Skip to main content

Putting Isotopes to Work: Liquid Scintillation Counters, 1950–1970

  • Chapter
Instrumentation Between Science, State and Industry

Part of the book series: Sociology of the Sciences ((SOSC,volume 22))

Abstract

Perhaps no other instrument has symbolized the techno-myth of an avant-garde science, so widespread in the expanding community of molecular biology and radio-medicine in the 1960s and 1970s, more powerfully than the liquid scintillation counter. It was an apparatus that effectively came to represent three key technologies of this century: mechanical automation, electronics, and radioactive tracing. Yet in contrast to other instruments and techniques characteristic of the rising new biology and medicine such as electrophoresis, ultracentrifugation, electron microscopy, NMR (Nuclear Magnetic Resonance), and PCR (Polymerase Chain Reaction) (Elzen 1986; Kay 1988; Lenoir 1997: chapt. 9 [in collaboration with Christope Lécuyer]; Rabinow 1996; Rasmussen 1997) liquid scintillation counting has so far received no attention from historians of science and technology. This paper intends to exemplify the coming into being and the trajectory of a research enabling instrument. As I will show below, within twenty years liquid scintillation counting (LSC) developed from a clumsy technology for special purposes of radiation measurement into a generic technology that became ubiquitous in molecular biology and medicine laboratories in the 1970s. Among a few other early models, it was particularly Packard’s Tri-Carb® Liquid Scintillation Spectrometer that made its way into university institutes, national laboratories, hospitals, and research departments of companies. A Packard Tri-Carb with its calculator data output connected to an IBM typewriter-printer became a signpost of an up-to-date modern biomedical laboratory in the 1960s and 1970s (Figure 8.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • AEC (Atomic Energy Commission) (1947, September). Radioisotopes. Nucleonics 1: 64–9.

    Google Scholar 

  • Alvarez, Luis W. and Cornog, Robert (1939). Helium and hydrogen of mass 3. The Physical Review 56: 613.

    Article  Google Scholar 

  • Anderson, Ernest C. (1958). The Los Alamos human counter, in C.G. Bell and F.N. Hayes (eds.), Liquid scintillation counting (pp. 211–19). New York: Pergamon Press.

    Google Scholar 

  • Argonne National Laboratory (1986). Argonne News 30(5): 3–15.

    Google Scholar 

  • Arnold, James R. (1954). Scintillation counting of natural radiocarbon: I. The counting method. Science 119: 155–7.

    Article  Google Scholar 

  • Arnold, James R. (1958). Archaeology and chemistry, in C.G. Bell and F.N. Hayes (eds.), Liquid scintillation counting (pp. 129–34). New York: Pergamon Press.

    Google Scholar 

  • Balogh, Brian (1991). Chain reaction. Expert debate and public participation in American commercial nuclear power, 1945–1975. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Blau, Monte (1957). Separated channels improve liquid scintillation counting. Nucleonics 15(4, April): 90–1.

    Google Scholar 

  • Broda, Engelbert (1960). Radioactive isotopes in biochemistry. Amsterdam: Elsevier.

    Google Scholar 

  • Broser, Immanuel and Kallmann, Hartmut (1947a). Ober die Anregung von Leuchtstoffen durch schnelle Korpuskularteilchen I. Zeitschrift für Naturforschung 2a: 439–40.

    Google Scholar 

  • Broser, Immanuel and Kallmann, Hartmut (1947b). Über den Elementarprozess der Lichtanregung in Leuchtstoffen durch alpha-Teilchen, schnelle Elektronen und gamma-Quanten II. Zeitschrift für Naturforschung 2a: 642–50.

    Google Scholar 

  • Cohn, Waldo E. (1968). Introductory remarks by chairman, in S. Rothchild (ed.), Advances in tracer methodology, Vol. 4 (pp. 1–10). New York: Plenum Press.

    Google Scholar 

  • Coltman, J.W. and Marshall, Fitz-Hugh (1947, November). Photomultiplier radiation detector. Nucleonics 1(3): 58–64.

    Google Scholar 

  • Crookes, William (1903). The emanation of radium. Proceedings of the Royal Society of London, Vol. 71: 405–8.

    Article  Google Scholar 

  • Curran, Samuel C. and Baker, W.R. (1947). A photoelectric alpha particle detector. U.S. Atomic Energy Commission Rpt. MDDC1296, 17 Nov. 1944, declassified 23 September 1947.

    Google Scholar 

  • Davidson, Jack D; and Feigelson, Philip (1957). Practical aspects of internal-sample liquid-scintillation counting. International Journal of Applied Radiation and Isotopes 2: 1–18.

    Article  Google Scholar 

  • Elster, Julius und Geitel, Hans (1903). Über die durch radioaktive Emanation erregte scintillierende Phosphoreszenz der Sidot-Blende. Physikalische Zeitschrift 4:439–40.

    Google Scholar 

  • Elzen, Boelie (1986). Two ultracentrifuges: A comparative study of the social construction of artefacts. Social Studies of Science 16: 621–62.

    Article  Google Scholar 

  • Everett, L.J., Kaartinen, Niilo, and Kreveld, P. (1974). An advanced automatic sample oxidizer - new horizons in liquid scintillation sample preparation, in P.E. Stanley and B.A. Scoggins (eds.), Liquid scintillation counting (pp. 139–52). New York and London: Academic Press.

    Google Scholar 

  • Feld, Bernard T. and Weiss Szilard, Gertrud (eds.) (1972). The collected works of Leo Szilard. Scientific papers, Volume I. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Furst, Milton and Kallmann, Hartmut (1952). Fluorescence of solutions bombarded with high energy radiation (Energy transport in liquids), Part III. The Physical Review 85: 816–25.

    Article  Google Scholar 

  • Galison, Peter (1997). Image and logic. A material culture of microphysics. Chicago: The University of Chicago Press.

    Google Scholar 

  • Gaudillière, Jean-Paul (1998). The molecularization of cancer etiology in the postwar United States: Instruments, politics, and management, in S. de Chadarevian and H. Kamminga (eds.), Molecularizing biology and medicine: New practices and alliances 1910s–1970s (pp. 139–70). Amsterdam: Harwood Academic Publishers.

    Chapter  Google Scholar 

  • Goldwasser, Eugene (1953). The incorporation of adenine into ribonucleic acid in vitro. Journal of Biological Chemistry 202: 751–5.

    Google Scholar 

  • Goldwasser, Eugene (1955). Incorporation of adenosine-5’-phosphate into ribonucleic acid. Journal of the American Chemical Society 77: 6083.

    Article  Google Scholar 

  • Grandy, David A. (1996). Leo Szilard. Science as a mode of being. Lanham, MD: University Press of America.

    Google Scholar 

  • Hayes, F. Newton, Hiebert, R.D., and Schuch, R.L. (1952). Low energy counting with a new liquid scintillation solute. Science 116: 140.

    Article  Google Scholar 

  • Heilbron, John L. and Seidel, Robert W. (1989). Lawrence and his laboratory: A history of the Lawrence Berkeley Laboratory, Vol. I. Berkeley, CA: University of California Press.

    Google Scholar 

  • Hevesy, Georg von (1948). Historical sketch of the biological application of tracer elements. Cold Spring Harbor Symposia on Quantitative Biology 13: 129–50.

    Google Scholar 

  • Hewlett, Richard G. and Holl, Jack M. (1989). Atoms for peace and war, 1953–1961. Berkeley, CA: University of California Press.

    Google Scholar 

  • Hewlett, Richard G. and Anderson, Oscar E. Jr., (1962). A history of the United States atomic energy commission. Volume I, The New World 1939/1946 and Volume II, Atomic shield 1947/1952. University Park, PA: The Pennsylvania State University Press.

    Google Scholar 

  • Hiebert, R.D. and Watts, R.J. (1953, December). Fast-coincidence circuit for H3 and C14 measurements. Nucleonics 11(12): 38–41.

    Google Scholar 

  • Hiebert, R.D. and Hayes, F. Newton (1958). Instrumentation for liquid scintillation counting at Los Alamos, in C.G. Bell and F.N. Hayes (eds.), Liquid scintillation counting (pp. 41–9). New York: Pergamon Press.

    Google Scholar 

  • Hofstadter, Robert (1948). Alkali halide scintillation counters. The Physical Review 74: 100–1.

    Article  Google Scholar 

  • Hofstadter, Robert (1949). The detection of gamma-rays with thallium-activated sodium iodide crystals. The Physical Review 75: 796–810.

    Article  Google Scholar 

  • Holl, Jack M. (1997). Argonne National Laboratory, 1946–96. Urbana and Chicago: University of Illinois Press.

    Google Scholar 

  • Horrocks, Donald L. and Peng, Chin-Tzu (eds.) (1971). Organic scintillators and liquid scintillation counting. New York and London: Academic Press.

    Google Scholar 

  • Hughes, J. A. (1993). The radioactivists: Community, controversy, and the rise of nuclear physics. PhD Thesis, University of Cambridge.

    Google Scholar 

  • Kaartinen, Niilo (1969). Packard Technical Bulletin, No. 18. Downers Grove, IL: Packard Instrument Co., Inc.

    Google Scholar 

  • Kabara, Jon J., Okita, George T., and LeRoy, George V. (1958). Simultaneous use of H3 and C14 compounds to study cholesterol metabolism, in C.G. Bell and F.N. Hayes (eds.), Liquid scintillation counting (pp. 191–7). New York; Pergamon Press.

    Google Scholar 

  • Kallmann, Hartmut and Accardo, Carl A. (1950). Coincidence experiments for noise reduction in scintillation counting. Review of Scientific Instruments 21: 48–51.

    Article  Google Scholar 

  • Kallmann, Hartmut and Furst, Milton (1950). Fluorescence of solutions bombarded with high energy radiation (Energy transport in liquids), Part I. The Physical Review 79: 857–70.

    Article  Google Scholar 

  • Kallmann, Hartmut and Furst, Milton (1951). Fluorescence of solutions bombarded with high energy radiation (Energy transport in liquids), Part II. The Physical Review 81: 853–64.

    Article  Google Scholar 

  • Kamen, Martin D. (1963). Early history of carbon-14. Science 140: 584–90. Appeared also in The Journal of Chemical Education (1963), and as an introduction to S. Rothchild (ed.) (1965), Advances in tracer methodology Vol. 3, New York: Plenum Press.

    Article  Google Scholar 

  • Kamen, Martin D. and Ruben, Samuel (1940). Production and properties of carbon 14. The Physical Review 58: 194.

    Google Scholar 

  • Kay, Lily (1988). The Tiselius electrophoresis apparatus and the life sciences, 1930–1945. History and Philosophy of the Life Sciences 10: 51–72.

    Google Scholar 

  • Kobayashi, Yutaka and Maudsley, David V. (1974). Biological applications of liquid scintillation counting. New York: Academic Press.

    Google Scholar 

  • Krebs, Adolf (1941). Ein Demonstrationsversuch zur Emanationsdifftision. Annalen der Physik 39(5): 330–2.

    Article  Google Scholar 

  • Krebs, Adolf (1953). Szintillationszahler. Ergebnisse der exakten Naturwissenschaften 27: 361–409.

    Article  Google Scholar 

  • Krebs, Adolf T. (1955). Early history of the scintillation counter. Science 122: 17–18.

    Article  Google Scholar 

  • Langham, Wright H. (1958). Application of liquid scintillation counting to biology and medicine, in C.G. Bell and F.N. Hayes (eds.), Liquid scintillation counting (pp. 135–49). New York: Pergamon Press.

    Google Scholar 

  • Lanouette, William (1992). Genius in the shadows: A biography of Leo Szilard; The man behind the bomb. New York: Scribner’s.

    Google Scholar 

  • Lenoir, Timothy (1997). Instituting science. The cultural production of scientific disciplines. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Lenoir, Thimothy and Lécuyer, Christopher (1997). Instrument makers and discipline builders: The case of nuclear magnetic resonance, in T. Lenoir (ed.), Instituting science. The cultural production of scientific disciplines (chapter 9, pp. 239–92). Stanford, CA: Stanford University Press.

    Google Scholar 

  • Lenoir, Timothy and Hays, Marguerite (2000). The Manhattan Project for biomedicine, in P.R. Sloan (ed.), Controlling our destinies: Historical philosophical, social and ethical perspectives on the human genome project (pp. 29–62). South Bend, IN: University of Notre Dame Press.

    Google Scholar 

  • Loftfield, Robert B. and Eigner, Elizabeth A. (1960). Scintillation counting of paper chromatograms. Biochemical and Biophysical Research Communications 2: 72–5.

    Article  Google Scholar 

  • Luntz, Jerome D. (1957, September). The story of a magazine and an industry. Nucleonics 15(9): 78–83.

    Google Scholar 

  • Libby, Willard F. (1952). Radiocarbon Dating. Chicago: University of Chicago Press.

    Google Scholar 

  • Mandeville, C.E. and Scherb, M.V. (1950, November). Photosensitive Geiger counters: Their applications. Nucleonics 7(5): 34–8.

    Google Scholar 

  • McNeill, William H. (1991). Hutchins’ University. A memoir of the University of Chicago 1929–1950. Chicago: The University of Chicago Press.

    Google Scholar 

  • Morton, G.A. and Mitchell, J.A. (1949, January). Performance of 931-A type multiplier as a scintillation counter. Nucleonics 4(1) 16–23.

    Google Scholar 

  • Morton, G.A. and Robinson, K.W. (1949, February). A coincidence scintillation counter. Nucleonics 4(2): 25–9.

    Google Scholar 

  • Okita, George T., Kabara, Jon J., Richardson, Florence, and LeRoy, George V. (1957, June). Assaying compounds containing H3 and C14. Nucleonics 15(6): 111–14.

    Google Scholar 

  • Oster, Gerald (1966). A young physicist at seventy: Hartmut Kallmann. Physics Today 19: 51–4.

    Article  Google Scholar 

  • Packard Instrument Company (1961). Common shares offer.

    Google Scholar 

  • Packard Instrument Company (1965). Annual Report 1965, Ten year financial highlights.

    Google Scholar 

  • Packard, Lyle E. (1958). Instrumentation for internal sample liquid scintillation counting, in C.G. Bell and F.N. Hayes (eds.), Liquid scintillation counting (pp. 50–66). New York: Pergamon Press.

    Google Scholar 

  • Pringle, Robert W. (1950). The scintillation counter. Nature 166: 11–14.

    Article  Google Scholar 

  • Raben, M.S. and Bloembergen, Nicolaas (1951). Determination of radioactivity by solution in a liquid scintillator. Science 114:363–4.

    Article  Google Scholar 

  • Rabinow, Paul (1996). Making PCR. A story of biotechnology. Chicago: The University of Chicago Press.

    Google Scholar 

  • Rapkin, Edward (1961). Hydroxide of hyamine 10-X. Technical Bulletin Number 3, Revised June, 1961.

    Google Scholar 

  • Rapkin, Edward (1970). Development of the modern liquid scintillation counter, in E.D. Bransome (ed.), The current status of liquid scintillation counting (pp. 45–68). New York: Grune & Stratton.

    Google Scholar 

  • Rapkin, Edward and Packard, Lyle E. (1961). New accessories for liquid scintillation counting, in G.H. Daub, F.N. Hayes, and E. Sullivan (eds.), Proceedings of the University of New Mexico Conference on Organic Scintillation Detectors, August 15–17, 1960 (pp. 216–31). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Rasmussen, Nicolas (1997). Picture control. The electron microscope and the transformation of biology in America, 1940–1960. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Regener, Erich (1908). Über Zählung der α-Teilchen durch die Szintillation und die Größe des elektrischen Elementarquantums. Verhandlungen der deutschen physikalischen Gesellschaft 10: 78–83.

    Google Scholar 

  • Reines, Frederick (1958). Giant liquid scintillation detectors and their applications, in C.G. Bell and F.N. Hayes (eds.), Liquid scintillation counting (pp. 246–57). New York: Pergamon Press.

    Google Scholar 

  • Reynolds, G.T., Harrison, F.B., and Salvini, G. (1950). Liquid scintillation counters. The Physical Review 78: 488.

    Article  Google Scholar 

  • Rheinberger, Hans-Jörg (1997). Toward a history of epistemic things. Synthesizing proteins in the test tube. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Rheingans, Friedrich G. (1988). Hans Geiger und die elektrischen Zählmethoden, 1908–1928. Berlin: D.A.V.I.D. Verlagsgesellschaft.

    Google Scholar 

  • Rothchild, Seymour (ed.) (1963). Advances in tracer methodology. Vol. 1. New York: Plenum Press.

    Google Scholar 

  • Rothchild, Seymour (ed.) (1965). Advances in tracer methodology. Vol. 2. New York: Plenum Press.

    Google Scholar 

  • Rothchild, Seymour (ed.) (1966). Advances in tracer methodology. Vol. 4. New York: Plenum Press.

    Google Scholar 

  • Rothchild, Seymour (ed.) (1966). Advances in tracer methodology. Vol. 3. New York: Plenum Press.

    Google Scholar 

  • Ruben, Samuel and Kamen, Martin D. (1940). Radioactive carbon of long half-life. The Physical Review 57: 549.

    Article  Google Scholar 

  • Schräm, E. and Lombaert, R. (1963). Organic scintillation detectors, counting of low-energy beta emitters. Amsterdam: Elsevier.

    Google Scholar 

  • The University of Chicago Publications Office (1991). One in Spirit. A Retrospective View of the University of Chicago on the Occasion of its Centennial. Chicago: The University of Chicago Publications Office.

    Google Scholar 

  • Trenn, Thaddeus J. (1976). Die Erfindung des Geiger-Müller-Zählrohres. Deutsches Museum, Abhandlungen und Berichte 44: 54–64.

    Google Scholar 

  • Trenn, Thaddeus J. (1986). The Geiger-Müller counter of 1928. Annals of Science 43: 111–35.

    Article  Google Scholar 

  • Utting, G.R. (1958). The design of a commercial liquid scintillation coincidence counter, in C.G. Bell and F.N. Hayes (eds.), Liquid Scintillation Counting (pp. 67–73). New York: Pergamon Press.

    Google Scholar 

  • Weart, Spencer R. (1988). Nuclear fear. A history of images. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Whitehouse, W.J. and Putman, J.L. (1953). Radioactive isotopes. An introduction to their preparation, measurement and use. Oxford: Clarendon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rheinberger, HJ. (2001). Putting Isotopes to Work: Liquid Scintillation Counters, 1950–1970. In: Joerges, B., Shinn, T. (eds) Instrumentation Between Science, State and Industry. Sociology of the Sciences, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9032-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9032-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0242-7

  • Online ISBN: 978-94-010-9032-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics