Skip to main content

Part of the book series: Purinergic and Pyrimidinergic Signalling ((HEP,volume 151 / 1))

Abstract

Ecto-nucleotidases are cell surface-located enzymes which catalyze extra-cellular nucleotide hydrolysis. An extracellular hydrolysis pathway for nucleotides has been detected in essentially all tissues and also in a large variety of cell culture systems. Its general features include the following:

  1. 1.

    Nucleoside 5′-triphosphates are sequentially metabolized to the nucleoside with nucleoside 5′-diphosphate and nucleoside 5′-monophosphate appearing as intermediate products. The nucleoside may then be further deaminated to inosine by adenosine deaminase (Franco et al. 1997).

  2. 2.

    Not only ATP, ADP, and AMP but essentially all physiologically occurring purine and pyrimidine nucleotides are hydrolyzed.

  3. 3.

    Extracellular hydrolysis of nucleotides is not inhibited by known inhibitors of intracellular ATPases such as P-type, F-type, and V-type ATPases.

  4. 4.

    Nucleotide hydrolysis depends on divalent cations, generally millimolar concentrations of either Ca2+ or Mg2+.

  5. 5.

    Nucleotide hydrolysis has an alkaline pH optimum.

  6. 6.

    A major function of the extracellular enzyme chain appears to be the termination of the physiological action of nucleotides released from cells.

To date no information is available as to whether the hydrolysis of ATP is used to drive energy-dependent processes (for reviews of the earlier work see Arch and Newsholme 1978; Fox 1978; Pearson 1985; Dhalla and Zhao 1988; Ziganshin et al. 1994a; Plesner 1995; Sarkis et al. 1995; Beaudoin et al. 1996; Zimmermann 1996a,b; Plesner et al. 1997; Zimmermann and Pearson 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Airas L (1998) CD73 and adhesion of B-Cells to follicular dendritic cells. Leuk Lymphoma 29: 37–47

    Article  PubMed  CAS  Google Scholar 

  • Aleo MF, Sestini S, Pompucci G, Preti A (1996) Enzymatic activities affecting exogenous nicotinamide adenine dinucleotide in human skin fibroblasts. J Cell Physiol 167: 173–176

    Article  PubMed  CAS  Google Scholar 

  • Arch JRS, Newsholme EA (1978) The control of the metabolism and the hormonal role of adenosine. In: Campbell PN, Aldridge WN (eds) Essays in biochemistry 14. Academic Press, London, pp 82–123

    Google Scholar 

  • Asai T, Miura S, Sibley LD, Okabayashi H, Takeuchi T (1995) Biochemical and molecular characterization of nucleoside triphosphate hydrolase isozymes from the parasitic protozoan Toxoplasrna gondii. J Biol Chem 270: 11391–11397

    Article  PubMed  CAS  Google Scholar 

  • Aurivillius M, Hansen OC, Lazrek MBS, Bock E, ()brink B (1990) The cell adhesion molecule Cell-CAM 105 is an ecto-ATPase and a member of the immunoglobulin superfamily. FEBS Lett 264: 267–269

    CAS  Google Scholar 

  • Bächner D, Ahrens M, Betat N, Schröder D, Gross G (1999) Developmental expression analysis of murine autotaxin ( ATX ). Mech Develop 84: 121–125

    Google Scholar 

  • Bailey SJ, Hourani SMO (1995) Effects of suramin on contractions of the guinea-pig vas deferens induced by analogues of adenosine 5’-triphosphate. Br J Pharmacol 114: 1125–1132

    Article  PubMed  CAS  Google Scholar 

  • Barbacci E, Filippini A, Decesaris P, Ziparo E (1996) Identification and characterization of an ecto-ATPase activity in rat Sertoli cells. Biochem Biophys Res Commun 222: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Barcellos CK, Schetinger MRC, Dias RD, Sarkis JJF (1998) In vitro effect of central nervous system active drugs on the ATPase-ADPase activity and acetyl-cholinesterase activity from cerebral cortex of adult rats. Gen Pharmacol 31: 563–567

    Article  PubMed  CAS  Google Scholar 

  • Barret J-M, Ernould A-P, Rouillion M-H, Ferry G, Genton A, Boutin JA (1999) Studies of the potency of protein kinase inhibitors on ATPase activities. Chem Biol Interact 86: 17–27

    Article  Google Scholar 

  • Battastini AMO, da Rocha JBT, Barcellos CK, Dias RD, Sarkis JJF (1991) Characterization of an ATP diphosphohydrolase (EC 3.6.1.5.) in synaptosomes from cerebral cortex of adult rats. Neurochem Res 16: 1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Battastini AMO, Oliveira EM, Moreira CM, Bonan CD, Sarkis JJF, Dias RD (1995) Solubilization and characterization of an ATP diphosphohydrolase (EC 3.6.1.5) from rat brain synaptic plasma membranes. Biochem Mol Biol Int 37: 209–219

    PubMed  CAS  Google Scholar 

  • Beaudoin AR, Sévigny J, Grondin G, Daoud S, Levesque FP (1997) Purification, characterization, and localization of two ATP diphosphohydrolase isoforms in bovine heart. Am J Physiol 273: H673 — H681

    PubMed  CAS  Google Scholar 

  • Beaudoin AR, Sévigny J, Picher M (1996) ATP-diphosphohydrolases, apyrases, and nucleotide phosphohydrolases: Biochemical properties and functions. Biomembranes 5: 369–401

    Google Scholar 

  • Belli SI, Mercuri FA, Sali A. Goding JW (1995) Autophosphorylation of PC-1 (alkaline phosphodiesteraseI/nucleotide pyrophosphatasse) and analysis of the active site. Eur J Biochem 228: 669–676

    CAS  Google Scholar 

  • Belli SI, Sali A, Goding JW (1994) Divalent cations stabilize the conformation of plasma cell membrane glycoprotein PC-1 (alkaline phosphodiesterase I). Biochem J 304: 75–80

    PubMed  CAS  Google Scholar 

  • Belli SI, van Driel IR, Goding JW (1993) Identification and characterization of soluble form of the plasma cell membrane glycoprotein PC-1 (5’-nucleotide phosphodiesterase). Eur J Biochem 217: 421–428

    Article  PubMed  CAS  Google Scholar 

  • Betto R, Senter L, Ceoldo S. Tarricone E, Biral D, Salviati G (1999) Ecto-ATPase activity of alpha-sarcoglycan ( Adhalin ). J Biol Chem 274: 7907–7912

    Google Scholar 

  • Beukers MW, Kerkhof CJM. Van Rhee MA, Ardanuy U, Gurgel C, Widjaja H, Nickel P, Ijzerman AP, Soudijn W (1995) Suramin analogs, divalent cations and ATP gamma S as inhibitors of ecto-ATPase. Naunyn-Schmiedebergs Arch Pharmacol 351: 523–528

    PubMed  CAS  Google Scholar 

  • Biederbick A, Rose S, Elsässer HP (1999) A human intracellular apyrase-like protein, LALP70, localizes to lysosomal/autophagic vacuoles. J Cell Sci 112: 2473–2484

    PubMed  CAS  Google Scholar 

  • Bonan CD, Battastini AMO, Schetinger MRC, Moreira CM, Frassetto SS, Dias RD, Sarkis JJF (1997) Effects of 9-amino-1,2,3,4-tetrahydroacridine (THA) on ATP diphosphohydrolase (EC 3.6.1.5) and 5’-nucleotidase (EC 3.1.3.5) from rat brain synaptosomes. Gen Pharmacol 28: 761–766

    Article  PubMed  CAS  Google Scholar 

  • Bonan CD, Dias MM, Battastini AMO, Dias RD, Sarkis JJF (1998) Inhibitory avoidance learning inhibits ectonucleotidase activities in hippocampal synaptosomes of adult rats. Neurochem Res 23: 977–982

    Article  PubMed  CAS  Google Scholar 

  • Braren R, Glowacki G, Nissen M, Haag F, Koch-Nolte F (1998) Molecular characterization and expression of the gene for mouse NAD’: arginine ecto-mono(ADPribosyl)transferase. Biochem J 336: 561–568

    PubMed  CAS  Google Scholar 

  • Braun N, Lenz C, Gillardon F, Zimmermann M, Zimmermann H (1997) Focal cerebral ischemia enhances glial expression of 5’-nucleotidase. Brain Res 766: 213–226

    Article  PubMed  CAS  Google Scholar 

  • Braun N, Zhu Y, Krieglstein J, Culmsee C, Zimmermann H (1998) Upregulation of the enzyme chain hydrolyzing extracellular ATP following transient forebrain ischemia in the rat. J Neurosci 18: 4891–4900

    PubMed  CAS  Google Scholar 

  • Brownhill VR, Hourani SMO, Kitchen I (1997) Ontogeny of P2-purinoceptors in the longitudinal muscle and muscularis mucosae of the rat isolated duodenum. Br J Pharmacol 122: 225–232

    Article  PubMed  CAS  Google Scholar 

  • Buckley MF, Loveland KA, McKinstry WJ, Garson OM, Goding JW (1990) Plasma membrane glycoprotein PC-1: eDNA cloning of the human molecule, amino acid sequence and chromosomal location. J Biol Chem 265: 17506–17511

    PubMed  CAS  Google Scholar 

  • Bultmann R, Starke K (1995) Reactive red 2: A P2y-selective purinoceptor antagonist and an inhibitor of ecto-nucleotidase. Naunyn-Schmiedebergs Arch Pharmacol 352: 477–482

    PubMed  CAS  Google Scholar 

  • Bultmann R, Driessen B, Goncalves J, Starke K (1995) Functional consequences of inhibition of nucleotide breakdown in rat vas deferens: A study with Evans blue. Naunyn-Schmiedebergs Arch Pharmacol 351: 555–560

    Google Scholar 

  • Bultmann R, Pause B, Wittenburg H, Kurz G, Starke K (1996a) P2-purinoceptor antagonists.1. Blockade of P2-purinoceptor subtypes and ecto-nucleotidases by small aromatic isothiocyanato-sulphonates. Naunyn Schmiedebergs Arch Pharmacol 354: 481–490

    Article  PubMed  CAS  Google Scholar 

  • Bultmann R, Wittenburg H, Pause B, Kurz G, Nickel P, Starke K (1996b) P-purinoceptor antagonists. e3. Blockade of P2-purinoceptor subtypes and ecto-nucleotidases by compounds related to suramin. Naunyn Schmiedebergs Arch Pharmacol 354: 498–504

    Article  PubMed  CAS  Google Scholar 

  • Cardenal A, Masuda I, Ono W, Haas AL, Ryan LM, Trotter D, Mccarty DJ (1998) Serum nucleotide pyrophosphohydrolase activity; elevated levels in osteoarthritis, calcium pyrophosphate crystal deposition disease, scleroderma, and fibromyalgia. J Rheumatol 25: 2175–2180

    PubMed  CAS  Google Scholar 

  • Carl SAL, Smith TM, Kirley TL (1998) Cross-linking induces homodimer formation and inhibits enzymatic activity of chicken stomach ecto-apyrase. Biochem Mol Biol Int 44: 463–470

    CAS  Google Scholar 

  • Cascalheira JF, Sebastiao AM (1992) Adenine nucleotide analogues, including rphosphate-substituted analogues, are metabolized extracellularly in innervated frog sartorius muscle. Eur J Pharmacol 222: 49–59

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BP, Frischauf AM (1997) Cloning and mapping of a human and mouse gene with homology to ecto-ATPase genes. Mamm Genome 8: 668–672

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BP, Frischauf AM (1998) The CD39-like gene family: Identification of three new human members (CD39L2, CD39L3, and CD39L4), their murine homologues, and a member of the gene family from Drosophila melanogaster. Genomics 50: 357–367

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BP, Williamson J, Sheer D, Frischauf AM (1998) cDNA cloning and chromosomal mapping of a mouse gene with homology to NTPases. Mamm Genome 9: 162–164

    Google Scholar 

  • Chen BC, Lee CM, Lin WW (1996) Inhibition of ecto-ATPase by PPADS, suramin and reactive blue in endothelial cells, C-6 glioma cells and RAW 264.7 macrophages. Br J Pharmacol 119: 1628–1634

    Article  PubMed  CAS  Google Scholar 

  • Cheung PK, Visser J, Bakker WW (1994) Upregulation of antithrombotic ectonucleotidases by aspirin in human endothelial cells in-vitro. J Pharm Pharmacol 46: 1032–1034

    Article  PubMed  CAS  Google Scholar 

  • Cheung PK, Klok PA, Bakker WW (1996) Minimal change-like glomerular alterations induced by a human plasma factor. Nephron 74: 586–593

    Article  PubMed  CAS  Google Scholar 

  • Christensen LD (1997) CD73 (ecto-5’-nucleotidase) on blood mononuclear cells. Regulation of ecto-5’-nucleotidase activity and antigenic heterogeneity of CD73 on blood mononuclear cells from healthy donors and from patients with immunodeficiency. APMIS 105:5–28: 5–28

    Google Scholar 

  • Christoforidis S, Papamarcaki T, Galaris D, Kellner R, Tsolas 0 (1995) Purification and properties of human placental ATP diphosphohydrolase. Eur J Biochem 234: 66–74

    CAS  Google Scholar 

  • Christoforidis S, Papamarcaki T, Tsolas 0 (1996) Human placental ATP diphosphohydrolase is a highly N-glycosylated plasma membrane enzyme. Biochim Biophys Acta (Biomemb) 1282: 257–262

    Google Scholar 

  • Clair T, Lee HY, Liotta LA, Stracke ML (1997a) Autotaxin is an exoenzyme possessing 5’-nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. J Biol Chem 272: 996–1001

    Article  PubMed  CAS  Google Scholar 

  • Clair T, Krutzsch HC, Liotta LA, Stracke ML (1997b) Nucleotide binding to autotaxin: Crosslinking of bound substrate followed by lysC digestion identifies two labeled peptides. Biochem Biophys Res Commun 236: 449–454

    Google Scholar 

  • Cockayne DA, Muchamuel T, Grimaldi JC, Muller-Steffner H, Randall TD, Lund FE, Murray R, Schuber F, Howard MC (1998) Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses. Blood 92: 1324–1333

    PubMed  CAS  Google Scholar 

  • Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Ann Rev Biophys Biomol Struct 21: 441–483

    Article  CAS  Google Scholar 

  • Coté YP, Quellet S, Beaudoin A (1992) Kinetic properties of type-II ATP diphosphohydrolase from the tunica media of the bovine aorta. Biochim Biophys Acta 1160: 246–250

    Article  PubMed  Google Scholar 

  • Crack BE, Beukers MW, McKechnie KCW, Ijzerman AP, Leff P (1994) Pharmacological analysis of ecto-ATPase inhibition: evidence for combined enzyme inhibition and receptor antagonism in P2X purinoceptor ligands. Br J Pharmacol 113: 1432–1438

    Article  PubMed  CAS  Google Scholar 

  • Crack BE, Pollard CE, Beukers MW, Roberts SM, Hunt SF, Ingall AH, McKechnie KCW, Ijzerman TP, Leff P (1995) Pharmacological and biochemical analysis of FPL 67156, a novel, selective inhibitor of ecto-ATPase. Br J Pharmacol 114: 475–481

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Sebastiao AM, Ribeiro JA (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A(1) receptors. J Neurosci 18: 1987–1995

    PubMed  CAS  Google Scholar 

  • da Silva CP, Schweitzer K, Heyer P, Malavasi F, Mayr GW, Guse AH (1998) Ectocellular CD38-catalyzed synthesis and intracellular Cat+- signalling activity of cyclic ADP-ribose in T- lymphocytes are not functionally related. FEBS Lett 439: 291–296

    Article  PubMed  Google Scholar 

  • Dalmau I. Vela JM, Gonzalez B, Castellano B (1998) Expression of purine metabolism-related enzymes by microglial cells in the developing rat brain. J Comp Neurol 398: 333–346

    Article  PubMed  Google Scholar 

  • Damer S. Niebel B, Czeche S, Nickel P, Ardanuy U, Schmalzing G, Rettinger J, Mutschler E, Lambrecht G (1998) NF279: a novel potent and selective antagonist of P2X receptor-mediated responses. Eur J Pharmacol 350: R5 - R6

    Article  PubMed  CAS  Google Scholar 

  • De Flora A, Guida L, Franco L, Zocchi E, Pestarino M, Usai C, Marchetti C, Fedele E, Fontana G, Raiteri M (1996) Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum. Biochem J 320: 665–672

    PubMed  Google Scholar 

  • De Flora A, Guida L, Franco L, Zocchi E (1997) The CD38/cyclic ADP-ribose system: A topological paradox. Int J Biochem Cell Biol 29: 1149–1166

    Google Scholar 

  • de Oliveira EM, Battastini AMO, Meirelles MNL, Moreira CM, Dias RD, Sarkis JJF (1997) Characterization and localization of an ATP diphosphohydrolase activity (EC 3.6.1.5) in sarcolemmal membrane from rat heart. Mol Cell Biochem 170: 115–123

    Article  Google Scholar 

  • Deaglio S, Morra M, Mallone R, Ausielleo CM, Prager E, Garbarino G, Dianzani U, Stockinger H, Malavasi F (1998) Human CD38 (ADP-ribosyl cyclase) is a counter receptor of CD31, an Ig superfamily member. J Immunol 160: 395402

    Google Scholar 

  • Deissler H, Lottspeich F, Rajewsky MF (1995) Affinity purification and cDNA cloning of rat neural differentiation and tumor cell surface antigen gp130RB’36 reveals relationship to human and murine PC-1. J Biol Chem 270: 9849–9855

    Article  PubMed  CAS  Google Scholar 

  • Delgado J, Moro G, Saborido A, Megias A (1997) T-tubule membranes from chicken skeletal muscle possess an enzymic cascade for degradation of extracellular ATP. Biochem J 327: 899–907

    PubMed  CAS  Google Scholar 

  • Deterre P, Gelman L, Gary-Gouy H, Arrieumerlou C, Berthelier V, Tixier EM, Ktorza S, Goding L, Schmitt C, Bismuth G (1996) Coordinated regulation in human T cells of nucleotide-hydrolyzing ecto-enzymatic activities, including CD38 and PC-1. Possible role in the recycling of nicotinamide adenine dinucleotide metabolites. J Immunol 157: 1381–1388

    Google Scholar 

  • Dhalla NS, Zhao D (1988) Cell membrane Cat-/Mg’ ATPase. Prog Biophys Mol Biol 52: 1–37

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski KE, Ke Y, Thompson LF, Kapp JA (1995) Antigen recognition by CTL is dependent upon ectoATPase activity. J Immunol 154: 6227–6237

    PubMed  CAS  Google Scholar 

  • Dombrowski KE, Brewer KA, Maleckar JR, Kirley TL, Thomas JW, Kapp JA (1997) Identification and partial characterization of ectoATPase expressed by immortalized B lymphocytes. Arch Biochem Biophys 340: 10–18

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski KE, Ke Y, Brewer KA, Kapp JA (1998) Ecto-ATPase: an activation marker necessary for effector cell function. Immunol Rev 161: 111–118

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Diao LH, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17: 7673–7682

    PubMed  CAS  Google Scholar 

  • Dzhandzhugazyan K, Bock E (1993) Demonstration of (Ca2+-Mg2+)-ATPase activity of the neural cell adhesion molecule. FEBS Lett 336: 279–283

    Article  PubMed  CAS  Google Scholar 

  • Dzhandzhugazyan K, Bock E (1997) Demonstration of an extracellular ATP-binding site in NCAM: Functional implications of nucleotide binding. Biochemistry 36: 15381–15395

    Google Scholar 

  • Dzhandzhugazyan KN, Kirkin AF, Straten PT, Zeuthen J (1998) Ecto-ATP diphosphohydrolase/CD39 is overexpressed in differentiated human melanomas. FEBS Lett 430: 227–230

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich YH, Kornecki E (1999) Ecto-protein kinases as mediators for the action of secreted ATP in the brain. Prog Brain Res 120: 411–426

    Article  PubMed  CAS  Google Scholar 

  • Enjyoji K, Sévigny J, Lin Y, Frenette P, Christie PD, Schulte am Esch J, Imai M, Edel-berger JM, Rayburn H, Lech M, Beeler DM, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nature Med 5: 1010–1017

    Article  PubMed  CAS  Google Scholar 

  • Evans WH (1974) Nucleotide pyrophosphatase, a sialoglycoprotein located on the hepatocyte surface. Nature 250: 391–394

    Article  PubMed  CAS  Google Scholar 

  • Faas MM, Bakker WW, Klok PA, Baller JFW, Schuiling GA (1997) Modulation of glomerular ECTO-ADPase expression by oestradiol. A histochemical study. Thromb Haemost 77: 767–771

    Google Scholar 

  • Fernley HN (1971) Mammalian alkaline phosphatases. In: Boyer PD (ed) The enzymes. Academic Press, New York, pp 417–447

    Google Scholar 

  • Ferrari D, Chiozzi P, Falzon S, Dal Susino M, Collo G, Buell G, Di Virgilio F (1997) ATP-mediated cytotoxicity in microglial cells. Neuropharmacology 36: 1295–1301

    Article  PubMed  CAS  Google Scholar 

  • Ferrero E, Malavasi F (1997) Human CD38, a leukocyte receptor and ectoenzyme, is a member of a novel eukaryotic gene family of nicotinamide adenine dinucleotide(+)-converting enzymes: extensive structural homology with the genes for murine bone marrow stromal cell antigen 1 and aplysian ADP-ribosyl cyclase. J Immunol 159: 3858–3865

    PubMed  CAS  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, Mckay DB (1990) Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 346: 623–628

    Article  PubMed  CAS  Google Scholar 

  • Fox IH (1978) Degradation of purine nucleotides. In: Kelley WN, Weiner IM (eds) Uric acid. Springer, Berlin Heidelberg New York, pp 93–124

    Chapter  Google Scholar 

  • Franco R, Casado V, Ciruela F, Saura C, Mallol J, Canela EI, Lluis C (1997) Cell surface adenosine deaminase: much more than an ectoenzyme. Prog Neurobiol 52: 283–294

    Article  PubMed  CAS  Google Scholar 

  • Frassetto SS, Dias RD, Sarkis JJF (1993) Characterization of an ATP disphosphohydrolase activity (APYRASE, EC 3.6.1.5) in rat blood platelets. Mol Cell Biochem 129: 47–55

    Article  PubMed  CAS  Google Scholar 

  • Funaro A, Horenstein AL, Malavasi F (1995) Human CD38: a versatile leukocyte molecule with emerging clinical prospects. Fund Clin Pharmacol 3: 101–113

    Google Scholar 

  • Funaro A, Horenstein AL, Calosso L, Morra M, Tarocco RP, Franco L, De Flora A, Malavasi F (1996) Identification and characterization of an active soluble form of human CD38 in normal and pathological fluids. Int Immunol 8: 1643–1650

    Article  PubMed  CAS  Google Scholar 

  • Fuss B, Baba H, Phan T, Tuohy VK, Macklin WB (1997) Phosphodiesterase I, a novel adhesion molecule and/or cytokine involved in oligodendrocyte function. J Neurosci 17: 9095–9103

    PubMed  CAS  Google Scholar 

  • Gao L, Dong LQ, Whitlock JP (1998) A novel response to dioxin — Induction of ectoATPase gene expression. J Biol Chem 273: 15358–15365

    Article  PubMed  CAS  Google Scholar 

  • Gasmi L, Cartwright JL, McLennan AG (1998) The hydrolytic activity of bovine adrenal medullary plasma membranes towards diadenosine polyphosphates is due to alkaline phosphodiesterase-I. Biochim Biophys Acta 1405: 121–127

    Article  PubMed  CAS  Google Scholar 

  • Gayle RB, Maliszewski CR, Gimpel SD, Schoenborn MA, Caspary RG, Richards C, Brasel K, Price V, Drosopoulos JHF, Islam N, Alyonycheva TN, Broekman MJ, Marcus AJ (1998) Inhibition of platelet function by recombinant soluble ectoADPase/CD39. J Clin Invest 101: 1851–1859

    Article  PubMed  CAS  Google Scholar 

  • Goding JW, Terkeltaub R, Maurice M, Deterre P, Sali A, Belli SI (1998) Ecto-phosphodiesterase/pyrophosphatase of lymphocytes and non-lymphoid cells: structure and function of the PC-1 family. Immunol Rev 161: 11–26

    Article  PubMed  CAS  Google Scholar 

  • Gordon EL, Pearson JD, Dickinson ES, Moreau D, Slakey LL (1989) The hydrolysis of extracellular adenine nucleotides by arterial smooth muscle cells; Regulation of adenosine production at the cell surface. J Biol Chem 264: 18986–18992

    Google Scholar 

  • Grobben B, Anciaux K, Roymans D, Stefan C, Bollen M, Esmans EL, Siegers H (1999) An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma. J Neurochem 72: 826–834

    Article  PubMed  CAS  Google Scholar 

  • Haag F, Koch-Nolte F, Gerber A, Schroder J, Thiele HG (1997) Rat T cell differentiation alloantigens RT6.1 and RT6.2 are NADtmetabolizing ecto-enzymes that differ in their enzymatic activities. Transplant Proc 29: 1699–1700

    Article  PubMed  CAS  Google Scholar 

  • Handa M, Guidotti G (1996) Purification and cloning of a soluble ATP-diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum). Biochem Biophys Res Commun 218: 916–923

    Article  PubMed  CAS  Google Scholar 

  • Harahap AR, Goding JW (1988) Distribution of the murine plasma cell antigen PC-1 in non-lymphoid cells. J Immunol 141: 2317–2320

    PubMed  CAS  Google Scholar 

  • Harden TK, Lazarowski ER, Boucher RC (1997) Release, metabolism and interconversion of adenine and uridine nucleotides: Implications for G protein-coupled P2 receptor agonist selectivity. Trends Pharmacol Sci 18: 43–46

    Article  PubMed  CAS  Google Scholar 

  • Heine P, Braun N, Zimmermann H (1999) Functional characterization of rat ectoATPase and ecto-ATP diphosphohydrolase after heterlogous expression in CHO cells. Eur J Biochem 262: 102–107

    Article  PubMed  CAS  Google Scholar 

  • Hirata O, Kimura N, Sato K, Ohsugi Y, Takasawa S, Okamoto H, Ishikawa J, Kaisho T, Ishihara K, Hirano T (1994) ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1. FEBS Lett 356: 244–248

    Article  PubMed  CAS  Google Scholar 

  • Hollmann C, Haag F, Schlott M, Damaske A, Bertuleit H, Matthes M, Kuhl M, Thiele HG, Koch-Nolte F (1996) Molecular characterization of mouse T-cell ecto-ADPribosyltransferase Rt6: Cloning of a second functional gene and identification of the Rt6 gene products. Mol Immunol 33: 807–817

    Article  PubMed  CAS  Google Scholar 

  • Hosoda N, Hoshino S, Kanda Y, Katada T (1999) Inhibition of phosphodiesterase/ pyrophosphatase activity of PC-1 by its association with glycosaminoglycans. Eur J Biochem 265: 763–770

    Article  PubMed  CAS  Google Scholar 

  • Hourani SMO, Chown JA (1989) The effects of some possible inhibitors of ectonucleotidases on the breakdown and pharmacological effects of ATP in the guinea-pig urinary bladder. Gen Pharmacol 4: 413–416

    Google Scholar 

  • Hourani SMO, Bailey SJ, Nicholls J, Kitchen I (1991) Direct effects of adenylyl 5’-(ß,y-methylene)diphosphonate, a stable ATP analogue, on relaxant P1-purinoceptors in smooth muscle. Br J Pharmacol 104: 685–690

    Article  PubMed  CAS  Google Scholar 

  • Imai M, Kaczmarek E, Koziak K, Sévigny J, Goepfert C, Guckelberger O, Csizmadia E, Esch JSA, Robson SC (1999) Suppression of ATP diphosphohydrolase/CD39 in human vascular endothelial cells. Biochemistry 38: 13473–13479

    Article  PubMed  CAS  Google Scholar 

  • Itami C, Taguchi R, Ikezawa H, Nakabayashi T (1997) Release of ectoenzymes from small intestine brush border membranes of mice by phospholipases. Biosci Biotechnol Biochem 61: 336–340

    Article  PubMed  CAS  Google Scholar 

  • James S, Richardson PJ (1993) Production of adenosine from extracellular ATP at the striatal cholinergic synapse. J Neurochem 60: 219–227

    Article  PubMed  CAS  Google Scholar 

  • James SG, Appleby GJ, Miller KA, Steen JT, Colquhoun EQ, Clark MG (1996) Purine and pyrimidine nucleotide metabolism of vascular smooth muscle cells in culture. Gen Pharmacol 27: 837–844

    Article  PubMed  CAS  Google Scholar 

  • Jin-Hua P, Goding JW, Nakamura H, Sano K (1997) Molecular cloning and chromosomal localization of PD-I? (PDNP3), a new member of the human phosphodiesterase I genes. Genomics 45: 412–415

    Article  PubMed  CAS  Google Scholar 

  • Johnson CR, Charlton SJ, Hourani SMO (1996) Responses of the longitudinal muscle and the muscularis mucosac of the rat duodenum to adenine and uracil nucleotides. Br J Pharmacol 117: 823–830

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek E, Koziak K, Sévigny J, Siegel JB, Anrather J, Beaudoin AR, Bach FH, Robson SC (1996) Identification and characterization of CD39 vascular ATP diphosphohydrolase. J Biol Chem 271: 33116–33122

    Article  PubMed  CAS  Google Scholar 

  • Kaczmarek E, Siegel JB, Sévigny J, Koziak K, Hancock WW, Beaudoin A, Bach FH, Robson SC (1997) Vascular ATP diphosphohydrolase (CD39/ATPDase). In: Plesner L, Kirley TL, Knowles AF (eds) Ecto-ATPases: recent progress on structure and function. Plenum Press, New York, pp 171–185

    Chapter  Google Scholar 

  • Kaisho T, Ishikawa J, Oritani K, Inazawa J, Tomizawa H, Muraoka O, Ochi T, Hirano T (1994) BST-1, a surface molecule of bone marrow stromal cell lines that facilitates pre-B-cell growth. Proc Natl Acad Sci USA 91: 5325–5329

    Article  PubMed  CAS  Google Scholar 

  • Kansas GS, Wood GS, Tedder TF (1991) Expression, distribution, and biochemistry of human CD39: Role in activation-associated homotypic adhesion of lymphocytes. J Immunol 146: 2235–2244

    Google Scholar 

  • Kaplan MM (1986) Serum alkaline phosphatase—another piece is added to the puzzle. Hepatol 6: 526–528

    Article  CAS  Google Scholar 

  • Kawagoe H, Soma O, Goji J, Nishimura N, Narita M, Inazawa J, Nakamura H, Sano K (1995) Molecular cloning and chromosomal assignment of the humans brain-type phosphodiesterase I/nucleotide pyrophosphatase gene (PDNP2). Genomics 30: 380–384

    Article  PubMed  CAS  Google Scholar 

  • Kawagoe H, Stracke ML, Nakamura H, Sano K (1997) Expression and transcriptional regulation of the PD-I alpha/autotaxin gene in neuroblastoma. Cancer Res. 57: 2516–2521

    PubMed  CAS  Google Scholar 

  • Kegel B, Braun N, Heine P, Maliszewski CR, Zimmermann H (1997) An ecto-ATPase and an ecto-ATP diphosphohydrolase are expressed in rat brain. Neuropharmacology 36: 1189–1200

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Leff P (1995) How should P2X purinoceptors be classified pharmacologically? Trends Pharmacol Sci 16: 168–174

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Westfall TD, Sneddon P (1996) Modulation of purinergic neurotransmission by ecto-ATPase. Semin Neurosci 8: 195–199

    Article  CAS  Google Scholar 

  • Kennedy C, Todorov LD, Mihaylova-Todorova S, Sneddon P (1997) Release of soluble nucleotidases: A novel mechanism for neurotransmitter inactivation? Trends Pharmacol Sci 18: 263–266

    PubMed  CAS  Google Scholar 

  • Kirley TL (1997) Complementary DNA cloning and sequencing of the chicken muscle Ecto-ATPase — Homology with the lymphoid cell activation antigen CD39. J Biol Chem 272: 1076–1081

    Article  PubMed  CAS  Google Scholar 

  • Kittel A (1997) Role of ecto-ATPases, based on histochemical investigations: Evidences and doubts. In: Plesner L, Kirley TL, Knowles AF (eds) EctoATPases: Recent progress on structure and function. Plenum Press, New York, pp 65–72

    Google Scholar 

  • Kittel A, Siklôs L, Thurôczy G, Somosy Z (1996) Qualitative enzyme histochemistry and microanalysis reveals changes in ultrastructural distribution of calcium and calcium-activated ATPases after microwave irradiation of the medial habenula. Acta Neuropath 92: 362–368

    Article  PubMed  CAS  Google Scholar 

  • Kittel A, Kaczmarek E, Sevigny J, Lengyel K, Csizmadia E, Robson SC (1999) CD39 as a caveolar-associated ectonucleotidase. Biochem Biophys Res Commun 262: 596–599

    Article  PubMed  CAS  Google Scholar 

  • Knowles AE, Nagy AK (1999) Inhibition of an ecto-ATP-diphosphohydrolase by azide. Eur J Biochem 262: 349–357

    Article  PubMed  CAS  Google Scholar 

  • Knöfel T, Sträter N (1999) X-ray structure of the Escherichia coil periplasmic 5’nucleotidase containing a dimetal catalytic site. Nat Struct Biol 6: 448–453

    Article  PubMed  Google Scholar 

  • Kohring K, Zimmermann H (1998) Upregulation of ecto-5’-nucleotidase in human neuroblastoma SH-SY5Y cells on differentiation by retinoic acid or phorbolester. Neurosci Lett 258: 127–130

    Article  PubMed  CAS  Google Scholar 

  • Koyamada N, Miyatake T, Candinas D, Hechenleitner P, Siegel J, Hancock WW, Bach FH, Robson SC (1996) Apyrase administration prolongs discordant xenograft survival. Transplantation 62: 1739–1743

    Article  PubMed  CAS  Google Scholar 

  • Kumakura S, Maddux BA, Sung CK (1998) Overexpression of membrane glycoprotein PC-1 can influence insulin action at a post-receptor site. J Cell Biochem 68: 366–377

    Article  PubMed  CAS  Google Scholar 

  • Kübler D, Pyerin W, Kinzel V (1980) Generation of pyrophosphate from extracellular ATP at the surface of HeLa cells. Eur J Cell Biol 21: 231–233

    PubMed  Google Scholar 

  • Landt M, Butler LG (1978) 5’-nucleotide phosphodiesterase: Isolation of covalently bound 5’-adenosine monophosphate, an intermediate in the catalytic cycle. Biochemistry 17: 4130–4135

    Google Scholar 

  • Lazarowski ER, Homolya L, Boucher RC, Harden TK (1997) Identification of an ectonucleoside diphosphokinase and its contribution to interconversion of P2 receptor agonists. J Biol Chem 272: 20402–20407

    Article  PubMed  CAS  Google Scholar 

  • LeBel D, Poirier GG, Phaneuf S, St.-Jean P, Laliberté JF, Beaudoin AR (1980) Characterization and purification of a calcium-sensitive ATP diphosphohydrolase from pig pancreas. J Biol Chem 255: 1227–1233

    PubMed  CAS  Google Scholar 

  • Lee HY, Murata J, Clair T, Polymeropoulos MH, Torres R, Manrow RE, Liotta LA, Stracke ML (1996a) Cloning chromosomal localization, and tissue expression of autotaxin from human tetracarcinoma cells. Biochem Biophys Res Commun 218: 714–719

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Clair T, Mulvaney PT, Woodhouse EC, Aznavoorian S, Liotta LA, Stracke ML (1996b) Stimulation of tumor cell motility linked to phosphodiesterase catalytic site of autotaxin. J Biol Chem 271: 24408–24412

    Article  PubMed  CAS  Google Scholar 

  • Lewis Carl S, Kirley TL (1997) Immunolocalization of the ecto-ATPase and ectoapyrase in chicken gizzard and stomach — Purification and N-terminal sequence of the stomach ecto-apyrase. J Biol Chem 272: 23645–23652

    Article  Google Scholar 

  • Lin S-H, Guidotti G (1989) Cloning and expression of a cDNA coding for a rat liver plasma membrane ecto-ATPase. The primary structure of the ecto-ATPase is similar to that of the human biliary glycoprotein I. J Biol Chem 264: 14408–14414

    Google Scholar 

  • Lund F, Solvason N, Grimaldi JC, Parkhouse RME, Howard M (1995) Murine CD38: An immunoregulatory ectoenzyme. Immunol Today 16: 469–473

    Google Scholar 

  • Lund FE, Cockayne DA, Randall TD, Solvason N, Schuber F, Howard MC (1998) CD38: A new paradigm in lymphocyte activation and signal transduction. Immunol Rev 161:79–93: 79–93

    Google Scholar 

  • Lüthje J, Ogilvie A (1987) Catabolism of AP4A and Ap3A in human serum. Identification of isoenzymes and their partial characterization. Eur J Biochem 169: 385–388

    Google Scholar 

  • Maddux BA, Sbraccia P, Kumakura S, Sasson S, Youngren J, Fisher A, Soencer S, Grupe A, Henzel W, Stewart TA (1995) Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus. Nature 373: 448–451

    Article  PubMed  CAS  Google Scholar 

  • Maliszewski CR, DeLepesse GJT, Schoenborn MA, Armitage RJ, Fanslow WC, Nakajima T, Baker E, Sutherland GR, Poindexter K, Birks C, Alpert A, Friend D, Gimpel SD, Gayle RB (1994) The CD39 lymphoid cell activation antigen: Molecular cloning and structural characterization. J Immunol 153: 3574–3583

    Google Scholar 

  • Mallone R, Ferrua S, Morra M, Zocchi E, Mehta K, Notarangelo LD, Malavasi F (1998) Characterization of a CD38-like 78-kilodalton soluble protein released from B cell lines derived from patients with X-linked agammaglobulinemia. J Clin Invest 101: 2821–2830

    Article  PubMed  CAS  Google Scholar 

  • Marcus AJ, Broekman MJ, Drosopoulos JHF, Islam N, Alyonycheva TN, Safier LB, Hajjar KA, Posnett DN, Schoenborn MA, Schooley KA, Gayle RB, Maliszewski CR (1997) The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 99: 1351–1360

    Article  PubMed  CAS  Google Scholar 

  • Marti E, Canti C, Gomez de Aranda I, Miralles F, Solsona C (1996a) Action of suramin upon ecto-apyrase activity and synaptic depression of Torpedo electric organ. Br J Pharmacol 118: 1232–1236

    Article  PubMed  CAS  Google Scholar 

  • Marti E, Gomez de Aranda I, Solsona C (1996b) Inhibition of ATP-diphosphohydrolase (apyrase) of Torpedo electric organ by 5’-p-fluorosulfonvlbenzoyladenosine. Biochim Biophys Acta (Biomembranes) 1282: 17–24

    Article  Google Scholar 

  • Mateo J, Rotllan P, Miras-Portugal MT (1996) Suramin — a powerful inhibitor of neural ecto-adenosine polyphosphate hydrolase. Br J Pharmacol 119: 1–2

    Article  PubMed  CAS  Google Scholar 

  • Mateo J, Rotllan P, Marti E, Gomez de Aranda I, Salsona C, Miras-Portugal MT (1997a) Diadenosine polyphosphate hydrolase from presynaptic plasma membranes of Torpedo electric organ. Biochem J 323: 677–684

    PubMed  CAS  Google Scholar 

  • Mateo J, Miras-Portugal MT, Rotllan P (1997b) Ecto-enzymatic hydrolysis of diadenosine polyphosphates by cultured adenomedullary vascular endothelial cells. Am J Physiol Cell Physiol 42: C918–C927

    Google Scholar 

  • Mateo J, Harden TK, Boyer JL (1999) Functional expression of a cDNA encoding a human ecto-ATPase. Br J Pharmacol 128: 396–402

    Article  PubMed  CAS  Google Scholar 

  • Meerson NR, Delautier D, Durand-Schneider A-M, Moreau A, Schilsky ML, Sternlieb I, Feldmann G, Maurice M (1998) Identification of B10, an alkaline phosphodiesterase of the apical plasma membrane of hepatocytes and biliary cells, in rat serum: Increased levels following bile duct ligation and during the development of cholagiocarcinoma. Hepatol 27: 563–568

    Google Scholar 

  • Meghji P, Burnstock G (1995) Inhibition of extracellular ATP degradation in endothelial cells. Life Sci 57: 763–771

    Article  PubMed  CAS  Google Scholar 

  • Meghji P, Pearson JD, Slakey LL (1995) Kinetics of extracellular ATP hydrolysis by microvascular endothelial cells from rat heart. Biochem J 308: 725–731

    PubMed  CAS  Google Scholar 

  • Mehta K, Shahid U, Malavasi F (1996) Human CD38, a cell-surface protein with multiple functions. FASEB J 10: 1408–1417

    PubMed  CAS  Google Scholar 

  • Miledi R, Molenaar PC, Polak RL (1984) Acetylcholinesterase activity in intact and homogenized skeletal muscle of the frog. J Physiol London 349: 663–686

    PubMed  CAS  Google Scholar 

  • Minelli A, Moroni M, Trinari D, Mezzasoma I (1997) Hydrolysis of extracellular adenine nucleotides by equine epidydimal spermatozoa. Comp Biochem Physiol [B] 117: 531–534

    Article  CAS  Google Scholar 

  • Morley DJ, Hawley DM, Ulbright DM, Butler LG, Culp JS, Hodes ME (1987) Distribution of phosphodiesterase I in normal human tissues. J Histochem Cytochem 35: 75–82

    Article  PubMed  CAS  Google Scholar 

  • Mulero JJ, Yeung G, Nelken ST, Ford JE (1999) CD39–L4 is a secreted human apyrase, specific for the hydrolysis of nucleoside diphosphates. J Biol Chem 29: 2006420067

    Google Scholar 

  • Murata J, Lee HJ, Clair T, Krutzsch HC, Arestad AA, Sobel ME, Liotta LA, Stracke ML (1994) cDNA cloning of the human motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J Biol Chem 269: 30479–30484

    Google Scholar 

  • Nagy AK, Shuster TA, Delgado-Escueta AV (1986) Ecto-ATPase of mammalian synaptosomes: Identification and enzymic characterization. J Neurochem 47: 976–986

    Google Scholar 

  • Nagy AK, Shuster TA, Delgado-Escueta V (1989) Rat brain synaptosomal ATP:AMPphosphotransferase activity. J Neurochem 53: 1166–1172

    Article  PubMed  CAS  Google Scholar 

  • Nagy AK, Houser CR, Delgado-Escueta AV (1990) Synaptosomal ATPase activities in temporal cortex and hippocampal formation of humans with focal epilepsy. Brain Res 529: 192–201

    Article  PubMed  CAS  Google Scholar 

  • Nagy AK (1997) Ecto-ATPases of the nervous system. In: Plesner L, Kirley TL, Knowles AF (eds) Ecto-ATPases: recent progress in structure and function. Plenum Press, New York, pp 1–13

    Chapter  Google Scholar 

  • Nagy AK, Walton NY, Treiman DM (1997) Reduced cortical ecto-ATPase activity in rat brains during prolonged status epilepticus induced by sequential administration of lithium and pilocarpine. Mol Chem Neuropathol 31: 135–147

    Article  PubMed  CAS  Google Scholar 

  • Nagy AK, Knowles AF, Nagami GT (1998) Molecular cloning of the chicken oviduct ecto-ATP-diphosphohydrolase. J Biol Chem 273: 16043–16049

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi T, Matsuoka Y, Taguchi R, Ikezawa H, Kimura Y (1993) Proof of alkaline phosphodiesterase-I as a phosphatidylinositol-anchor enzyme. Int J Biochem 25: 689–696

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi T, Matsuoka Y, Ikezawa H, Kimura Y (1994) Alkaline phosphodiesterase I release from eucaryotic plasma membranes by phosphatidylinositol-specific phosphoIipase C. 4. The release from Cacia porcellus organs. Int J Biochem 26: 171–179

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Goji J, Nakamura H, Sano K (1994) Molecular cloning, expression, and localization of a brain-specific phosphodiesterase I/nucleotide pyrophosphatase ( PD-I alpha) from rat brain. J Biol Chem 269: 28235–28242

    Google Scholar 

  • Nishina FI, Inageda K, Takahashi K, Hoshino S, Ikeda K, Katada T (1994) Cell surface antigen CD38 identified as ecto-enzyme of NAD glycohydrolase has hyaluronatebinding activity. Biochem Biophys Res Commun 203: 1318–1323

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Kuo MD, Huang SS, Huang JS (1991) The plasma cell membrane glycoprotein, PC-1, is a threonine-specific protein kinase stimulated by acidic fibroblast growth factor. J Biol Chem 266: 16791–16795

    PubMed  CAS  Google Scholar 

  • Oda Y, Kuo MD, Huang SS, Huang JS (1993) The major acidic fibroblast growth factor (aFGF)-stimulated phosphoprotein from bovine liver plasma membranes has aFGF-stimulated kinase, autoadenylation, and alkaline phosphodiesterase activities. J Biol Chem 268: 27318–27326

    PubMed  CAS  Google Scholar 

  • Ogilvie A, Lüthje J, Pohl U, Busse R (1989) Identification and partial characterization of an adenosine(5’)tetraphospho(5’)adenosine hydrolase on intact bovine aortic endothelial cells. Biochem J 259: 97–103

    PubMed  CAS  Google Scholar 

  • Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S (1998) Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nature Genet 19: 271–273

    Article  PubMed  CAS  Google Scholar 

  • Oyajobi BO, Russell RGG, Caswell AM (1994) Modulation of ecto-nucleoside triphosphate pyrophosphatase activity of human osteoblast-like bone cells by la,25-dihydroxyvitamin D3, 24R,25-dihydroxyvitamin D3, parathyroid hormone, and dexamethasone. J Bone Miner Res 9: 1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Pain T, Headrick JP (1996) Effects and metabolites of NAD in the perfused rat heart. Drug Develop Res 37: 150

    Google Scholar 

  • Pappas GD, Kriho V (1988) Fine structural localization of Ca’+-ATPase activity at the forg neuromuscular junction. J Neurocytol 17: 417–423

    Article  PubMed  CAS  Google Scholar 

  • Pearson JD (1985) Ectonucleotidases. Measurememt of activities and use of inhibitors. In: Paton DM (ed) Methods in pharmacology 6. Plenum Press, New York, pp 83–107

    Google Scholar 

  • Peola S, Borrione P, Matera L, Malavasi F, Pileri A, Massaia M (1996) Selective induction of CD73 expression in human lymphocytes by CD38 ligation: a novel pathway linking signal transducers with ecto-enzyme activities. J Immunol 157: 4354–4362

    PubMed  CAS  Google Scholar 

  • Peoples RW, Li CY (1998) Inhibition of NMDA-gated ion channels by the P2 purinoceptor antagonists suramin and reactive blue 2 in mouse hippocampal neurones. Br J Pharmacol 124: 400–408

    Article  PubMed  CAS  Google Scholar 

  • Picher M, Coté YP, Béliveau R, Potier M, Beaudoin AR (1993) Demonstration of a novel type of ATP-diphosphohydrolase (EC 3.6.1.5) in the bovine lung. J Biol Chem 268: 4699–4703

    PubMed  CAS  Google Scholar 

  • Picher M, Beliveau R, Potier M, Savaria D, Rousseau E, Beaudoin AR (1994) Demonstration of an ecto-ATP-diphosphohydrolase (EC 3.6.1.5.) in non-vascular smooth muscles of the bovine trachea. Biochim Biophys Acta (Gen Subj) 1200: 167–174

    Article  CAS  Google Scholar 

  • Picher M, Sévigny J, D’Orléans-Juste P, Beaudoin AR (1996) Hydrolysis of P2purinoceptor agonists by a purified ectonucleotidase from the bovine aorta, the ATP- diphosphohydrolase. Biochem Pharmacol 51: 1453–1460

    Article  PubMed  CAS  Google Scholar 

  • Pilla C, Emanuelli T, Frassetto SS, Battastini AMO, Dias RD, Sarkis JJF (1996) ATP diphosphohydrolase activity (apyrase, EC 3.6.1.5) in human blood platelets. Platelets 7: 225–230

    Article  PubMed  CAS  Google Scholar 

  • Pintor J, Hoyle CHV, Gualix J, Miras-Portugal MT (1997) Mini-Review: Diadenosine polyphosphates in the central nervous system. Neurosci Res Commun 20: 69–78

    Google Scholar 

  • Plesner L (1995) Ecto-ATPases: identities and functions. Int Rev Cytol 158: 141–214

    Article  PubMed  CAS  Google Scholar 

  • Plesner L, Kirley TL, Knowles AF (eds) (1997) Ecto-ATPases: Recent progress on structure and function. Plenum Press, New York

    Google Scholar 

  • Prasad GS, McRee DE, Stura EA, Levitt DG, Lee HC, Stout CD (1996) Crystal structure of aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38. Nat Struct Biol 3: 957–964

    Article  PubMed  CAS  Google Scholar 

  • Ramos A, Pintor J, Miras-Portugal MT, Rotllan P (1995) Use of fluorogenic substrates for detection and investigation of ectoenzymatic hydrolysis of diadenosine polyphosphates: a fluorometric study on chromaffin cells. Anal Biochem 228: 7482

    Article  Google Scholar 

  • Rebbe NF, Tong BD, Finley EM, Hickman S (1991) Identification of nucleotide pyrophosphatase/alkaline phosphodiesterase I activity associated with the mouse plasma cell differentiation antigen PC-1. Proc Natl Acad Sci USA 88: 5192–5196

    Article  PubMed  CAS  Google Scholar 

  • Rebbe NF, Tong BD, Hickman S (1993) Expression of nucleotide pyrophosphatase and alkaline phosphodiesterase I activities of PC-1, the murine plasma cell antigen. Mol Immunol 30: 87–93

    Article  PubMed  CAS  Google Scholar 

  • Redegeld FA, Caldwell CC, Sitkovsky MV (1999) Ecto-protein kinases: ectodomain phosphorylation as a novel target for pharmacological manipulation? Trends Pharmacol Sci 20: 453–459

    Article  PubMed  CAS  Google Scholar 

  • Resta R, Thompson LF (1997) T cell signalling through CD73. Cell Signal 9:131–139 Resta R, Yamashita Y, Thompson LF (1998) Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol Rev 161:95–109: 95–109

    Google Scholar 

  • Robson SC, Kaczmarek E, Siegel JB, Candinas D, Koziak K, Millan M, Hancock WW, Bach FH (1997) Loss of ATP diphosphohydrolase activity with endothelial cell activation. J Exp Med 185: 153–163

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Pascual F, Torres M, Rotllan P, Miras-Portugal MT (1992) Extracellular hydrolysis of diadenosine polyphosphates, ANA, by bovine chromaffin cells in culture. Arch Biochem Biophys 297: 176–183

    Google Scholar 

  • Santos AN, Riemann D, Kehlen A, Thiele K, Langner J (1996) Treatment of fibroblast-like synoviocytes with IFN-g results in the downregulation of autotaxin mRNA. Biochem Biophys Res Commun 229: 419–424

    Article  PubMed  CAS  Google Scholar 

  • Sarkis JJF, Battastini AMO, Oliveira EM, Frassetto SS, Dias RD (1995) ATP diphosphohydrolases: an overview. Ciencia e Cultura 47: 131–136

    CAS  Google Scholar 

  • Sarkis JJF, Salto C (1991) Characterization of a synaptosomal ATP diphosphohydrolase from the electric organ of Torpedo marmorata. Brain Res Bull 26: 871–876

    Article  PubMed  CAS  Google Scholar 

  • Sawa H, Kamada K, Sato H, Sendo S, Kondo A, Saito I, Edlund M, ()brink B (1994) C-CAM expression in the developing rat central nervous system. Brain Res Dev Brain Res 78: 35–43

    Article  CAS  Google Scholar 

  • Schetinger MRC, Falquembach F, Michelot F, Mezzomo A, Rocha JBT (1998a) Heparin modulates adenine nucleotide hydrolysis by synaptosomes from cerebral cortex. Neurochem Int 33: 243–249

    Article  PubMed  CAS  Google Scholar 

  • Schetinger MRC, Bonan CD, Schierholt R, Webber A, Arteni N, Emanuelli T, Dias RD, Sarkis JJF, Netto CA (1998b) Nucleotide hydrolysis in rats submitted to global cerebral ischemia: A possible link between preconditioning and adenosine production. J Stroke Cerebrovasc Dis 7: 281–286

    Google Scholar 

  • Schoenborn MA, Jenkins NA, Copeland NG, Gilbert DJ, Gayle RB, Maliszewski CR (1998) Gene structure and chromosome location of mouse Cd39 coding for an ecto-apyrase. Cytogenet Cell Genet 81: 287–289

    Article  PubMed  CAS  Google Scholar 

  • Schulte am Esch JSA, Sévigny J, Kaczmarek E, Siegel JB, Imai M, Koziak K, Beaudoin AR, Robson SC (1999) Structural elements and limited proteolysis of CD39 influence ATP diphosphohydrolase activity. Biochemistry 38: 2248–2258

    Article  Google Scholar 

  • Schwab DA, Wilson JE (1989) Complete amino acid sequence or rat brain hexokinase, deduced from the cloned cDNA, and a proposed structure of a mammalian hexokinase. Proc Natl Acad Sci USA 86: 2563–2567

    Article  PubMed  CAS  Google Scholar 

  • Scott LJ, Delautier D, Meerson NR, Trugnan G, Goding JW, Maurice M (1997) Biochemical and molecular identification of distinct forms of alkaline phosphodiesterase I expressed on the apical and basolateral plasma membrane surfaces of rat hepatocytes. Hepatol 25: 995–1002

    Article  CAS  Google Scholar 

  • Servos J, Reiländer H, Zimmermann H (1998) Catalytically active soluble ecto-5’nucleotidase purified after heterologous expression as a tool for drug screening. Drug Develop Res 45: 269–276

    Article  CAS  Google Scholar 

  • Sévigny J, Picher M, Grondin G, Beaudoin AR (1997a) Purification and immunohistochemical localization of the ATP diphosphohydrolase in bovine lungs. Am J Physiol 272: L939 — L950

    PubMed  Google Scholar 

  • Sévigny J, Levesque FP, Grondin G, Beaudoin AR (1997b) Purification of the blood vessel ATP diphosphohydrolase, identification and localisation by immunological techniques. Biochim Biophys Acta (Gen Subj) 1334: 73–88

    Article  Google Scholar 

  • Silvennoinen O, Nishigaki H, Kitanaka A, Kumagai M-A, Ito C, Malavasi F, Lin Q, Conley ME, Campana D (1996) CD38 signal transduction in human B cell precursors. Rapid induction of tyrosine phosphorylation, activation of syk tyrosine kinase, and phosphorylation of phospholipase Cy and phosphytidylinotisdol 3 kinase. J Immunol 156: 100–107

    PubMed  CAS  Google Scholar 

  • Slakey LL, Dickinson ES, Goldman SJ, Gordon EL, Meghji P, Pearson JD (1997) The hydrolysis of extracellular adenine nucleotides by cultured vascular cells and cardiac myocytes. In: Plesner L, Kirley TL, Knowles AF (eds) Ecto-ATPases: recent progress on structure and function. Plenum Press, New York, pp 27–32

    Chapter  Google Scholar 

  • Smith TM, Kirley TL, Hennessey TM (1997) A soluble ecto-ATPase from Tetrahymena thermophila: Purification and similarity to the membrane-bound ecto-ATPase of smooth muscle. Arch Biochem Biophys 337: 351–359

    Google Scholar 

  • Smith TM, Kirley TL (1998) Cloning, sequencing, and expression of a human brain ecto-apyrase related to both the ecto-ATPases and CD39 ecto-apyrases. Biochim Biophys Acta 1386: 65–78

    Article  PubMed  CAS  Google Scholar 

  • Smith T, Carl SAL, Kirley TL (1998) Immunological detection of ecto-ATPase in chicken and rat tissues: Characterization, distribution, and a cautionary note. Biochem Mol Biol Int 45: 1057–1066

    Google Scholar 

  • Smith TM, Kirley TL (1999a) Glycosylation is essential for functional expression of a human brain ecto-apyrase. Biochemistry 38: 1509–1516

    Article  PubMed  CAS  Google Scholar 

  • Smith TM, Kirley TL (1999b) Site-directed mutagenesis of a human brain ecto-apyrase: evidence that the E-type ATPases are related to the actin/heat shock 70/sugar kinase superfamily. Biochemistry 38: 321–328

    Article  PubMed  CAS  Google Scholar 

  • Smith TM, Carl SAL, Kirley TL (1999) Mutagenesis of two conserved tryptophan residues of the E- type ATPases: inactivation and conversion of an ecto-apyrase to an ecto-NTPase. Biochemistry 38: 5849–5857

    Article  PubMed  CAS  Google Scholar 

  • Snell CR, Snell PH, Richards CD (1984) Degradation of NAD by synaptosomes and its inhibition by nicotinamide mononucleotide: implications for the role of NAD as a synaptic modulator. J Neurochem 43: 1610–1615

    Article  PubMed  CAS  Google Scholar 

  • Solan JL, Deftos LJ, Goding JW, Terkeltaub RA (1996) Expression of the nucleoside triphosphate pyrophosphohydrolase PC-1 is induced by basic fibroblast growth factor ( BFGF) and modulated by activation of the protein kinase A and C pathways in osteoblast-like osteosarcoma cells. J Bone Miner Res 11: 183–192

    Google Scholar 

  • Sperlagh B, Kittel A, Lajtha A, Vizi ES (1995) ATP acts as fast neurotransmitter in rat habenula: neurochemical and enzymecytochemical evidence. Neuroscience 66: 915–920

    Article  PubMed  CAS  Google Scholar 

  • Stearne PA, van Driel IR, Grego B, Simpson RJ, Goding JW (1985) The murine plasma cell antigen PC-1: purification and partial amino acid sequence. J Immunol 134: 443–448

    PubMed  CAS  Google Scholar 

  • Stefan C, Stalmans W, Bollen M (1996) Threonine autophosphorylation and nucleotidylation of the hepatic membrane protein PC-1. Eur J Biochcm 241: 338–342

    Article  CAS  Google Scholar 

  • Stefan C, Stalmans W, Bollen M (1998) Growth-related expression of the ectonucleotide pyrophosphatase PC-1 in rat liver. Hepatol 28: 1497–1503

    Article  CAS  Google Scholar 

  • Stefan C, Gijsbers R, Stalmans W, Bollen M (1999) Differential regulation of the expression of nucleotide pyrophosphatases phosphodiesterases in rat liver. Biochim Biophys Acta 1450: 45–52

    Article  PubMed  CAS  Google Scholar 

  • Stefanovic V, Ledig M, Mandel P (1976) Divalent cation-activated ecto-nucleoside triphosphatase activity of nervous system cells in tissue culture. J Neurochem 27: 799–805

    Article  PubMed  CAS  Google Scholar 

  • Stefanovic V, Vlahovic P, Ardaillou R (1995) Characterization and control of expression of cell surface alkaline phosphodiesterase I activity in rat mesangial glomerular cells. Renal Physiol Biochem 18: 12–20

    PubMed  CAS  Google Scholar 

  • Stout JG, Kirley TL (1995) Inhibition of purified chicken gizzard smooth muscle ecto- ATPase by P2 purinoceptor antagonists. Biochem Mol Biol Int 36: 927–934

    PubMed  CAS  Google Scholar 

  • Stout JG, Kirley TL (1996) Control of cell membrane ecto-ATPase by oligomerization state: intermolecular cross-linking modulates ATPase activity. Biochemistry 35: 8289–8298

    Article  PubMed  CAS  Google Scholar 

  • Stracke ML, Krutzsch HC, Unsworth EJ, Arestad AA, Cioce V, Schiffmann E, Liotta LA (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 267: 2524–2529

    PubMed  CAS  Google Scholar 

  • Stracke ML, Arestad A, Levine M, Krutzsch HC, Liotta LA (1995) Autotaxin is an N-linked glycoprotein but the sugar moieties are not needed for its stimulation of cellular motility. Melanoma Res 5: 203–209

    Article  PubMed  CAS  Google Scholar 

  • Strobel RS, Nagy AK, Knowles AF, Buegel J, Rosenberg MD (1996) Chicken oviductal ecto-ATP-diphosphohydrolase. Purification and characterization. J Biol Chem 271: 16323–16331

    Google Scholar 

  • Sud’ina F, Mirzoeva OK, Galkina SI, Pushkareva MA, Ullrich V (1998) Involvement of ecto-ATPase and extracellular ATP in polymorphonuclear granulocyte-endothelial interactions. FEBS Lett 423: 243–248

    Article  PubMed  Google Scholar 

  • Terrian DM, Hernandez PG, Rea MA, Peters RI (1989) ATP release, adenosine formation, and modulation of dynorphin and glutamic acid release by adenosine analogues in rat hippocampal mossy fiber synaptosomes. J Neurochem 53: 1390–1399

    Article  PubMed  CAS  Google Scholar 

  • Thirion S, Troadec JD, Nicaise G (1996) Cytochemical localization of ecto-ATPses in rat neurohypophysis. J Histochem Cytochem 44: 103–111

    Article  PubMed  CAS  Google Scholar 

  • Todorov LD, Mihaylova Todorova S, Westfall TD, Sneddon P, Kennedy C, Bjur RA, Westfall DP (1997) Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 387: 76–79

    Article  PubMed  CAS  Google Scholar 

  • Torres M, Pintor J, Miras-Portugal MT (1990) Presence of ectonucleotidases in cultured chromaffin cells: hydrolysis of extracellular adenine nucleotides. Arch Biochem Biophys 279: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Tuluc F, Bultmann R, Glanzel M, Frahm AW, Starke K (1998) P2-receptor antagonists. 4. Blockade of P2-receptor subtypes and ecto-nucleotidases by compounds related to reactive blue 2. Naunyn Schmiedebergs Arch Pharmacol 357: 111–120

    Article  PubMed  CAS  Google Scholar 

  • van Driel IR, Goding JW (1987) Plasma cell membrane glycoprotein PC-1: primary structure deduced from cDNA clones. J Biol Chem 262: 4882–4887

    PubMed  Google Scholar 

  • van Son WJ, Wit F, van Balen OLB, Tegzess AM, Ploeg RJ, Bakker WW (1997) Decreased expression of glomerular ecto-ATPase in kidney grafts with delayed graft function. Transplant Proc 29: 352–354

    Article  PubMed  Google Scholar 

  • van Driel IR, Wilks AF, Pietersz GA, Goding JW (1985) Murine plasma cell membrane antigen PC-1: Molecular cloning of cDNA and analysis of expression. Proc Natl Acad Sci USA 82: 8619–8623

    Google Scholar 

  • Vasconcelos EG, Ferreira ST, Carvalho TMU, de Souza W, Kettlun AM, Mancilla M, Valenzuela MA, Verjovski-Almeida S (1996) Partial purification and immunohistochemical localization of ATP diphosphohydrolase from Schistosoma mansoni. Immunological cross-reactivities with potato apyrase and Toxoplasma gondii nucleoside triphosphate hydrolase. J Biol Chem 271: 22139–22145

    Article  PubMed  CAS  Google Scholar 

  • Vigne P, Breittmayer JP, Frelin C (1998) Analysis of the influence of nucleotidases on the apparent activity of exogenous ATP and ADP at P2Y, receptors. Br J Pharmacol 125: 675–680

    Article  PubMed  CAS  Google Scholar 

  • Wang TF, Guidotti G (1996) CD39 is an ecto-(Ca2+,Mg2+)-apyrase. J Biol Chem 271: 9898–9901

    Article  PubMed  CAS  Google Scholar 

  • Wang TF, Rosenberg PA, Guidotti G (1997) Characterization of brain ecto-apyrase: evidence for only one ecto-apyrase (CD39) gene. Mol Brain Res 47: 295–302

    Article  PubMed  CAS  Google Scholar 

  • Wang TF, Guidotti G (1998a) Golgi localization and functional expression of human uridine diphosphatase. J Biol Chem 273: 11392–11399

    Article  PubMed  CAS  Google Scholar 

  • Wang TF, Guidotti G (1998b) Widespread expression of ecto-apyrase (CD39) in the central nervous system. Brain Res 790: 318–322

    Article  PubMed  CAS  Google Scholar 

  • Wang TF, Ou Y, Guidotti G (1998) The transmembrane domains of ectoapyrase (CD39) affect its enzymatic activity and quaternary structure. J Biol Chem 273: 24814–24821

    Article  PubMed  CAS  Google Scholar 

  • Welford LA, Cusack NJ, Hourani MO (1986) ATP analogues and the guinea-pig taenia coli: A comparison of the structure-activity relationships of ectonucleotidases with those of the P2-purinoceptor. Eur J Pharmacol 129: 217–224

    Article  PubMed  CAS  Google Scholar 

  • Welford LA, Cusack NJ, Hourani SMO (1987) The structure-activity relationships of ectonucleotidases and the excitatory P2-purinoceptors: Evidence that dephosphorylation of ATP analogues reduces pharmacological potency. Eur J Pharmacol 141: 123–130

    Google Scholar 

  • Whyte PP (1996) Hypophosphatasia: natures window on alkaline phosphatase function in man. In: Bilezkian J, Raisz L, Rodan G (eds) Principles of bone biology. Academic Press, San Diego, pp 951–968

    Google Scholar 

  • Wiendl HS, Schneider C, Ogilvie A (1998) Nucleotide metabolizing ectoenzymes are upregulated in A431 cells periodically treated with cytostatic ATP leading to partial resistance without preventing apoptosis. Biochim Biophys Acta (Mol Cell Res) 1404: 282–298

    Article  CAS  Google Scholar 

  • Wieraszko A, Ehrlich YH (1994) On the role of extracellular ATP in the induction of long-term potentiation in the hippocampus. J Neurochem 63: 1731–1738

    Article  PubMed  CAS  Google Scholar 

  • Wittenburg H, Bultmann R, Pause B, Ganter C, Kurz G, Starke K (1996) P2-purinoceptor antagonists: II. Blockade of P2-purinoceptor subtypes and ecto-nucleotidases by compounds related to Evans blue and trypan blue. Naunyn Schmiedebergs Arch Pharmacol 354: 491–497

    Article  PubMed  CAS  Google Scholar 

  • Ziganshin AU, Hoyle CHV, Burnstock G (1994a) Ecto-enzymes and metabolism of extracellular ATP. Drug Develop Res 32: 134–146

    Article  CAS  Google Scholar 

  • Ziganshin AU, Hoyle CHV, Ziganshina LE, Burnstock G (1994b) Effects of cyclopiazonic acid on contractility and ecto- ATPase activity in guinea-pig urinary bladder and vas deferens. Br J Pharmacol 113: 669–674

    Article  PubMed  CAS  Google Scholar 

  • Ziganshin AU, Ziganshina LE, Bodin P, Bailey D, Burnstock G (1995a) Effects of P2purinoceptor antagonists on ecto-nucleotidase activity of guinea-pig vas deferens cultured smooth muscle cells. Biochem Mol Biol Int 36: 863–869

    PubMed  CAS  Google Scholar 

  • Ziganshin AU, Berdnikov EA, Ziganshina LE,Tantasheva FR, Hoyle CHV, Burnstock G (1995b) Effects of a,ß-unsaturated sulphones and phosphonium salts on ectoATPase activity and contractile responses mediated via P2x-purinoceptors. Gen Pharmacol 26: 527–532

    CAS  Google Scholar 

  • Ziganshin AU, Ziganshina LE, Hoyle CHV, Burnstock G (1995c) Effects of divalent cations and La’ on contractility and ecto- ATPase activity in the guinea-pig urinary bladder. Br J Pharmacol 114: 632–639

    Article  PubMed  CAS  Google Scholar 

  • Ziganshin AU, Ziganshina LE, King BF, Pintor J, Burnstock G (1996) Effects of P2-purinoceptor antagonists on degradation of adenine nucleotides by ectonucleotidases in folliculated oocytes of Xenopus laevis. Biochem Pharmacol 51: 897–901

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H (1992) 5’-Nucleotidase: molecular structure and functional aspects. Biochem J 285:345–365

    Google Scholar 

  • Zimmermann H (1994) Signalling via ATP in the nervous system. Trends Neurosci 17: 420–426

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H (1996a) Biochemistry, localization and functional roles of ectonucleotidases in the nervous system. Prog Neurobiol 49: 589–618

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H (1996b) Extracellular purine metabolism. Drug Develop Res 39: 337–352

    Article  CAS  Google Scholar 

  • Zimmermann H, Pearson J (1998) Extracellular metabolism of nucleotides and adenosine in the cardiovascular system. In: Burnstock G, Dobson JG, Liang BT, Linden J (eds) Cardiovascular biology of purines. Kluwer, London pp342358

    Google Scholar 

  • Zimmermann H (1999a) Two novel families of ecto-nucleotidases: Molecular structures, catalytic properties, and a search for function. Trends Pharmacol Sci 20: 231–236

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H (1999b) Nucleotides and cd39: principal modulatory players in hemostasis and thrombosis. Nature Med 5: 987–988

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Braun N (1999) Ecto-nucleotidases: molecular structures, catalytic properties, and functional roles in the nervous system. Prog Brain Res 120: 371–385

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann H, Beaudoin AR, Bollen M, Goding JW, Guidotti G, Kirley TL, Robson SC, Sano K (2000) Proposed nomenclature for two novel nucleotide hydrolyzing enzyme families expressed on the cell surface. In: Vanduffel L, Lemmens R (eds) Ecto-ATPases and related ectonucleotidases, Shaker Publishing BV, Maastricht, pp 1–8

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zimmermann, H. (2001). Ecto-Nucleotidases. In: Abbracchio, M.P., Williams, M. (eds) Purinergic and Pyrimidinergic Signalling I. Purinergic and Pyrimidinergic Signalling, vol 151 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09604-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09604-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08742-4

  • Online ISBN: 978-3-662-09604-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics