Skip to main content

Quantifying and Characterizing Distributive Conjugal Transfer in Mycobacterium smegmatis

  • Protocol
  • First Online:
Horizontal Gene Transfer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2075))

Abstract

Horizontal gene transfer (HGT) in prokaryotes disseminates genetic information throughout a population and can facilitate adaptation and evolution of the species. Mycobacteria utilize an atypical method of conjugation called distributive conjugal transfer (DCT), which results in mosaic genomes and the potential for accelerated evolution beyond that enabled by the more classical oriT-mediated conjugation. The following is a description of the basic DCT protocol, some possible variations of the assay, and examples of downstream applications to better understand mycobacterial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3(9):722–732. https://doi.org/10.1038/nrmicro1235

    Article  CAS  PubMed  Google Scholar 

  2. Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3(9):711–721

    Article  CAS  PubMed  Google Scholar 

  3. Derbyshire KM, Gray TA (2014) Distributive conjugal transfer: new insights into horizontal gene transfer and genetic exchange in mycobacteria. Microbiol Spectr 2(1):MGM2-0022-2013. https://doi.org/10.1128/microbiolspec.MGM2-0022-2013

    Article  CAS  PubMed  Google Scholar 

  4. de la Cruz F, Frost LS, Meyer RJ, Zechner EL (2010) Conjugative DNA metabolism in gram-negative bacteria. FEMS Microbiol Rev 34(1):18–40. 1111/j.1574–6976.2009.00195.x

    Article  PubMed  Google Scholar 

  5. Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EPC, de la Cruz F (2010) Mobility of plasmids. Microbiol Mol Biol Rev 74(3):434–452. https://doi.org/10.1128/mmbr.00020-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cavalli LL, Heslot H (1949) Recombination in bacteria; outcrossing Escherichia coli K 12. Nature 164(4181):1057

    Article  CAS  PubMed  Google Scholar 

  7. Hayes W (1953) The mechanism of genetic recombination in E. coli. Cold Spring Harb Symp Quant Biol 18:75–93

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Karnati PK, Takacs CM, Kowalski JC, Derbyshire KM (2005) Chromosomal DNA transfer in Mycobacterium smegmatis is mechanistically different from classical Hfr chromosomal DNA transfer. Mol Microbiol 58(1):280–288

    Article  CAS  PubMed  Google Scholar 

  9. Gray TA, Krywy JA, Harold J, Palumbo MJ, Derbyshire KM (2013) Distributive conjugal transfer in mycobacteria generates progeny with meiotic-like genome-wide mosaicism, allowing mapping of a mating identity locus. PLoS Biol 11(7):e1001602. https://doi.org/10.1371/journal.pbio.1001602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coros A, Callahan B, Battaglioli E, Derbyshire KM (2008) The specialized secretory apparatus ESX-1 is essential for DNA transfer in mycobacterium smegmatis. Mol Microbiol 69(4):794–808

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Flint JL, Kowalski JC, Karnati PK, Derbyshire KM (2004) The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. Proc Natl Acad Sci U S A 101(34):12598–12603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gray TA, Clark RR, Boucher N, Lapierre P, Smith C, Derbyshire KM (2016) Intercellular communication and conjugation are mediated by ESX secretion systems in mycobacteria. Science 354(6310):347–350. https://doi.org/10.1126/science.aag0828

    Article  CAS  PubMed  Google Scholar 

  13. Daffe M, Crick DC, Jackson M (2014) Genetics of capsular polysaccharides and cell envelope (Glyco)lipids. Microbiol Spectr 2(4.):MGM2-0021-2013). https://doi.org/10.1128/microbiolspec.MGM2-0021-2013

  14. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A 105(10):3963–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shiloh MU, DiGiuseppe Champion PA (2009) To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Curr Opin Microbiol 13:1–7

    Google Scholar 

  16. Boritsch EC, Khanna V, Pawlik A, Honoré N, Navas VH, Ma L, Bouchier C, Seemann T, Supply P, Stinear TP, Brosch R (2016) Key experimental evidence of chromosomal DNA transfer among selected tuberculosis-causing mycobacteria. Proc Natl Acad Sci U S A 113(35):9876–9881. https://doi.org/10.1073/pnas.1604921113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sapriel G, Konjek J, Orgeur M, Bouri L, Frezal L, Roux AL, Dumas E, Brosch R, Bouchier C, Brisse S, Vandenbogaert M, Thiberge JM, Caro V, Ngeow YF, Tan JL, Herrmann JL, Gaillard JL, Heym B, Wirth T (2016) Genome-wide mosaicism within Mycobacterium abscessus: evolutionary and epidemiological implications. BMC Genomics 17:118. https://doi.org/10.1186/s12864-016-2448-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, Majlessi L, Criscuolo A, Tap J, Pawlik A, Fiette L, Orgeur M, Fabre M, Parmentier C, Frigui W, Simeone R, Boritsch EC, Debrie AS, Willery E, Walker D, Quail MA, Ma L, Bouchier C, Salvignol G, Sayes F, Cascioferro A, Seemann T, Barbe V, Locht C, Gutierrez MC, Leclerc C, Bentley SD, Stinear TP, Brisse S, Medigue C, Parkhill J, Cruveiller S, Brosch R (2013) Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 45(2):172–179. https://doi.org/10.1038/ng.2517

    Article  CAS  PubMed  Google Scholar 

  19. Parsons LM, Jankowski CS, Derbyshire KM (1998) Conjugal transfer of chromosomal DNA in Mycobacterium smegmatis. Mol Microbiol 28:571–582

    Article  CAS  PubMed  Google Scholar 

  20. Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR Jr (1990) Isolation and characterization of efficient plasmid transformation mutants of mycobacterium smegmatis. Mol Microbiol 4(11):1911–1919

    Article  CAS  PubMed  Google Scholar 

  21. Lee MH, Hatfull GF (1993) Mycobacteriophage L5 integrase-mediated site-specific integration in vitro. J Bacteriol 175(21):6836–6841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Judd J, Boucher N, Van Roey E, Gray TA, Derbyshire KM (2017) Application of distributive conjugal DNA transfer in Mycobacterium smegmatis to establish a genome-wide synthetic genetic array. J Bacteriol. https://doi.org/10.1128/JB.00410-17

Download references

Acknowledgments

This work was supported by funding from the NIH (AI042308 and AI07258) and NSF (MCB-1614178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith M. Derbyshire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Clark, R.R., Gray, T.A., Derbyshire, K.M. (2020). Quantifying and Characterizing Distributive Conjugal Transfer in Mycobacterium smegmatis. In: de la Cruz, F. (eds) Horizontal Gene Transfer. Methods in Molecular Biology, vol 2075. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9877-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9877-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9876-0

  • Online ISBN: 978-1-4939-9877-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics