Skip to main content

Genomic DNA Isolation, Southern Blotting and Hybridization

  • Chapter
Plant Molecular Biology — A Laboratory Manual

Part of the book series: Springer ((SLM))

Abstract

The isolation of plant nucleic acids is a fundamental requirement for most genome characterization and mapping procedures involving the use of genetic markers, and for the identification and isolation of plant genes for genetic engineering. The degree of purity and quality required of the DNA isolated varies from application to application. On the one hand, high molecular weight, high purity DNA is required for the production of genomic DNA libraries, which are screened for plant gene sequences and for other genetic markers such as RFLPs. For genetic analysis, on the other hand, the degree of purity required may be lower, but other factors, such as the yield of DNA, may be more important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Couch JA, Fritz PJ (1990) Isolation of DNA from plants high in polyphenolics. Plant Mol Biol Rep 8(1):8–12

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation:version II. Plant Mol Biol Rep 1(4): 19–21

    Article  CAS  Google Scholar 

  • Henfrey RD, Slater RJ (1988) Isolation of plant nuclei. In: Walker JM (ed) Methods in molecular biology, vol 4. Humana Press, Totowa, New Jersey, pp 447–452

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Tai TH, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8(4):297–303

    Article  Google Scholar 

  • Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Phil Trans R Soc Lond B 274:227–274

    Article  CAS  Google Scholar 

  • Bennett MD, Smith JB (1991) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B 334:309–345

    Article  CAS  Google Scholar 

  • Bennett MD, Smith JB, Heslop-Harrison JS (1982) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B 216.T79–199

    Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Methods for detection of single or low copy sequences in tomato on Southern blots. Plant Mol Biol Rep 4:37–41

    Article  CAS  Google Scholar 

  • Khandijian EW (1987) Optimised hybridization of DNA blotted and fixed to nitrocellulose and nylon membranes. Bio/Technology 5:165–167

    Article  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  PubMed  CAS  Google Scholar 

  • Kreike CM, de Koning JRA, Krens FA (1990) Non-radioactive detection of single copy DNA-DNA hybrids. Plant Mol Biol Rep 8:172–179

    Article  CAS  Google Scholar 

  • Landry BS, Kesseli R, Hei Leung, Michelmore RW (1987) Comparison of restriction endonucleases and sources of probes for their efficiency in detecting restriction fragment polymorphisms in lettuce (Lactuca sativa L.). Theor Appl Genet 74:646–653

    Article  CAS  Google Scholar 

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    Article  CAS  Google Scholar 

  • Medveczky P, Chang CW, Oste C, Mulder C (1987) Rapid vacuum-driven transfer of DNA and RNA from gels to solid supports. Biotechniques 5:242–246

    CAS  Google Scholar 

  • Miller JC, Tanksley SD (1990) Effect of different restriction enzymes, probe source, and probe length on detecting restriction fragment length polymorphism in tomato. Theor Appl Genet 80:385–389

    PubMed  CAS  Google Scholar 

  • Olszewska E, Jones K (1988) Vacuum blotting enhances nucleic acid transfer. TIG 4:92–94

    Article  PubMed  CAS  Google Scholar 

  • Reed KC, Mann DA (1985) Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 13:7207–7221

    Article  PubMed  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Cullis CA, Rivin CJ, Walbot V (1984) A rapid procedure for the determination of the copy number of repetitive sequences in eukaryotic genomes. Plant Mol Biol Rep 2:24–31

    Article  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclcase fragments to high specific activity. Anal Biochem 132:6–13

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) Addendum: a technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137:266–267

    Article  PubMed  CAS  Google Scholar 

  • Meinkoth J, Wahl G (1984) Hybridization of nucleic acids immobilised on solid supports. Anal Biochem 138:267–284

    Article  PubMed  CAS  Google Scholar 

  • Rivin C (1986) Analyzing genome variation in plants. Methods Enzymol 118:75–86

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Renz M (1983) An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Anal Biochem 132:14–19

    Article  PubMed  CAS  Google Scholar 

  • Beck S, Köster H (1990) Applications of dioxetane chemiluminescent probes to molecular biology. Anal Chem 62:2258–2270

    Article  PubMed  CAS  Google Scholar 

  • Beckmann JS, Soller M (1988) Detection of linkage between marker loci and loci affecting quantitative traits in crosses between segregating populations. Theor Appl Genet 76:228–236

    Article  Google Scholar 

  • Burr B, Evola SV, Burr FA, Beckmann JS (1983) The application of restriction fragment length polymorphism to plant breeding. In: Setlow JK, Hollaender A (eds) Genetic engineering: principals and methods Plenum, New York, pp 45–59

    Google Scholar 

  • Dennis Lo YM, Mehal WZ, Flaming KA (1990) Incorporation of biotinylated dUTP. In: PCR protocols: a guide to methods and amplifications. Academic Press Inc, San Diego: pp 113–118

    Google Scholar 

  • Emanuel JR (1991) Simple efficient system for synthesis of nonradioactive nucleic acid hybridization probes using PCR. Nucl Acids Res 19:2790

    Article  PubMed  CAS  Google Scholar 

  • Friedman KD, Rosen NL, Newman PJ, Montgomery RR (1990) Screening of lambda gt11 libraries. In: PCR protocols: a guide to methods and amplifications. Academic Press, San Diego: pp253–258

    Google Scholar 

  • Höltke HI, Sagner G, Kessler Ch, Schmitz G (1992) Sensitive chemiluminescent detection of digoxigenin-labelled nucleic acids: a fast and simple protocol and its application. Bio Techniques 12:104–113

    Google Scholar 

  • Ishii T, Panaud O, Brar DS, Klush GS (1990) Use of non-radioactive digoxigenin-labeled DNA probes for RFLP analysis in rice. Plant Mol Biol Rep 8:167–171

    Article  CAS  Google Scholar 

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  PubMed  CAS  Google Scholar 

  • Khairallah M, Acevedo F, Dorregaray F, Feingold S, Lacaze P, Gonzales de Léon D, Hoisington D (1993) RFLP analysis in the Triticeae: scale-up of operations and use of chemiluminescent techniques. In: Hoisington D, McNab A (eds) Progress in genome mapping of wheat and related species. Proc 3rd Public Worksh of the Int Triticeae Mapping Initiative, Mexico, DF, CIMMYT: pp 32–46

    Google Scholar 

  • Kreike CM, Koning JRA, Krens FA (1990) Non-radioactive detection of single-copy DNA-DNA hybrids. Plant Mol Biol Rep 8:172–179

    Article  CAS  Google Scholar 

  • Lanzillo II (1991) Chemiluminescent nucleic acid detection with digoxigenin-labelled probes: a model system with probes for angiotensin converting enzyme which detect less than one attomole of target DNA. Anal Biochem 194:45–53

    Article  PubMed  CAS  Google Scholar 

  • Lu YH, Négre S, Leroy P, Bernard M (1993a) PCR-mediated screening and labelling of DNA from clones. Plant Mol Biol Rep 11(4):345–349

    Article  CAS  Google Scholar 

  • Lu YH, Merlino M, Isaac PG, Staccy J, Bernard M, Leroy P (1993b) A comparative analysis between [32P] and digoxigenin-labelled single-copy probes for RFLP detection in wheat. Agronomie 14:33–39

    Article  Google Scholar 

  • Lu YH, Nègre S (1993c) Use of glycerol for enhanced efficiency and specificity of PCR amplification. Trends Genet 8:227

    Google Scholar 

  • Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P, Tuleen NA, Lopes CR, Hart GE (1996) Molecular genetics maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). Genome 39:359–366

    Article  PubMed  CAS  Google Scholar 

  • McCabe PC (1990) Production of single-strand DNA by asymmetric PCR. In: PCR protocols: a guide to methods and amplifications. Academic Press, San Diego: pp 76–83

    Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995a) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995b) Molecular mapping of wheat: major genes and rearrangements in homoeologous group 4,5 and 7. Genetics 141:721–731

    PubMed  CAS  Google Scholar 

  • Neuhaus-Url G, Neuhaus G (1993) The use of the nonradioactive digoxigenin chemiluminescent technology for plant genomic Southern blot hybridization: a comparison with radioactivity. Transgenic Res 2:115–120

    Article  Google Scholar 

  • Panaud O, Magpantay G, McCouch S (1993) A protocol for non-radioactive DNA labelling and detection in the RFLP analysis of rice and tomato using single-copy probes. Plant Mol Biol Rep 1 1:54–59

    Article  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction analysis of sickle-cell anemia. Science 230:1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Sharp PJ, Chao S, Desai S, Gale MD (1989) The isolation, characterization and application in the Triticeae of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor Appl Genet 78:342–348

    Article  Google Scholar 

  • Simon CJ, Schnorr KM (1992) PCR preparation of DNA inserts from lambda and plasmid vectors for RFLP mapping. Plant Mol Biol Rep 10:367–371

    Article  CAS  Google Scholar 

  • Tai TH, Tanksley SD (1991) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8:297–303

    Article  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. BioTechnology 7:257–264

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilkie, S. et al. (1997). Genomic DNA Isolation, Southern Blotting and Hybridization. In: Clark, M.S. (eds) Plant Molecular Biology — A Laboratory Manual. Springer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87873-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87873-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49144-3

  • Online ISBN: 978-3-642-87873-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics