Skip to main content

Part of the book series: The Mineralogical Society Series ((MIBS,volume 1))

Abstract

Catastrophic failure in polycrystalline ceramics results from stressed cracks growing to critical dimensions which can span a range of size scales. As critical flaw dimensions increase in size from a scale less than characteristic micro-structure dimensions to a size which encompasses many grain diameters, the resistance to fracture increases, in certain polycrystals, by a factor of 5–10. This increase represents the difference between the fracture resistance of the polycrystal and that of its individual constituent single crystals. In this chapter, we: (1) show how relatively small variations in grain size and shape affect the fracture toughness — crack size relationship (R-curve behaviour); (2) briefly review several microstructural mechanisms suggested to be responsible for both the high fracture energy of polycrystals and the rising resistance to fracture with crack extension; (3) present the results of in-situ microscopy observations of subcritically propagating cracks which lend support to crack-interface traction as an important fracture resistance mechanism; and (4) examine the complicating influence that the traction mechanism has on prediction of time-dependent failure from flaws propagating under the influence of stress-enhanced chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Chantikul, P., G. R. Anstis, B. R. Lawn, & D. B. Marshall 1981. A critical analysis of indentation techniques for measuring fracture toughness: II, strength method. J. Am. Ceram. Soc. 64, 539–43.

    Article  Google Scholar 

  • Davidge, R. W., J. W. McLaren, & G. Tappin 1973. Strength-probability-time (STP) relationships in ceramics.J. Mat. Sci. 8, 1699–705.

    Article  Google Scholar 

  • Evans, A. G. 1972. A method for evaluating the time-dependent failure characteristics of brittle materials and its application to polycrystalline alumina.J. Mat. Sci. 7, 1137–46.

    Article  Google Scholar 

  • Evans, A. G. & K. T. Faber 1984. Crack growth resistance of microcracking materials. J. Am. Ceram. Soc. 67, 255–60.

    Article  Google Scholar 

  • Evans, A. G., D. B. Marshall & N. H. Burlingame 1981. Transformation toughening in ceramics. In Advances in ceramics, vol. 3, A. H. Heuer & L. W. Hobbs (eds), 202–16. Columbus, Ohio: American Ceramic Society.

    Google Scholar 

  • Faber, K. T. & A. G. Evans 1983a. Crack deflection processes: I, theory. Acta Metall. 31, 565–76.

    Article  Google Scholar 

  • Faber, K. T. & A. G. Evans 1983b. Crack deflection processes: II, experiment. Acta. Metall. 31, 577–84.

    Article  Google Scholar 

  • Freiman, S. W., L. Chuck, J. J. Mecholsky, D. L. Shelleman & L. J. Storz 1986. Fracture mechanisms in lead zirconate titanate ceramics. In Fracture mechanics of ceramics, vol. 8, R. C. Bradt, A. G. Evans, D. P. H. Hasselman & F. F. Lange (eds), 175–85. New York: Plenum.

    Google Scholar 

  • Fuller, E. R., B. R. Lawn & R. F. Cook 1983. Theory of fatigue for brittle flaws originating from residual stress concentrations. J. Am. Ceram. Soc. 66, 314–21.

    Article  Google Scholar 

  • Hellmann, J. R., J. Matsko, S. W. Freiman & T. L. Baker 1986. Microstructure-mechanical property relationships in 94% alumina ceramics. In Tailoring multiphase and composite ceramics, R. E. Tressler, G. L. Messina, C. G. Pantano & R. E. Newnham (eds), 367–79. New York: Plenum Press.

    Chapter  Google Scholar 

  • Hoagland, R. G., J. D. Embury & D. J. Green 1975. On the density of microcracks formed during the fracture of ceramics. Scripta Metall. 9, 907–9.

    Article  Google Scholar 

  • Knehans, R. & R. Steinbrech 1982. Memory effect of crack resistance during slow crack growth in notched Al2O3 bend specimens. J. Mat. Sci. Lett. 1, 327–9.

    Article  Google Scholar 

  • Li, V. C. & E. Liang 1986. Fracture processes in concrete and fiber reinforced cementitious composites. J. Engng. Mech. 112, 566–86.

    Article  Google Scholar 

  • Mai, Y.-W. & B. R. Lawn 1987. Crack-interface grain bridging as a fracture resistance mechanism in ceramics: II. Theoretical fracture mechanics model.J. Am. Ceram. Soc. 70, 289–94.

    Article  Google Scholar 

  • Meredith, P. G. 1989. Fracture and failure of brittle polycrystals: an overview. This volume, 5–47.

    Google Scholar 

  • Michalske, T. A. & S. W. Freiman 1983. A molecular mechanism for stress corrosion in vitreous silica. J. Am. Ceram. Soc. 66, 284–8.

    Article  Google Scholar 

  • Rice, R. W. & S. W. Freiman 1981. Grain size dependence of fracture energy in ceramics, II: a model for non-cubic materials. J. Am. Ceram. Soc. 64, 350–4.

    Article  Google Scholar 

  • Rice, R. W., S. W. Freiman & J. J. Mecholsky 1980. The dependence of strength controlling fracture energy on the flaw size to grain size ratio. J. Am. Ceram. Soc. 63, 129–36.

    Article  Google Scholar 

  • Shah, S. P. (ed.) 1985. Applications of fracture mechanics to cementitious composites. Boston: Martinus Nijhoff.

    Google Scholar 

  • Steinbrech, R., R. Knehans & W. Schaarwachter 1983. Increase of crack resistance during slow crack growth in Al2O3 bend specimens. J. Mat. Sci. 18, 265–70.

    Article  Google Scholar 

  • Swain, M. V. & L. R. F. Rose 1984. Toughening of ceramics. Proc. Sixth Int. Conf. on Fracture 1, 473–94.

    Google Scholar 

  • Swanson, P. L. 1987. Tensile fracture resistance mechanisms in brittle polycrystals: An ultrasonics and in-situ microscopy investigation.J. Geophys. Res. 92, 8015–36.

    Article  Google Scholar 

  • Swanson, P. L. 1988. Crack-interface traction: a fracture-resistance mechanism in brittle polycrystals. In Advances in ceramics, 22, 135–55. Columbus, Ohio: Am. Ceram. Soc.

    Google Scholar 

  • Swanson, P. L., C. J. Fairbanks, B. R. Lawn, Y.-W. Mai, & B. J. Hockey 1987. Crack-interface grain bridging as a fracture resistance mechanism in ceramics: I. Experimental study on alumina. J. Am. Ceram. Soc. 70, 279–89.

    Article  Google Scholar 

  • Wiederhorn, S. M. 1984. Brittle fracture and toughening mechanisms in ceramics. Ann. Rev. Mat. Sci. 14, 373–403.

    Article  Google Scholar 

  • Wieninger, H., K. Kromp & R. F. Pabst 1986. Crack resistance curves of alumina and zirconia at room temperature. J. Mat. Sci. 21, 411–18.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 D. J. Barber, P. G. Meredith & contributors

About this chapter

Cite this chapter

Freiman, S.W., Swanson, P.L. (1990). Fracture of polycrystalline ceramics. In: Deformation Processes in Minerals, Ceramics and Rocks. The Mineralogical Society Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6827-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-6827-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-6829-8

  • Online ISBN: 978-94-011-6827-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics