Skip to main content

Vision in elasmobranchs

  • Chapter
The Visual System of Fish

Abstract

Man has been fascinated with elasmobranchs — the sharks, skates and rays — for centuries. The visual sense of these sometimes-dangerous creatures has been much maligned; elasmobranchs have been described as seeing poorly and only at night. Since the last large review on vision in elasmobranchs (Gruber and Cohen, 1978), the field has expanded greatly. New techniques, such as immunohistochemistry and patch clamping, have been applied to the study of vision in general and the elasmobranch visual system in particular. The elasmobranch has gained new status as a model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ashmore, J.F. and Falk, G. (1980a) Responses of rod bipolar cells in the dark- adapted retina of dogfish, Scyliorhinus canícula. J. Physiol Lond., 300, 115–50.

    Google Scholar 

  • Ashmore, J.F. and Falk, G. (1980b) The single-photon signal in rod bipolar cells of the dogfish retina. J. PhysiolLond., 300, 151–66.

    Google Scholar 

  • Beer, T. (1894) Die Accommodation des Fischauges. Pflügers Arch. ges. Physiol., 58, 523–650.

    Article  Google Scholar 

  • Best, A.C.G. and Nicol, J.A.C. (1980) Eyeshine in fishes. A review of ocular reflectors. Can. J. Zool., 58, 945–56.

    Article  Google Scholar 

  • Brecha, N. (1983) Retinal transmitters: histochemical and biochemical studies, in Chemical Neuroanatomy (ed. P. Emson ), Raven Press, New York, pp. 85–129.

    Google Scholar 

  • Brin, K.P. and Ripps, H. (1977) Rhodopsin photoproducts and rod sensitivity in the skate retina. J. Gen. Physiol., 69, 97–120.

    Article  Google Scholar 

  • Brunken, W.J., Witkovsky, P. and Karten, H.J. (1986) Retinal neurochemistry of three elasmobranch species: an immunohistochemical approach. J. Comp. Neurol., 243, 1–12.

    Article  Google Scholar 

  • Bruun, A., Ehinger, B. and Sytsma, V.M. (1984) Neurotransmitter localization in the skate retina. Brain Res. (Amsterdam), 295, 233–48.

    Article  Google Scholar 

  • Bruun, A., Ehinger, B., Sytsma, V. and Ehinger, B. (1985) Retinal neuropeptides in the skates, R.ja davala, R. radiata, R. ocellata (Elasmobranchii). Cell Tissue Res. (Amsterdam), 241, 17–24.

    Google Scholar 

  • Burnside, B. and Nagle, B. (1983) Retinomotor movement of photoreceptors and retinal pigment epithelium: mechanisms and regulation, in Progress in Retinal Research, Pergamon Press, New York, Volume 2, pp. 67–109.

    Google Scholar 

  • Byzov, A.L. and Trifonov, J.A. (1968) The response to electric stimulation of horizontal cells in the carp retina. Vision Res., 8, 817–22.

    Article  Google Scholar 

  • Charman, W.N. and Tucker, J. (1973) The optical system of the goldfish eye. Vision Res., 13, 1–8.

    Article  Google Scholar 

  • Clack, J.W. and Pepperberg, D.R. (1982) Desensitization of skate photoreceptors by bleaching and background light. J. Gen. Physiol., 80, 863–83.

    Article  Google Scholar 

  • Clack, J.W. and Pepperberg, D.R. (1984) Nucleoside triphosphates and hydrolysis- resistant analogues: effects on Pm responses in the isolated skate retina. Vision Res., 24, 1859–64.

    Article  Google Scholar 

  • Clarke, G.L. (1936) On the depth at which fish can see. Ecology, 17, 452–6.

    Article  Google Scholar 

  • Cohen, A.I. (1972) Rods and cones, in Handbook of Sensory Physiology, Vol. VII12, Physiology of Photoreceptor Organs (ed. H.G.F. Fuortes ), Springer-Verlag, Berlin, pp. 63–110.

    Google Scholar 

  • Cohen, J.L. (1980) Functional organization of the retina of the lemon shark (.Negaprion brevirostris, Poey): an anatomical and electrophysiological approach, PhD thesis, University of Miami.

    Google Scholar 

  • Cohen, J.L. (1985) Effects of glycine and GAB A on the ganglion cells of the retina of the skate Raja erinacea. Brain Res. (Amsterdam), 332, 169–73.

    Article  Google Scholar 

  • Cohen, J.L. (1988) The action of 7-aminobutyric acid on the horizontal cells of the skate retina. Brain Res., 455, 366–9.

    Article  Google Scholar 

  • Cohen, J.L. and Gruber, S.H. (1985) Spectral input to lemon shark (Negaprion brevirostris) ganglion cells. J. Comp. Physiol., A, 156, 579–86.

    Article  Google Scholar 

  • Cohen, J.L. and Linser, P.J. (1987) Effects of acetazolamide on the light-evoked responses of the horizontal cells of the skate. Invest. Ophthalmol. Vis. Sci., 28 (Supp.), 404.

    Google Scholar 

  • Cohen, J.L., Gruber, S.H. and Hamasaki, D.I. (1977) Spectral sensitivity and Purkinje shift in the retina of the lemon shark Negaprion brevirostris (Poey). Vision Res., 17, 787–92.

    Article  Google Scholar 

  • Cohen, J.L., Organisciak, D.T. and Hueter, R.E. (1989) Spectral sensitivity in the juvenile lemon shark: ERG, ganglion cell and visual pigment data. Invest. Ophthal. Vis. Sci. Supply 30, 283.

    Google Scholar 

  • Crescitelli, F., McFall-Ngai, M. and Horwitz, J. (1985) The visual pigment sensitivity hypothesis: further evidence from fishes of varying habitats. J. Comp. Physiol., A, 157, 323–33.

    Article  Google Scholar 

  • Denton, E.J. and Shaw, T.I. (1963) The visual pigments of some deep-sea elasmobranchs. J. Mar. Biol. Ass. U.K., 43, 65–70.

    Article  Google Scholar 

  • Denton, E.J. and Warren, F.J. (1956) Visual pigments of deep-sea fish. Nature, Lond., 178, 1059.

    Article  Google Scholar 

  • Dowling, J.E. (1960) The chemistry of visual adaptation in the rat. Nature, Lond., 188, 114–18.

    Article  Google Scholar 

  • Dowling, J.E. (1963) Neural and photochemical mechanisms of visual adaptation in the rat. J. Gen. Physiol., 46, 1287–1301.

    Article  Google Scholar 

  • Dowling, J.E. (1987) The Retina. An Approachable Part of the Brain, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Dowling, J.E. and Ehinger, B. (1978) The interplexiform cell system. I. Synapses of the dopaminergic neurons of the goldfish retina. Proc. R. Soc., B, 201, 7–26.

    Google Scholar 

  • Dowling, J.E. and Ripps, H. (1970) Visual adaptation in the retina of the skate. J. Gen. Physiol., 56, 491–520.

    Article  Google Scholar 

  • Dowling, J.E. and Ripps, H. (1971) S-potentials in the skate retina. Intracellular recordings during light and dark adaptation. J. Gen. Physiol., 58, 163–89.

    Article  Google Scholar 

  • Dowling, J.E. and Ripps, H. (1972) Adaptation in skate photoreceptors. J. Gen. Physiol., 60, 698–719.

    Article  Google Scholar 

  • Dowling, J.E. and Ripps, H. (1973) Neurotransmission in the distal retina: the effect of magnesium on horizontal cell activity. Nature, Lond., 242, 101–3.

    Article  Google Scholar 

  • Dowling, J.E. and Ripps, H. (1977) The proximal negative response and visual adaptation in the skate retina. J. Gen. Physiol., 69, 57–74.

    Article  Google Scholar 

  • Franz, V. (1931) Die Akkommodation des Selachierauges and seine Abblendungs- apparate, nebst Befunden an der Retina. Zool. Jb. Abt. Zool. Physiol., 49, 323–462.

    Google Scholar 

  • Franz, V. (1934) Vergleichende Anatomie des Wirbeltierauges, in Handbuch der Vergleichende Anatomie der Wirbeltiere, Bd 2, III, Höhere Sinnesorgane (eds L. Bolk, E. Göppert, E. Kallius and W. Lubosch), Urban and Schwartzenber, Berlin, reprinted ( 1967 ) A. Asher and Company, Amsterdam, pp. 1009–1023.

    Google Scholar 

  • Gruber, S.H. (1982) Role of the lemon shark, Negaprion brevirostris (Poey) as a predator in the tropical marine environment: a multidisciplinary study. Florida Sd., 45, 46–75.

    Google Scholar 

  • Gruber, S.H and Cohen, J.L. (1978) Visual system of the elasmobranchs: state of the art 1960–1975, in Sensory Biology of Sharks, Skates, and Rays (eds E.S. Hodgson and R.F. Matthewson ), US Government Printing Office, Washington, DC, pp. 11–05.

    Google Scholar 

  • Gruber, S.H. and Cohen, J.L. (1985) Visual system of the white shark, Carcharodon carcharias, with emphasis on retinal structure. Mem. Sth. Calif. Acad. Sci., 9, 61–72.

    Google Scholar 

  • Gruber, S.H., Hamasaki, D.I. and Bridges, C.D.B. (1963) Cones in the retina of the lemon shark (Negaprion brevirostris). Vision Res., 3, 397–9.

    Article  Google Scholar 

  • Hannover, A. (1840) Uber die Netzhaut und ihre Gehirnsubstanz bei Wirbelthieren mit Ausnahme des Menschen. Arch. Anat. Physiol, wiss. Med., 000, 320–45.

    Google Scholar 

  • Heath, A.R. and Hindman, (1987) Cyclic AMP induces dispersive pigment granule movement in the shark tapetum lucidum. Invest. Ophthalmol. Vis. Sci. 28 (Supp.), 263.

    Google Scholar 

  • Helmholtz, H. von (1924) Treatise on Physiological Optics (transl. from Handbuch der Physiologischen Optik, 3rd edn ( 1909 ), Voss, Leipzig, by J.P.C. Southall) American Optical Society.

    Google Scholar 

  • Hueter, R.E. (1980) Physiological optics of the eye of the juvenile lemon shark (Negaprion brevirostris), MS thesis, University of Miami.

    Google Scholar 

  • Hueter, R.E. (1988) The organization of spatial vision in the juvenile lemon shark (Negaprion brevirostris): retinotectal projection, retinal topography, and implications for the visual ecology of sharks, PhD thesis, University of Florida.

    Google Scholar 

  • Hueter, R.E. and Gruber, S.H. (1980) Retinoscopy of aquatic eyes. Vision Res., 20, 197–200.

    Article  Google Scholar 

  • Hueter, R.E. and Gruber, S.H. (1982) Recent advances in studies of the visual system of the juvenile lemon shark (Negaprion brevirostris). Florida Sci., 45, 11–25.

    Google Scholar 

  • Hughes, A. (1977) The topography of vision in mammals of contrasting lifestyle: comparative optics and retinal organization, in Handbook of Sensory Physiology, Vol. VII/5: The Visual System in Vertebrates (ed. F. Crescitelli ), Springer-Verlag, Berlin, pp. 613–756.

    Google Scholar 

  • Kohbara, J., Niwa, H. and Oguri, M. (1987) Comparative light microscopic studies on the retinas of some elasmobranch fishes. Nippon Suisan Gakkaishi (Bull. Japan. Soc. Scient. Fish.), 53, 2117–25.

    Article  Google Scholar 

  • Lasater, E.M., Dowling, J.E. and Ripps, H. (1984) Pharmacological properties of isolated horizontal and bipolar cells from the skate retina. J. Neurosci., 4, 1966–75.

    Google Scholar 

  • Linser, P. and Moscona, A.A. (1984) Variable CA-II compartmentalization in vertebrate retina. Ann. N.Y. Acad. Sci., 429, 430–46.

    Article  Google Scholar 

  • Linser, P.J., Smith K. and Angelides, K. (1985) A comparative analysis of glial and neuronal markers in the retina of fish: variable character of horizontal cells. J. Comp. Neurol., 237, 264–72.

    Article  Google Scholar 

  • Mangel, S.C. and Dowling, J.E. (1987) The interplexiform-horizontal cell system of the fish retina: effects of dopamine, light stimulation and time in dark. Proc. R. Soc., B, 231, 91–121.

    Article  Google Scholar 

  • Marc, R. and Liu, W.L.S. (1984) Horizontal cell synapses onto glycine-accumulating interplexiform cells. Nature, Lond., 311, 266–9.

    Article  Google Scholar 

  • Marks, W.B. (1965) Visual pigments of single goldfish cones. J. Physiol., 178, 14–32.

    Google Scholar 

  • Meyer, D.L. and Schwassmann (1970) Electrophysiological method for determination of refractive state in fish eyes. Vision Res., 10, 1301–3.

    Article  Google Scholar 

  • Muller, H. (1851) Zur Histologie der Netzhaut. Z. wiss. Zool., 3, 234–7.

    Google Scholar 

  • Münz, F.W. (1957) Photosensitive pigments from retinas of deep-sea fishes. Science, N.Y., 125, 1142–3.

    Article  Google Scholar 

  • Münz, F.W. (1958) Photosensitive pigments from the retinae of certain deep-sea fishes. J. Physiol, Lond., 140, 220–35.

    Google Scholar 

  • Naka, K.I. and Witkovsky, P. (1972) Dogfish ganglion cell discharge resulting from extrinsic polarization of the horizontal cells. J. Physiol., Lond., 223, 449–60.

    Google Scholar 

  • Naka, K.I., Chappell, R.L., Sakuranaga, M. and Ripps, H. (1985) Dynamic properties of skate horizontal cells. Biol. Bull. Mar. Biol. Lab., Woods Hole, 169, 555.

    Google Scholar 

  • Northmore, D., Volkman, F.C. and Yager, D. (1978) Vision in fishes: color and pattern, in The Behavior of Fish and Other Aquatic Animals (ed. D.I. Mostofsky ), Academic Press, New York, pp. 79–136.

    Google Scholar 

  • Oyama, T. and Jitsumori, M. (1973) A behavioral study of color mixture in the carp. Vision Res., 13, 2299–2308.

    Article  Google Scholar 

  • Pepperberg, D.R. (1984) Rhodopsin and visual adaptation: analysis of photoreceptor thresholds in the isolated skate retina. Vision Res., 24, 357–66.

    Article  Google Scholar 

  • Pepperberg, D.R., Brown, P.K., Lurie, M. and Dowling, J.E. (1978) Visual pigment and photoreceptor sensitivity in the isolated skate retina. J. Gen. Physiol., 71, 369–96.

    Article  Google Scholar 

  • Peterson, E.H. and Rowe, M.H. (1980) Different regional specializations of neurons in the ganglion cell layer and inner plexiform layer of the California horned shark, Heterodontus francisci. Brain Res. (Amsterdam), 201, 195–201.

    Google Scholar 

  • Piccolino, M. and Witkovsky, P. (1984) Local circuits in the distal retina of vertebrates, in Comparative Physiology of Sensory Systems (eds L. Bolis, R.D. Keynes and S.H.P. Maddrell ), Cambridge University Press, Cambridge, pp. 371–04.

    Google Scholar 

  • Powers, M.K. and Easter, S.S. (1978) Wavelength discrimination by the goldfish near absolute visual threshold. Vision Res., 18, 1149–54.

    Article  Google Scholar 

  • Pumphrey, R.J. (1961) Concerning vision, in The Cell and Organisms (eds J.A. Ramsay and V.B. Wiggles worth ), Cambridge University Press, London, pp. 193–208.

    Google Scholar 

  • Ripps, H., Shakib, M. and MacDonald, E.D. (1976) Peroxidase uptake by photoreceptor terminals of the skate retina. J. Cell Biol., 70, 86–96.

    Article  Google Scholar 

  • Ripps, H., Shakib, M., Chappell, R.L. and MacDonald, E.D. (1979) Ultrastructural localization and X-ray analysis of calcium-induced electron-dense deposits in the skate retina. Neuroscience, 4, 1689–1703.

    Article  Google Scholar 

  • Ritchie, T.C. and Leonard, R.B. (1983) Immunocytochemical demonstration of serotonergic neurons and processes in the retina and optic nerve of the stingray, Dasyatis sabina. Brain Res. ( Amsterdam ), 267, 352–6.

    Google Scholar 

  • Rochon-Duvigneaud, A. (1943) Les Yeux et la Vision des Vertébrés, Masson et Cie, Paris.

    Google Scholar 

  • Rushton, W.A.H. (1961) Rhodopsin measurement and dark-adaptation in a subject deficient in cone vision. J. Physiol., Lond., 156, 193–205.

    Google Scholar 

  • Sakai, H.M., Naka, K.I., Chappell, R.L. and Ripps, H. (1986) Synaptic contacts in the outer plexiform layer of the skate retina. Biol. Bull. Mar. Biol. Lab., Woods Hole, 170, 497–8.

    Google Scholar 

  • Schultze, M. (1866) Zur Anatomie und Physiologie der Retina. Arch. Mikrosk. Anat. EntwMech., 2, 165-286.

    Google Scholar 

  • Shiells, R.A. and Falk, G. (1987) Joro spider venom: glutamate agonist and antagonist on the rod retina of the dogfish. Neurosci. Lett., 77, 221–5.

    Google Scholar 

  • Shiells, R.A., Falk, G. and Naghshineh, S. (1986) Iontophoretic study of the action of excitatory amino acids on rod horizontal cells of the dogfish retina. Proc. R. Soc., B, 227, 121–35.

    Article  Google Scholar 

  • Sivak, J.G. (1973) Interrelation of feeding behavior and accommodative lens movements in some species of North American freshwater fishes. J. Fish. Res. Bd Can., 30, 1141–6.

    Article  Google Scholar 

  • Sivak, J.G. (1974) Accommodation of the lemon shark eye (Negaprion brevirostris). Vision Res., 14, 215–16.

    Article  Google Scholar 

  • Sivak, J.G. (1975) The accommodative significance of the ‘ramp’ retina of the eye of the stingray. Vision Res., 16, 945–50.

    Article  Google Scholar 

  • Sivak, J.G. (1978) Refraction and accommodation of the elasmobranch eye, in Sensory Biology of Sharks, Skates and Rays (eds E.S. Hodgson and R.F. Mathewson ), US Government Printing Office, Washington, DC, pp. 107–16.

    Google Scholar 

  • Sivak, J.G. and Gilbert, P.W. (1976) Refractive and histological study of accommo-dation in two species of sharks (Ginglymostoma cirratum and Carcharhinus milberti). Can. J. Zool., 54, 1811–17.

    Article  Google Scholar 

  • Spielman, S.L. and Gruber, S.H. (1983) Development of a contact lens for refracting aquatic animals. Ophthalmic Physiol. Opt., 3, 255–60.

    Article  Google Scholar 

  • Stell, W.K. (1972) The structure and morphologic relations of rods and cones in the retina of the spiny dogfish Squalus. Comp. Biochem. Physiol., 42A, 141–52.

    Article  Google Scholar 

  • Stell, W.K. and Harosi, F.I. (1976) Cone structure and visual pigment content in the retina of the goldfish. Vision Res., 16, 647–57.

    Article  Google Scholar 

  • Stell, W.K. and Witkovsky, P. (1973) Retinal structure in the smooth dogfish Mustelus canis: light microscopy of photoreceptor and horizontal cells. J. Comp. Neurol, 148, 35–45.

    Google Scholar 

  • Szamier, R.B. and Ripps, H. (1983) The visual cells of the skate retina: structure, histochemistry, and disc-shedding properties. J. Comp. Neurol., 215, 51–62.

    Article  Google Scholar 

  • Tamura, T. (1957) A study of visual perception in fish, especially on resolving power and accommodation. Bull. Jap. Soc. Scient. Fish., 22, 536–57.

    Google Scholar 

  • Tamura, T. and Wisby, W.J. (1963) The visual sense of pelagic fishes especially the visual axis and accommodation. Bull. Mar. Sci., 13, 433–48.

    Google Scholar 

  • Toyoda, J.I., Saito, T. and Kondo, H. (1978) Three types of horizontal cells in the stingray retina: their morphology and physiology. J. Comp. Neurol., 179, 569–80.

    Article  Google Scholar 

  • Verrier, M.L. (1930) Contribution à l’étude de la vision chez les selachiens. Ann. Sci. Nat. Zool Biol. Anim., 13, 103–8.

    Google Scholar 

  • Walls, G.L. (1942) The Vertebrate Eye and Its Adaptive Radiation, Cranbrook Institute of Science, Bloomfield Hills, Michigan.

    Google Scholar 

  • Wang, C.S.J. (1968) The eye of fishes with special reference to pigment migration, PhD thesis, Cornell University.

    Google Scholar 

  • Yager, D. (1967) Behavioral measures and theoretical analysis of spectral sensitivity and spectral saturation in the goldfish. Vision Res., 7, 707–27.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Chapman and Hall

About this chapter

Cite this chapter

Cohen, J.L. (1990). Vision in elasmobranchs. In: Douglas, R., Djamgoz, M. (eds) The Visual System of Fish. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0411-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0411-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6672-3

  • Online ISBN: 978-94-009-0411-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics