Skip to main content

Factors limiting gene transfer in bacteria

  • Chapter
Bacterial Genetics in Natural Environments

Abstract

The bacteria comprise a vast and diverse group of which only a small proportion have been investigated in any detail. However, mechanisms that enable genetic exchange between individual cells appear to be a ubiquitous feature. The occurrence of plasmid-mediated conjugation and DNA transfer, bacteriophage-mediated DNA transduction and transformation with naked DNA have all been demonstrated in the laboratory for many different groups. Culture conditions and other factors which promote or inhibit genetic interactions have been identified but it is not clear how these observations relate to the behaviour of the bacteria in their native environments. Evidence for naturally-occurring intergeneric gene transfer comes from the discovery of antibiotic resistance genes, transposons, insertion elements and plasmids with similar DNA sequences in unrelated bacterial isolates. Often the (G + C) content and distribution of restriction endonuclease recognition sites in these DNA elements differs significantly from that in the host organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Johnston AWB, Setchell SM, Beringer JE. Interspecific crosses between Rhizobium leguminosarum and R. meliloti: formation of haploid recombinants and of R-primes. J Gen Microbiol 1978; 104: 209–218.

    Google Scholar 

  2. Stewart GJ, Carlson CA. The biology of natural transformation. Annu Rev Microbiol 1986; 40: 211–235.

    Article  PubMed  CAS  Google Scholar 

  3. Sisco KL, Smith HO. Sequence-specific DNA uptake in Haemophilus transformation. Proc Natl Acad Sci USA 1979; 76: 972–976.

    Article  PubMed  CAS  Google Scholar 

  4. Stuy JH. Restriction enzymes do not play a significant role in Haemophilus homospecific or heterospecific transformation. J Bacteriol 1976; 128: 212–220.

    PubMed  CAS  Google Scholar 

  5. Bron S, Luxen E, Venema G, Trautner TA. Restriction and modification in B. subtilis. Effects on transformation and transfection with native and single-stranded DNA. Mol Gen Genet 1980; 179: 103–110.

    Article  PubMed  CAS  Google Scholar 

  6. Bron S, Luxen E, Trautner TA. Restriction and modification in B. subtilis. The role of homology between donor and recipient DNA in transformation and transfection. Mol Gen Genet 1980; 179: 111–117.

    Article  PubMed  CAS  Google Scholar 

  7. Marrs B. Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 1974; 71: 971–973.

    Article  PubMed  CAS  Google Scholar 

  8. Chater KF, Hopwood DA. Diversity of bacterial genetics. In: Hopwood DA, Chater FK, eds. Genetics of Bacterial Diversity. London: Academic Press, 1989: 23–52.

    Google Scholar 

  9. Willetts N. Plasmids. In: Genetics of Bacteria. Scaife J, Leach D, Galizzi A, eds. London: Academic Press, 1985: 165–195.

    Google Scholar 

  10. Woese C. Bacterial evolution. Microbiol Rev 1987; 51: 221–271.

    PubMed  CAS  Google Scholar 

  11. Breton AP, Jaoua S, Guespin-Michel J. Transfer of plasmid RP4 to Myxococcus xanthus and evidence for its integration into the chromosome. J Bacteriol 1985; 161: 523–528.

    PubMed  CAS  Google Scholar 

  12. Guiney DG, Hasegawa P, Davis CE. Plasmid transfer from Escherichia coli to Bacteroides fragilis: differential expression of antibiotic resistance pheno- types. Proc Natl Acad Sci USA 1984; 81: 7203–7206.

    Article  PubMed  CAS  Google Scholar 

  13. Binns AN, Thomashaw MF. Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 1988; 42: 575–606.

    Article  CAS  Google Scholar 

  14. Heinemann JA, Sprague GF. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 1989; 340: 205–209.

    Article  PubMed  CAS  Google Scholar 

  15. Trieu-Cuot P, Carlier C, Martin P, Courvalin P. Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiol Lett 1987; 48: 289–294.

    Article  CAS  Google Scholar 

  16. Mazodier P, Petter R, Thompson C. Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 1989; 171: 3583–3585.

    PubMed  CAS  Google Scholar 

  17. Trieu-Cuot P, Carlier C, Courvalin P. Conjugative plasmid transfer from Enterococcus faecalis to Escherichia coli. J Bacteriol 1988; 170: 4388–4391.

    PubMed  CAS  Google Scholar 

  18. Buchanan-Wollaston V, Passiatore JE, Cannon F. The mob and oriT mobilization functions of a bacterial plasmid promote its transfer to plants. Nature 1987; 328: 172–175.

    Article  CAS  Google Scholar 

  19. Hirsch PR. Plasmid-determined bacteriocin production by Rhizobium leguminosarum. J Gen Microbiol 1979; 113: 219–228.

    CAS  Google Scholar 

  20. Brewin NJ, Beringer JE, Buchanan-Wollaston AV, Johnston AWB, Hirsch PR. Transfer of symbiotic genes with bacteriocinogenic plasmids in Rhizobium leguminosarum. J Gen Microbiol 1980; 116: 261–270.

    CAS  Google Scholar 

  21. Döhler K, Klingmüller W. Genetic interaction of Rhizobium leguminosarum biovar viceae with Gram-negative bacteria. In: Klingmüller W, ed. Risk assessment for deliberate releases. Berlin-Heidelberg: Springer-Verlag, 1988: 18–28.

    Google Scholar 

  22. Bullerjahn GS, Benzinger RH. Genetic transformation of Rhizobium leguminosarum by plasmid DNA. J Bacteriol 1982; 150: 421–424.

    PubMed  CAS  Google Scholar 

  23. Buchanan-Wollaston V. Generalized transduction in Rhizobium leguminosarum. J Gen Microbiol 1979; 112: 135–142.

    Google Scholar 

  24. Furner IJ, Huffman GA, Amasino RM, Garfinkel DJ, Gordon MP, Nester EW. An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 1986; 319: 422–427.

    Article  CAS  Google Scholar 

  25. Carlson TA, Chelm BK. Apparent eukaryotic origin of glutamine synthetase II from the bacterium Bradyrhizobium japonicum. Nature 1986; 322: 568–570.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Hirsch, P.R. (1990). Factors limiting gene transfer in bacteria. In: Fry, J.C., Day, M.J. (eds) Bacterial Genetics in Natural Environments. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1834-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1834-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7318-9

  • Online ISBN: 978-94-009-1834-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics