orimaye, S.O., et al.: Learning predictive linguistic features for Alzheimer’s disease and related dementias using verbal utterances. In: Proceedings of Workshop Computing Linguistic Clinical Psychology: Linguistic Signal Clinical Reality, pp. 78–87 (2014)

    Google Scholar 

  19. Zhang, Y.D., Wang, S., Dong, Z.: Classification of AD based on structural MRI by kernel SVM decision tree. Prog. Electromagn. Res. 144, 171–184 (2014)

    Article  Google Scholar 

  20. Aruna, S., Chitra, S.: Machine learning approach for identifying dementia from MRI images. WASET Int. J. Comput. Inf. Eng. 9(3), 881–888 (2016)

    Google Scholar 

  21. Mathotaarachchi, S., et al.: Identifying incipient dementia individuals using machine learning and amyloid imaging. Neurobiol. Aging 59, 80–90 (2017)

    Article  Google Scholar 

  22. Tanaka, H., et al.: Detecting dementia through interactive computer avatars. IEEE J. Translation. Eng. Health Med. 5, 1–11 (2017)

    Article  Google Scholar 

  23. Kim, J., Lee, B.: Automated discrimination of dementia spectrum disorders using extreme learning machine and structural t1 MRI features. In: Proceedings of EMBC, pp. 1990–1993 (2017)

    Google Scholar 

  24. Ullah, H.T., et al.: Alzheimer’s disease and dementia detection from 3d brain mri data using deep convolutional neural networks. In: Proceedings of I2CT, pp. 1–3 (2018)

    Google Scholar 

  25. Bansal, D., et al.: Comparative analysis of various machine learning algorithms for detecting dementia. Proc. Comput. Sci. 132, 1497–1502 (2018)

    Article  Google Scholar 

  26. Battineni, G., et al.: Machine learning in medicine: performance calculation of dementia prediction by SVM. Inform. Med. Unlocked 16, 100200 (2019)

    Article  Google Scholar 

  27. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  28. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media (2009)

    Google Scholar 

  29. Montan˜o, J., Palmer, A.: Artificial neural networks, opening the black box. Metodolog´ıa de las Ciencias del Comportamiento 4(1), 77–93 (2002)

    Google Scholar 

  30. Farhan, S., Fahiem, M.A., Tauseef, H.: An ensemble-of-classifiers based approach for early diagnosis of Alzheimer’s disease: classification using structural features of brain images. Comput. Math. Methods Med. 2014 (2014)

    Google Scholar 

  31. Kamathe, R.S., Joshi, K.R.: A robust optimized feature set based automatic classification of Alzheimer’s disease using k-nn and adaboost. ICTACT J. Image Video Process. 8(3) (2018)

    Google Scholar 

  32. Rudzicz, F., et al.: Automatically identifying trouble-indicating speech behaviors in Alzheimer’s disease. In: Proceedings of ACM SIGACCESS, pp. 241–242 (2014)

    Google Scholar 

  33. Lebedev, A., et al.: RF ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness. NeuroImage: Clin. 6, 115–125 (2014)

    Google Scholar 

  34. Long, X., et al.: Prediction and classification of Alzheimer disease based on quantification of MRI deformation. PloS One 12(3) (2017)

    Google Scholar 

  35. Lama, R.J., et al.: Diagnosis of Alzheimer’s disease based on structural MRI images using a regularized extreme learning machine and PCA features. J. Healthc. Eng. 2017 (2017)

    Google Scholar 

  36. Asif-Ur-Rahman, M., et al.: Toward a heterogeneous mist, fog, and cloud-based framework for the internet of healthcare things. IEEE Internet Things J. 6(3), 4049–4062 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mufti Mahmud or M Shamim Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miah, Y., Prima, C.N.E., Seema, S.J., Mahmud, M., Shamim Kaiser, M. (2021). Performance Comparison of Machine Learning Techniques in Identifying Dementia from Open Access Clinical Datasets. In: Saeed, F., Al-Hadhrami, T., Mohammed, F., Mohammed, E. (eds) Advances on Smart and Soft Computing. Advances in Intelligent Systems and Computing, vol 1188. Springer, Singapore. https://doi.org/10.1007/978-981-15-6048-4_8

Download citation

Publish with us

Policies and ethics