Skip to main content

Cracking, Damage and Fracture in Stressed Rock: A Holistic Approach

  • Chapter
Toughening Mechanisms in Quasi-Brittle Materials

Part of the book series: NATO ASI Series ((NSSE,volume 195))

Abstract

A brief review is given of time-dependent cracking and failure in rock subjected to both tensile and compressive stresses. Recent results from our experimental program to measure changes in an integrated suite of rock physical properties contemporaneously with mechanical parameters during deformation experiments are also presented. We suggest that the observed changes in these properties provides additional information regarding the evolution of damage, and the rate of damage accumulation, within the rock sample. Future developments required for a complete holistic description of the development of crack-related damage leading to failure are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aid K. (1981) A probabilistic synthesis of precursory phenomena, In: Earthquake Prediction: An International review,Maurice Ewing Series 4, Amer. Geophys. Union, Washington, 566–574.

    Chapter  Google Scholar 

  • Ashby M.F. & Hallam S.D. (1986) The failure of brittle solids containing small cracks under compressive stress states, Acta Metall., 34, 497–510.

    Article  Google Scholar 

  • Atkinson B.K. (1982) Subcritical crack propagation in rocks: theory, experimental results and applications, J. Struct. Geol., 4, 41–56.

    Article  ADS  Google Scholar 

  • Atkinson B.K. (1984) Subcritical crack growth in geological materials, J. Geophys. Res.,89, 4077–4114.

    Article  ADS  Google Scholar 

  • Atkinson B.K. & Meredith P.G. (1987a) The theory of subcritical crack growth with application to minerals and rocks, In: Fracture Mechanics of Rock, (ed: B.K. Atkinson), Academic Press, London, 111–166.

    Google Scholar 

  • Atkinson B.K. & Meredith P.G. (1987b) Experimental fracture mechanics data for rocks and minerals, In: Fracture Mechanics of Rock, (ed: B.K. Atkinson), Academic Press, London, 477–525.

    Google Scholar 

  • Atkinson B.K. & Rawlings R.D. (1981) Acoustic emission during stress corrosion cracking in rocks, In: Earthquake Prediction: An International Review, Maurice Ewing Series 4, Amer. Geophys. Union, Washington, 605–616.

    Chapter  Google Scholar 

  • Caputo M. (1976) Model and observed seismicity represented in a two-dimensional space, Ann. Geophys. (Rome), 4, 277–288.

    Google Scholar 

  • Charles R.J. (1958) Static fatigue of glass, J. Appl. Physics, 29, 1549–1560.

    Article  ADS  Google Scholar 

  • Cook R.F., Lawn B.R. & Fairbanks C.J. (1985) Microstructure-strength properties of ceramics, I: Effect of crack size on toughness, J. Am. Ceram. SoC.,68, 604–615.

    Article  Google Scholar 

  • Costin L.S. (1983) A microcrack model for the deformation and failure of brittle rock, J Geophys. Res., 88, 9485–9492.

    Article  ADS  Google Scholar 

  • Costin L.S. (1985) Damage mechanics in the post-failure regime, Mech. Mat., 4, 149–160.

    Article  Google Scholar 

  • Costin L.S. (1987) Time-dependent deformation and failure, In: Fracture Mechanics of Rock, (ed: B.K. Atkinson), Academic Press, London, 167–215.

    Google Scholar 

  • Cox S.J.D. & Paterson L. (1990) Damage development during rupture of heterogeneous brittle materials: a numerical study, In: Deformation Mechanisms, Rheology and Tectonics, (eds: R.J. Knipe & E.H. Rutter), Geol. Soc. Lond. Spec. Pub., (in press).

    Google Scholar 

  • Cox S.J.D. & Scholz (1988) On the formation and growth of faults: an experimental study, J. Struct. Geol., 10, 413–430.

    Article  ADS  Google Scholar 

  • Crampin S. (1984) Effective anisotropic elastic constants for wave propagation through cracked solids, Geophys. J. R. Astr. Soc., 76, 135–145.

    Article  Google Scholar 

  • Dunning J.D., Petrovski D., Schuyler J. & Owens A. (1984) The effect of aqueous chemical environments on crack propagation in quartz, J. Geophys. Res., 89, 4115–4123.

    Article  ADS  Google Scholar 

  • Freiman S.W. (1984) Effects of chemical environments on slow crack growth in glasses and ceramics, J. Geophys. Res., 89, 4072–4076.

    Article  ADS  Google Scholar 

  • Freiman S.W. & Swanson P.L. (1990) Fracture of polycrystalline ceramics, In: Deformation Processes in Minerals,Ceramics and Rocks,(eds: D.J. Barber & P.G. Meredith), Unwin Hyman, London, 72–83.

    Chapter  Google Scholar 

  • Gowd T.N. (1980) Factors affecting the acoustic emission response of triaxially compressed rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,17, 219–223.

    Article  Google Scholar 

  • Gueguen Y., Reuschle T. & Darot M. (1990) Single crack behaviour and crack statistics, In: Deformation Processes in Minerals,Ceramics and Rocks,(eds: D.J. Barber & P.G. Meredith), Unwin Hyman, London, 48–71.

    Chapter  Google Scholar 

  • Gupta I.N. (1973) Seismic velocities in rocks subjected to axial loading, J. Geophys. Res., 65, 1083–1102.

    Google Scholar 

  • Hillerborg A. (1989) Existing methods to determine and evaluate fracture toughness of aggregative materials - RILEM recommendation on concrete, In: Fracture Toughness and Fracture Energy: Test Methods for Concrete and Rock,(eds: H. Mihashi, H. Takahashi & F.H. Wittmann), Balkema, Rotterdam, 145–152.

    Google Scholar 

  • Horii H. & Nemat-Nasser S. (1986) Brittle failure in compression: splitting, faulting and brittle-ductile transition, Phil. Trans. Roy. Soc. Lond., Ser.A, 319, 337–374.

    Article  ADS  MATH  Google Scholar 

  • Hubner H. & Jillek W. (1977) Sub-critical extension and crack resistance in polycrystalline alumina, J. Mat. Sci., 12, 117–125.

    Article  ADS  Google Scholar 

  • Hudson J.A. (1981) Wave speeds and attenuation of elastic waves in materials containing cracks, Geophys. J. R. Astr. Soc., 64, 133–150.

    Article  MATH  Google Scholar 

  • Ingraffea A.R. (1987) Theory of crack initiation and propagation in rock, In: Fracture Mechanics of Rock, (ed: B.K. Atkinson), Academic Press, London, 71–110.

    Google Scholar 

  • ISRM Commission on Testing Methods (1988) Suggested method for determining the fracture toughness of rock, Int. J. Rock Mech. Min. Sci & Geomech. Abstr.,25, 71–96.

    Google Scholar 

  • Jaeger J.C. & Cook N.G.W. (1976) Fundamentals of Rock Mechanics, 2nd. edition, Chapman and Hall, London.

    Google Scholar 

  • Kemeny J.M. & Cook N.G.W. (1987) Crack models for the failure of rocks in compression, Proc. 2nd. Int. Conf. on Constitutive Laws for Engineering Materials, Tucson, Arizona.

    Google Scholar 

  • Kikuchi M., McNally K. and Tittman B.R. (1981) Machine stiffness appropriate for experimental simulation of earthquake processes, Geophys. Res. Lett., 8, 321–323.

    Article  ADS  Google Scholar 

  • Kranz R.L. (1979) Crack growth and development during creep of Barre granite, Int. J Rock Mech. Min. Sci. & Geomech. Abstr., 16, 23–35.

    Google Scholar 

  • Kranz R.L. (1980) The effect of confining pressure and stress difference on static fatigue of granite, J. Geophys. Res., 85, 1854–1866.

    Article  ADS  Google Scholar 

  • Kranz R.L. (1983) Microcracks in rock: a review, Tectonophysics, 100, 449–480.

    Article  ADS  Google Scholar 

  • Kranz R.L. & Scholz C.H. (1977) Critical dilatant volume at the onset of tertiary creep, J. Geophys. Res.,82, 4893–4898.

    Article  ADS  Google Scholar 

  • Labuz J.F., Shah S.P. & Dowding C.H. (1985) Experimental analysis of crack propagation in granite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 22, 85–98.

    Article  Google Scholar 

  • Lawn B.R. & Wilshaw T.R. (1975) Fracture of Brittle Solids,Cambridge University Press, Cambridge, 204pp.

    Google Scholar 

  • Main I.G., Meredith P.G. & Jones C. (1989) A reinterpretation of the precursory seismic b-value anomaly using fracture mechanics, Geophys. J., 96, 131–138.

    Article  Google Scholar 

  • Main I.G., Meredith P.G., Sammonds P.R. & Jones C. (1990) Influence of fractal flaw distributions on rock deformation in the brittle field, In: Deformation Mechanisms, Rheology and Tectonics, (eds: R.J. Knipe & E.H. Rutter), Geol. Soc. Lond. Spec. Pub., (in press).

    Google Scholar 

  • Main I.G., Peacock S. & Meredith P.G. (1990) Scattering attenuation and the fractal geometry of fracture systems, Pure & Appl. Geophys., 133, 283–304.

    Article  ADS  Google Scholar 

  • Mandelbrot B.B. (1982) The Fractal Geometry of Nature, Freeman, New York.

    MATH  Google Scholar 

  • McClintock F.A. & Walsh J.B. (1962) Friction on Griffith cracks in rocks under pressure, Proc. 4th. U.S. Nat. Congr. Appl. Mech., Vol. II, Am. Soc. Mech. Eng., New York, 1015–1021.

    Google Scholar 

  • Meredith P.G. (1989) Comparative fracture toughness testing of rocks, In: Fracture Toughness and Fracture Energy: Test Methods for Concrete and Rock, (eds: H. Mihashi, H. Takahashi & F.H. Wittmann), Balkema, Rotterdam, 265–278.

    Google Scholar 

  • Meredith P.G. (1990) Fracture and failure of brittle polycrystals: an overview, In: Deformation Processes in Minerals, Ceramics and Rocks, (eds: D.J. Barber & P.G. Meredith), Unwin Hyman, London, 5–47.

    Chapter  Google Scholar 

  • Meredith P.G. & Atkinson B.K. (1983) Stress corrosion and acoustic emission during tensile crack propagation in Whin Sill dolente and other basic rocks, Geophys. J. R. Astr. Soc., 75, 1–21.

    Article  Google Scholar 

  • Meredith P.G. & Atkinson B.K. (1985) Fracture toughness and subcritical crack growth during high-temperature tensile deformation of Westerly granite and Black gabbro, Phys. Earth & Planet. Infs., 39, 33–51.

    Article  ADS  Google Scholar 

  • Meredith P.G., Main I.G. & Jones C. (1990) Temporal variations in seismicity during quasi-static and dynamic rock failure, Tectonophysics, 175, 249–268.

    Article  ADS  Google Scholar 

  • Murrell S.A.F. (1990) Brittle to ductile transitions in polycrystalline non-metallic materials, In: Deformation Processes in Minerals, Ceramics and Rocks, (eds: D.J. Barber & P.G. Meredith), Unwin Hyman, London, 109–137.

    Chapter  Google Scholar 

  • Murrell S.A.F. & Digby P.J. (1970) The theory of brittle fracture initiation under triaxial stress conditions, Parts I and II, Geophys. J. R. Astr. Soc., 19, 309–334 and 499–512.

    Article  MATH  Google Scholar 

  • Peng S.S. & Johnson A.M. (1972) Crack growth and faulting in cylindrical specimens of Chelmsford granite, Int. J. Rock Mech. Min. Sci., 9, 37–86.

    Article  Google Scholar 

  • O’Connell R.J. & Budiansky B. (1974) Seismic velocities in dry and saturated cracked solids, J. Geophys. Res., 79, 5412–5426.

    Article  ADS  Google Scholar 

  • RILEM Draft Recommendation (1985) Determination of the fracture energy of mortar and concrete by means of three-point-bend tests on notched beams, Materials and Structures, 106, 285–290.

    Google Scholar 

  • Sammis C.G. & Ashby M.F. (1986) The failure of brittle porous materials under compressive stress states, Acta Metall., 34, 511–526.

    Article  Google Scholar 

  • Sammonds P.R., Ayling M.R., Jones C., Meredith P.G. & Murrell S.A.F. (1989) A laboratory investigation of acoustic emission and elastic wave velocity changes during rock failure under triaxial stresses, In: Rock at Great Depth, (eds: V. Maury & D. Fourmaintraux),Balkema, Rotterdam, Vol 1 , 233–240.

    Google Scholar 

  • Scmidt R.A. & Lutz T.J. (1979) KIc and JIc of Westerly granite - effects of thickness and in-plane dimensions, In: Fracture Mechanics Applied to Brittle Materials, ASTM Spec. Tech. Pub., STP 678, 166–182.

    Chapter  Google Scholar 

  • Shaw H.R. & Gartner A.E. (1986) On the graphical interpretation of palaeoseismic data, U.S.G.S. Open File Report, 86–394.

    Google Scholar 

  • Simmons C.J. & Freiman S.W. (1983) Effect of corrosion processes on subcritical crack growth in glass, J. Am. Ceram. Soc., 64, 683–686.

    Article  Google Scholar 

  • Sondergeld C.H., Granryd L.A. & Estey L.H. (1984) Acoustic emissions during compression testing of rock, In: Proc. 3rd. Conf. on Acoustic Emiision/Microseismic Activity in Geologic Structures and Materials, (eds: H.R. Hardy & F.W. Leighton), Trans Tech, Clausthal, 131–145.

    Google Scholar 

  • Swanson P.L. (1984) Subcritical crack growth and other time-and environment-dependent behavior in crustal rocks, J. Geophys. Res., 89, 4137–4152.

    Article  ADS  Google Scholar 

  • Swanson P.L. (1987) Tensile fracture resistance mechanisms in brittle polycrystals: an ultrasonics and in-situ microscopy investigation, J. Geophys. Res., 92, 8015–8036.

    Article  ADS  Google Scholar 

  • Tada H., Paris P.C. & Irwin G.R. (1973) The Stress Analysis of Cracks Handbook, Del Research Corp’n., Hellertown, PA.

    Google Scholar 

  • Tapponier P. & Brace W.F. (1976) Development of strss-induced microcracks in Westerly granite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,13, 103–112.

    Article  Google Scholar 

  • Tchalenko J.G. (1970) Similarities between shear zones of different magnitudes, Geol. Soc. Am. Bull., 81, 1625–1640.

    Article  Google Scholar 

  • Turcotte D.L. (1989) Fractals in geology and geophysics, Pure & Appl. Geophys., 131, 171–196.

    Article  ADS  Google Scholar 

  • Walsh J.B. (1965) The effect of cracks on the compressibility of rocks, J. Geophys. Res., 70, 381–389.

    Article  ADS  MATH  Google Scholar 

  • Wiederhom S.M. (1974) Subcritical crack growth in ceramics, In: Fracture Mechanics of Ceramics, (eds: R.C. Bradt, D.P.H. hasselman & F.F. Lange), Vol.2, Plenum, New York, 613–646.

    Chapter  Google Scholar 

  • Wiederhom S.M. (1978) Mechanisms of subcritical crack growth in glass, In: Fracture Mechanics of Ceramics, (eds: R.C. Bradt, D.P.H. Hasselman & F.F. Lange), Vol.4, Plenum, New York, 549–580.

    Google Scholar 

  • Wiederhom S.M. & Johnson H. (1973) Effect of electrolyte pH on crack propagation in glass, J. Am. Ceram. Soc., 56, 192–197.

    Article  Google Scholar 

  • Wong T.-F. & Biegel R. (1985) Effects of pressure on the micromechanics of faulting in San Marcos gabbro, J. Struct. Geol., 7, 737–749.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meredith, P.G., Ayling, M.R., Murrell, S.A.F., Sammonds, P.R. (1991). Cracking, Damage and Fracture in Stressed Rock: A Holistic Approach. In: Shah, S.P. (eds) Toughening Mechanisms in Quasi-Brittle Materials. NATO ASI Series, vol 195. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3388-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3388-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5498-0

  • Online ISBN: 978-94-011-3388-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics