Skip to main content

Abstract

One of the paradoxes of life on this planet is that the molecule that sustains aerobic life, oxygen, is not only fundamentally essential for energy metabolism and respiration, but it has been implicated in many diseases and degenerative conditions (Marx 1985). A common element in such diverse human disorders as aging, arthritis, cancer, ALS (Lou Gehrig’s disease) and many others. is the involvement of partially reduced forms of oxygen. Through many of the subsequent chapters in this book, the involvement of oxygen in disorders and stress-induced dysfunctions in cultivated plants will be discussed. Our realization of the significance of oxygen in these stress responses is recent due in no small part to the difficulty in detecting and tracing oxygen molecules, to the multitude of forms and intermediates that oxygen can assume, and to the extreme reactivity and rate of the chemical reactions involved. As a consequence we often in our experiments can only look for the “footprints” of oxygen reactions in our attempts to determine cause-effect relationships in stress responses. The following chapter describes our current understanding of the general principles of oxygen free radicals, which is more appropriately termed activated oxygen. The involvement of activated oxygen in each of the environmental stresses is discussed in the relevant chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afanas’ev, I.B. 1985. Superoxide Ion: Chemistry and Biological Implications, Vol. 1. p. 279. CRC Press, Boca Raton.

    Google Scholar 

  • Alscher, R.G. 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant. 77: 457–64.

    Article  CAS  Google Scholar 

  • Aono, M., Kubo, A., Saji, H., Natori, T., Tanaka, K. and Kondo, N. 1991. Resistance to active oxygen toxicity of transgenic Nicotiana tabacum that expresses the gene for glutathione reductase from Escherichia coli. Plant Cell Physiol. 32: 691–7.

    CAS  Google Scholar 

  • Asada, K. 1992. Ascorbate peroxidase–hydrogen peroxide-scavenging enzyme in plants. Physiol. Plant. 85: 235–41.

    Article  CAS  Google Scholar 

  • Bannister, J.V., Bannister, W.H. and Rotils, G. 1987. Aspects of the structure, function and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22: 110–80.

    Article  Google Scholar 

  • Barber, J. and Andersson, B. 1992. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem. Sci. 17: 61–6.

    Article  PubMed  CAS  Google Scholar 

  • Beaumont, F., Jouvc, H.-M., Cagnan, J., Gillard, J. and Pelment, J. 1990. Purification and properties of a catalase from potato tubers (Solanum tuberosum). Plant Sci. 72: 19–26.

    Article  CAS  Google Scholar 

  • Beyer, W., Imlay, J. and Fridovich, I. 1991. Superoxide dismutases. Prog. Nucl. Acid Res. 40: 221–53.

    Article  CAS  Google Scholar 

  • Bielawski, W. and Joy, K.W. 1986. Reduced and oxidized glutathione and glutathionereductase activity in tissues of Pisum sativum. Planta 169: 267–72.

    Article  CAS  Google Scholar 

  • Bowler, C., Slooten, L., Vandenbranden, S., De Rycke, R., Botterman, J., Sybesma, C., Van Montagu, M. and Inzé, D. 1991. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBD. J. 10: 1723–32.

    CAS  Google Scholar 

  • Bowler, C. and Van Montague, M. and Inzé, D. 1992. Superoxide dismutase and stress tolerance. Ann Rev. Plant Physiol. Plant Mol. Biol. 43: 83–116.

    Article  CAS  Google Scholar 

  • Bradley, D.E. and Minn, D.B. 1992. Singlet oxygen oxidation of foods. Crit. Rev. Food Sci. Nutr. 31: 211–36.

    Article  PubMed  CAS  Google Scholar 

  • Bridger, G., Yand, W., Falk, D.E., McKersie, B.D. 1994. Cold acclimation increases tolerance of the oxygen free radical generating herbicides paraquat and acifluorfen. J. Plant Physiol. (in press).

    Google Scholar 

  • Brot, N. and Weissbach, H. 1982. The biochemistry of methionine sulfoxide residues in proteins. Trends Biochem. Sci. 7: 137–9.

    Article  CAS  Google Scholar 

  • Burton, G.W. and Ingold, K.U. 1984. f3-carotene: an unusual type of lipid antioxidant. Science 224: 569–73.

    Google Scholar 

  • Cakmak, I. and Marschner, H. 1988. Enhanced superoxide radical production in roots of zinc-deficient plants. J. Expt. Bot. 39: 1449–60.

    Google Scholar 

  • Calderbank, A. 1968. The bipyridylium herbicides. Adv. Pest Control Res. 8: 127–35.

    PubMed  CAS  Google Scholar 

  • Chen, G.X. and Asada, K. 1989. Ascorbate peroxidase in tea leaves - occurrence of 2 isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol. 30:987–98.

    Google Scholar 

  • Chichiricco, G., Ceru, M.P., D’Alessandro, A., Oratore, A. and Avigliano, L. 1989. Immunohistochemical localisation of ascorbate oxidase in Cucurbita pepo medullosa. Plant Sci. 64: 61–6.

    Article  CAS  Google Scholar 

  • Creisson, G., Edwards, E.A., Anard, C. Wellburn A. and Mullineaux, P. 1992. Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J. 2: 129–31.

    Google Scholar 

  • Criqui, M.C., Jamet, E., Parmentier, Y., Marbach, J., Darr, A. and Fleck, J. 1992. Isolation and characterization of a plant cDNA showing homology to animal glutathione peroxidases. Plant Mol. Biol. 18: 623–7.

    Article  PubMed  CAS  Google Scholar 

  • Davies, K.J.A. 1987. Protein damage and degradation by oxygen radicals. I General aspects. J. Biol. Chem. 162: 9895–901.

    Google Scholar 

  • Demmig-Adams, B. and Adams, W.W. 1993. The Xanthophyll Cycle. pp. 59–90. In: Eds. R.G. Alscher and J.L. Hess. Antioxidants in Higher Plants. CRC Press, Boca Raton.

    Google Scholar 

  • Diplock, A.T., Machlin, L.J., Packer, L. and Pryor, W.A. 1989. Vitamin E: Biochemistry and Health Implications. Ann. N.Y. Acad. Sci., Vol. 570. New York Academy of Sciences, New York, NY. 555 p.

    Google Scholar 

  • Dodge, J.D. and Lawes, G.B. 1974. Some effects of the herbicides diquat and morfamquat on the fine structure of leaf cells. Weed Res. 14: 45–9.

    Article  Google Scholar 

  • Doke, N. and Ohashi, Y. 1988. Involvement of an O2-generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol. Mol. Plant. Pathol. 32: 163–75.

    Article  CAS  Google Scholar 

  • Doke, N., Miura, Y., Chai, H.-B. and Kawakita, K. 1991. Involvement of Active Oxygen in induction of plant defense response against infection and injury. pp. 84–96. In: Eds. E.J. Pell and K.L. Steffen. Active Oxygen/Oxidative Stress and Plant Metabolism. American Soc. Plant Physiol., Rockville, M.D.

    Google Scholar 

  • Drotar, A., Phelps, P. and Fall, R. 1985. Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci. 42: 35–40.

    Article  CAS  Google Scholar 

  • Edwards, E.A., Rawsthorne, S. and Mullineaux, P.M. 1990. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180: 278–84.

    Article  CAS  Google Scholar 

  • Elstner, E.F. 1982. Oxygen activation and oxygen toxicity. Ann. Rev. Plant Physiol. 33: 73–96.

    Article  CAS  Google Scholar 

  • Elstner, E.F. 1991. Mechanisms of oxygen activation in different compartments of plant cells. pp. 13–25. In: Eds. E.J. Pell and K.L. Steffen. Active Oxygen/Oxidative Stress and Plant Metabolism. American Soc. Plant Physiol., Rockville, M.D.

    Google Scholar 

  • Farr, S.B. and Kogoma, T. 1991. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55: 561–85.

    PubMed  CAS  Google Scholar 

  • Farrington, J.A., Ebert, H., Land, E.J. and Fletcher, K. 1973. Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for mode of action of bipyridyl herbicides. Biochim. Biophys. Acta 314: 372–81.

    CAS  Google Scholar 

  • Feierabend, J., Schaan, C. and Hertwig, B. 1992. Photoinactivation of catalase occurs under both high-and low-temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol. 100: 1554–61.

    Article  PubMed  CAS  Google Scholar 

  • Fenton, H.J.H. 1894. Oxidation of tartaric acid in the presence of iron. J. Chem. Soc. 65: 899.

    Article  CAS  Google Scholar 

  • Fenton, H.J.H. 1899. Oxidation of certain organic acids in the presence of ferrous salts. Proc. Chem. Soc. 25: 224.

    Google Scholar 

  • Ferguson, D.L. and Burke, J.J. 1992. A new method of measuring protein-methionine-Soxide reductase activity. Plant Physiol. 100: 529–32.

    Article  PubMed  CAS  Google Scholar 

  • Fita, I. and Rossmann, M.G. 1985. The active center of catalase. J. Mol. Biol. 185: 21–37.

    Article  PubMed  CAS  Google Scholar 

  • Foyer, C.H. and Halliwell, B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133: 21–5.

    Article  Google Scholar 

  • Foyer, C. 1993. Ascorbic acid. pp. 31–58. In: Eds. R.G. Alscher and J.L. Hess. Antioxidants in Higher Plants. CRC Press, Boca Raton.

    Google Scholar 

  • Frankel, E.N. 1985. Chemistry of free radical and singlet oxidation of lipids. Prog. Lipid Res. 23: 197–221.

    Article  Google Scholar 

  • Fridovich, I. 1970. Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J. Biol Chem 245: 4053–7.

    PubMed  CAS  Google Scholar 

  • Fryer, M.J. 1992. The antioxidant effects of thylakoid vitamin E (a-tocopherol). Plant Cell Environ. 15:381–92.

    Google Scholar 

  • Fuerst, E.P., Nakatani, H.Y., Dodge, A.D., Penner, D. and Arntzen, C.J. 1985. Paraquat resistance in Conyza. Plant Physiol. 77: 984–9.

    Article  CAS  Google Scholar 

  • Fuerst, E.P. and Vaughn, K.C. 1990. Mechanisms of paraquat resistance. Weed Technol. 4: 150–6.

    Google Scholar 

  • Gardner, P.R. and Fridovich, I. 1991. Superoxide sensitivity of Escherichia coli 6phosphogluconate dehydratase. J. Biol. Chem. 266: 1478–83.

    PubMed  CAS  Google Scholar 

  • Gebicki, J.M. and Bielski, B.H.J. 1981. Comparison of the capacities of the perhydroxyl and superoxide radicals to initiate chain oxidation of linoleic acid. J. Am. Chem. Soc. 103: 7020–2.

    Article  CAS  Google Scholar 

  • Gross, G.G., Janse, C. and Elstner, E.F. 1977. Involvement of malate, monophenols and superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish. (Armoracia lapathifolia Gilib). Planta 136: 271–6.

    CAS  Google Scholar 

  • Gross, G.G. 1980. The biochemistry of lignification. Adv. Bot. Res. 8: 25–63.

    Article  CAS  Google Scholar 

  • Gruber, M.Y., Glick, B.R. and Thompson, J.E. 1990. Cloned manganese superoxide dismutase reduces oxidative stress in Escherichia coli and Anacystis nidulans. Proc. Nat. Acad Sci. (USA) 87: 2603–12.

    Article  Google Scholar 

  • Gullner, G., Komives, T. and Kiroly, L. 1991. Enhanced inducibility of antioxidant systems in a Nicotiana tabacum L. biotype results in acifluorfen resistance. Naturforsch. 46c: 875–81.

    CAS  Google Scholar 

  • Haber, F. and Weiss, J. 1934. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. Royal Soc. A. 147: 332.

    Article  CAS  Google Scholar 

  • Harper, D.B. and Harvey, B.M.R. 1978. Mechanism of paraquat tolerance in perennial ryegrass. II. Role of superoxide dismutase, catalase and peroxidase. Plant Cell Environ. 1: 211–5.

    Article  Google Scholar 

  • Härtel, H., Haseloff, R.F., Ebert, B. and Rank, B. 1992. Free radical formation in chloroplasts. Methyl viologen action. J. Photochem. Photobiol. B: Biol. 12:375–87. Hausladen, A. and Alscher, R.G. 1993. Glutathione. pp. 1–30. In: Eds. R.G. Alscher and J.L. Hess. Antioxidants in Higher Plants. CRC Press, Boca Raton.

    Google Scholar 

  • Hell, R. and Bergmann, L. 1990. y-glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180: 603–12.

    Google Scholar 

  • Hell, R. and Bergmann, L. 1988. Glutathione synthetase in tobacco suspension cultures: catalytic properties and localization. Physiol. Plant 72: 70–6.

    Article  CAS  Google Scholar 

  • Hertwig, B., Steb, P. and Feierabend, J. 1992. Light dependence of catalase synthesis and degradation in leaves and the influence of interferring stress conditions. Plant Physiol. 100: 1547–53.

    Article  PubMed  CAS  Google Scholar 

  • Hess, J.L. 1993. Vitamin E, a-tocopherol. pp. 111–34. In: Eds. R.G. Alscher and J.L. Hess. Antioxidants in Higher Plants. CRC Press. Boca Raton.

    Google Scholar 

  • Hohn, D.C. and Lehere, R.L. 1975. NADPH oxidase deficiency in X-linked chronic granulomatous disease. J. Clin Invest. 53: 707–13.

    Article  Google Scholar 

  • Imlay, J.A. and Linn, S. 1986. DNA damage and oxygen radical toxicity. Science 240: 1302–9.

    Article  Google Scholar 

  • Jacobs, J.M., Jacobs, N.J., Sherman, T.D. and Duke, S.O. 1991. Effect of diphenyl ether herbicides in oxidation of photoporphyrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. Plant Physiol. 97: 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, W.O., Kollman, G.E., Swithenbank, C. and Yih, R.Y. 1978. RH-6201 (Blazer): A new broad spectrum herbicide for postemergence use in soybeans. J. Agric. Food Chem. 26: 285–6.

    Article  CAS  Google Scholar 

  • Keiner, M.J. and Bagnell, R. 1990. Glutathione-dependent enzymes alone can produce paraquat resistance. Free Rad. Biol. Med. 9: 149–53.

    Google Scholar 

  • Kendall, E.J. and McKersie, B.D. 1989. Free radical and freezing injury to cell membranes of winter wheat. Physiol. Plant 76: 86–94.

    Article  CAS  Google Scholar 

  • Kirkman, H.N., Galiano, S. and Gaetani, G.F. 1987. The function of catalase-bound NADPH. J. Biol. Chem. 262: 660–6.

    PubMed  CAS  Google Scholar 

  • Klapheck, S. 1988. Homoglutathione: isolation, quantification and occurrence in legumes. Physiol. Plant 74: 727–32.

    Article  CAS  Google Scholar 

  • Kouiji, H., Masuda, T. and Matsunaka, S. 1989. Action mechanism of diphenyl ether herbicides: stimulation of 5-aminolevulinic acid synthesizing system activity. Pestic. Biochem. Physiol. 33: 230–8.

    Article  Google Scholar 

  • Kuroda, H., Sagisaka, S., Asada, M. and Chiba, K. 1991. Peroxide-scavenging systems during cold acclimation of apple callus in culture. Plant Cell Physiol. 32: 635–41.

    CAS  Google Scholar 

  • Lehnen, L.P. Jr., Sherman, T.D., Becerril, J.M. and Duke, S.O. 1990. Tissue and cellular localization of acifluorfen-induced porphyrins in cucumber cotyledons. Pestic. Biochem. Physiol. 37: 239–48.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y. 1992. Plant Membranes: A Biophysical Approach to Structure, Development and Senescence. p. 266. Kluwer Academic Publishers Dordrecht, The Netherlands.

    Google Scholar 

  • Lindqvist, Y., Branden, C.L., Mathews, F.S., and Lederer, F. 1991. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding. J. Biol. Chem. 266: 3198–207.

    PubMed  CAS  Google Scholar 

  • Loewus, F.A. 1988. Ascorbic acid and its metabolic products. pp. 85–107. In: Ed. J. Preiss. The Biochemistry of Plants, Vol. 14. Academic Press, New York.

    Google Scholar 

  • Loschen, G., Azzi, A. and FloheBp, L. 1973. Mitochondrial H2O2 formation: Relationship with energy conversion. FEBS Lett. 33: 84–8.

    Article  PubMed  CAS  Google Scholar 

  • Loschen, G., Azzi, A., Richter, C. and FloheBp, L. 1974. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42: 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Malan, C., Greyling, M.M. and Gressel, J. 1990. Correlation between Cu/Zn superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci. 69: 157–66.

    Article  CAS  Google Scholar 

  • Marx, J.L. 1985. Oxygen free radicals linked to many diseases. Science 235:529–31. Mathis, P. and Kleo, J. 1973. The triplet state of B-carotene and of analog polyenes of different length. Photochem. Photobiol. 18: 343–6.

    Google Scholar 

  • Matringe, M., Camadro, J.-M., Labbe, P. and Scalia, R. 1989. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem. J. 260: 231–5.

    PubMed  CAS  Google Scholar 

  • Matsumoto, H. and Duke, S.O. 1990. Acifluorfen-methyl effects on porphyrin synthesis in Lemna pousicostata. Hegelm. 6746. J. Agr. Food Chem. 38: 2066–71.

    Article  CAS  Google Scholar 

  • Mayasich, J.M., Nandihalli, U.B., Liebl, R.A. and Rebeiz, C.A. 1990. The primary mode of action of acifluorfen-Na in intact seedligns is not via tetrapyrrole accumulation during the first dark period following treatment. Pestic. Biochem. Physiol. 36: 259–68.

    Article  CAS  Google Scholar 

  • McCord, J.M. and Fridovich, I. 1969. Superoxide dismutase, an enzymatic function for erythrocuprein. J. Biol. Chem. 244: 6049–55.

    PubMed  CAS  Google Scholar 

  • McKersie, B.D., Hoekstra, F. and Krieg, L. 1990. Differences in the susceptibility of plant membrane lipids to peroxidation. Biochim. Biophys. Acta 1030: 119–26.

    Article  PubMed  CAS  Google Scholar 

  • McKersie, B.D., Chen, Y., De Beus, M., Bowley, S.R., Bowler, C., Inzé, D., D’Halluin

    Google Scholar 

  • K. and Boterman, J. 1993. Superoxide dismutase enhances toleance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 103: 1155–63.

    Article  Google Scholar 

  • Mees, G.C. 1960. Experiments on the herbicidal action of 1,1’-ethylene-2,2’dipyridylium dibromide. Ann. Appl. Biol. 48: 601–12.

    Article  CAS  Google Scholar 

  • Meister, A. 1988. Glutathione metabolism and its selective modification. J. Biol. Chem. 263: 17205–8.

    PubMed  CAS  Google Scholar 

  • Morré, D.J., Brightman, A.O., Wu, L.Y., Barr, R. Leak, B. and Crane, F.L. 1988. Role of plasma membrane redox activities in elongation growth in plants. Physiol. Plant 73: 187–93.

    Google Scholar 

  • Niehaus, W.J. Jr. 1978. A proposed role of superoxide anion as a biological nucleophile in the deesterification of phospholipid. Biorg. Chem. 7: 77–84.

    Article  CAS  Google Scholar 

  • Oleinick, N.L., Chiu, S., Ramakrishman N. and Xue, L. 1986. The formation, identification, and significance of DNA-protein cross-links in mammalian cells. Brit. J. Cancer 55, Suppl. 8: 135–40.

    Google Scholar 

  • Pallett, K.E. and Young, A.J. 1993. Caratenoids. pp. 91–110. In: Eds. R.G. Alscher and J.L. Hess. Antioxidants in Higher Plants. CRC Press, Boca Raton.

    Google Scholar 

  • Polle, A., Chakrabarti, K., Schürmann, W. and Rennenberg, H. 1990. Composition and properties of hydrogen peroxide decomposing systems in extracellular and total extracts from needles of Norway spruce (Picea abies L., karst). Plant Physiol. 94: 312–9.

    Article  PubMed  CAS  Google Scholar 

  • Preston, C., Holtum, J.A.M. and Powles, S.B. 1992. On the mechanism of resistance to paraquat in Hordeum glaucum and H. leporium. Plant Physiol. 100: 630–6.

    Article  CAS  Google Scholar 

  • Price, A., Lucas, P.W. and Lea, P.J. 1990. Age dependent damage and glutathione metabolism in ozone fumigated barley: a leaf section approach. J. Exptl. Bot. 41: 1309–17.

    Article  CAS  Google Scholar 

  • Rebeiz, C.A., Reddy, K.N., Nandihalli, U.B. and Velu, J. 1990. Tetrapyrroledependent photosythetic herbicides. Photochem. Photobiol. 52: 1099–117.

    Article  CAS  Google Scholar 

  • Redinbaugh, M.G., Wadsworth, G.J. and Scandalias, J.G. 1988. Characterization of catalase transcripts and their differential expression in maize Biochim. Biophys. Acta 951: 104–16.

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg, H. 1982. Glutathione metabolism and possible biological roles in higher plants. Phytochem. 21: 2771–81.

    Article  CAS  Google Scholar 

  • Rich, P.R. and Bonner, W.D. Jr. 1978. The sites of superoxide anion generation in higher plant mitochondria. Arch. Biochem. Biophys. 188: 206–13.

    Article  PubMed  CAS  Google Scholar 

  • Rüegsegger, A., Schmutz, D. and Brunold, C. 1990. Regulation of glutathione biosynthesis by cadmium in Pisum sativum L. Plant Physiol. 93: 1579–84.

    Article  Google Scholar 

  • Sandalio, M. and Del Rio, L.A. 1988. Intraorganellar distribution of superoxide dismutase in plant peroxisomes (glyoxysomes and leaf peroxisomes). Plant Physiol. 88: 1215–8.

    Article  PubMed  CAS  Google Scholar 

  • Scandalias, J.G. 1990. Response of plant antioxidant defense genes to environmental stress. Adv. Genet. 28: 1–41.

    Article  Google Scholar 

  • Scandalias, J.G. 1993. Oxygen stress and superoxide dismutase. Plant Physiol. 101: 7–12.

    Google Scholar 

  • Schmidt. A. and Kunert, K.J. 1986. Lipid peroxidation in higher plants. The role of glutathione reductose. Plant Physiol. 82: 700–2.

    Article  Google Scholar 

  • Senaratna, T., McKersie, B.D. and Stinson, R.H. 1985. Simulation of dehydration injury to membranes from soybean axes by free radicals. Plant Physiol. 77: 472–4.

    Article  PubMed  CAS  Google Scholar 

  • Shaaltiel, Y. and Gressel, J. 1986. Multienzyme oxygen radical detoxifying system correlated with paraquat resistance in Conyza bonariensis. Pestic. Biochem. Physiol. 26: 22–8.

    Article  CAS  Google Scholar 

  • Smith, I.K., Kendall, A.C., Keys, A.J., Turner, J.C. and Lea, P.J. 1985. The regulation of the biosynthesis of glutathione in leaves of barley (Hordeum vulgare L.). Plant Sci. 41: 11–7.

    Article  CAS  Google Scholar 

  • Smith, I.K., Vierheller, T.L. and Thorne, C.A. 1989. Properties and functions of glutathione reductase in plants. Physiol. Plant 77: 449–56.

    Article  CAS  Google Scholar 

  • Smith, J. and Shrift, A. 1979. Phytogenetic distribution of glutathione peroxidase. Comp. Biochem. Physiol. 63B: 39–44.

    CAS  Google Scholar 

  • Stadtman, E.R. 1986. Oxidation of proteins by mixed-function oxidation systems: implication in protein turnover, aging and neutrophil function. Trends Biochem. Sci. 11: 11–2.

    Article  CAS  Google Scholar 

  • Steinkamp, R. and Rennenberg, H. 1984. ry-glutamyltranspeptidase in tobacco suspension cultures: catalytic properties and subcellular localization. Physiol. Plant 61: 251–6.

    Google Scholar 

  • Tepperman, J.M. and Dunsmuir, P. 1990. Transformed plants with elevated level of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol. Biol. 14: 501–11.

    Article  PubMed  CAS  Google Scholar 

  • Timmerman, K.P. 1989. Molecular characterization of corn glutathione-S-transferase isozymes involved in herbicide detoxification. Physiol. Plant 77:465–71.

    Google Scholar 

  • Turrens, J.F., Freeman, B.A. and Crapo, J.D. 1982. Hyperoxia increases H2O2 release by lung mitochondria and microsomes. Arch. Biochem. Biophys. 217: 411–21.

    Article  PubMed  CAS  Google Scholar 

  • Vaughn, K.C. and Fuerst, E.P. 1985. Structural and physiological studies of paraquat-resistant Conyza Pestic. Biochem. Physiol. 24: 86–94.

    Article  CAS  Google Scholar 

  • Vianello, A. and Macri, F. 1991. Generation of superoxide anion and hydrogen peroxide at surface of plant cells. J. Bioenerg. Biomemb. 23: 409–23.

    Article  CAS  Google Scholar 

  • Wilson, D.O. and McDonald, M.B. Jr. 1986. The lipid peroxidation model of seed aging. Seed Sci. Tech. 14: 269–300.

    CAS  Google Scholar 

  • Winston, G.W. and Cederbaum, A.I. 1983. Oxyradical production by purified components of the liver microsomal mixed-function oxidase system I: Oxidation of hydroxyl radical scavenging agents. J. Biol Chem. 258: 1508–13.

    PubMed  CAS  Google Scholar 

  • Witkowski, D.A. and Halling, B.P. 1989. Inhibition of plant protoporphyrinogen oxidase by the herbicide acifluorfen-methyl. Plant Physiol. 90:1239–42.

    Google Scholar 

  • Young, A.J. 1991a. Inhibition of carotenoid biosyntheses. pp. 131–171. In: Eds. N.R. Baker and M.P. Percival. Herbicides. Elsevier Publishers, Amsterdam.

    Google Scholar 

  • Young, A.J. 1991b. The photoprotective role of carotenoids in higher plants. Physiol. Plant 83: 702–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mckersie, B.D., Leshem, Y.Y. (1994). Oxidative stress. In: Stress and Stress Coping in Cultivated Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3093-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3093-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4400-6

  • Online ISBN: 978-94-017-3093-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics