Skip to main content

Micronutrient Toxicities and Deficiencies in Rice

  • Chapter
Soil Mineral Stresses

Part of the book series: Monographs on Theoretical and Applied Genetics ((GENETICS,volume 21))

Abstract

The area of rice harvested in the world increased during the past 40 years by 41% but rough rice production has increased by 304% (IRRI 1991). It is estimated that the world’s annual rough rice production must increase still further, from 519 million tons in 1990 to 758 million tons by 2020 if food production per caput is to be maintained (IRRI 1989). In Asia, where arable land is scarce and population pressure is high, most of the targeted production must come from existing rice land. Much of this land suffers from soil nutrient problems, which will need to be overcome if productivity is to be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agarwala SC, Sharma CP (1979) Recognizing micronutrient disorders of crop plants on the basis of visible symptoms and plant analysis. Bot Dep, Lucknow University, Lucknow, India

    Google Scholar 

  • Agarwala SC, Chatterjee C, Nautiyal N (1986) Effect of Mn supply on the physiological availability of Fe in rice plants grown in sand culture. Soil Sci Plant Nutr 32: 169–178

    CAS  Google Scholar 

  • Alloway BJ, Tills AR (1984) Copper deficiency in world crops. Outlook Agric 13: 32–41 Amberger A, Gatser R, Ulunsch A (1982) Iron chlorosis induced by high copper and manganese supply. J Plant Nutr 5: 715–720

    Google Scholar 

  • Ando T (1983) Nature of oxidizing power of rice roots. Plant Soil 72: 57–71

    Article  CAS  Google Scholar 

  • Armstrong W (1967) The oxidizing activity of roots in waterlogged soils. Physiol Plant 20: 920–926

    Article  CAS  Google Scholar 

  • Armstrong W (1969) Rhizosphere oxidation in rice: an analysis of intervarietal differences in oxygen flux from the roots. Physiol Plant 22: 296–303

    Article  CAS  Google Scholar 

  • Arnon DI, Stout PR (1939) Molybdenum as an essential element for higher plants. Plant Physiol 14: 599–602

    Article  PubMed  CAS  Google Scholar 

  • Baba I, Harada T (1954) Physiological disease of rice plants in Japan. Ministry of Agriculture and Forestry, Tokyo

    Google Scholar 

  • Bacha RE, Hossner LR (1977) Characteristics of coatings formed on rice roots as affected by iron and manganese additions. Soil Sci Am J 41: 931–935

    Article  CAS  Google Scholar 

  • Benckiser G, Ottow JCG, Santiago S, Watanabe I (1982) Physicochemical characterization of iron toxic soil in some Asian countries. IRRI Res Pap Ser 85: 1982

    Google Scholar 

  • Benckiser G, Santiago S, Neue HU, Watanabe I, Ottow JCG (1984) Effect of fertilization on exudation, dehydrogenase activity, iron–reducing population and Fe2 formation in the rhizosphere of rice ( Oryza sativa L.) in relation to iron toxicity. Plant Soil 79: 305–316

    Google Scholar 

  • Bergmann W (1988) Ernahrungsstorungen bei Kulturpflanzen, 2 Aufl. Fischer, Stuttgart

    Google Scholar 

  • Bode K (1990) Untersuchungen zur Eisentoleranz von Reispflanzen. MS Thesis, Institut fur Allgemeine Botanik, Universitat Hamburg

    Google Scholar 

  • Bowen JE (1986) Kinetics of zinc uptake by two rice cultivars. Plant Soil 94: 99–107

    Article  CAS  Google Scholar 

  • Bowen JE (1987) Physiology of genotypic differences in zinc and copper uptake in rice and tomato. Plant Soil 99: 115–125

    Article  CAS  Google Scholar 

  • Brar MS, Sekhon GS (1976) Interaction of zinc with other micronutrient cations. I. Effect of copper on zinc65 absorption by wheat seedlings and its translocation within the plants. Plant Soil 45: 137–143

    Article  CAS  Google Scholar 

  • Brown JC (1976) Genetic potentials for solving problems of soil mineral stress: iron deficiency and boron toxicity in alkaline soils. In: Wright MJ, Ferrari SA (eds) Plant adaptation to mineral stress in problem soils. Cornell Univ, Ithaca NY, pp 83–94

    Google Scholar 

  • Brown JC (1978) Mechanism of iron uptake by plants. Plant Cell Environ 1: 249–258

    Article  Google Scholar 

  • Broyer TC, Carlton CM, Johnson CM, Stout PR (1954) Chlorine - a micronutrient element for higher plants. Plant Physiol 29: 526–532

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (1988) Morphologische und physiologische Veranderungen bei Zink-Man- gelpflanzen. Dissertation, Institut fur Pflanzenernahrung, Universitat Hohenheim

    Google Scholar 

  • Cassab GJ, Varner JE (1988) Cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 39: 321–353

    Article  CAS  Google Scholar 

  • Castro RU (1977) Zinc deficiency in rice: a review of research at the International Rice Research Institute. IRRI Res Pap Ser 9, International Rice Research Institute, PO Box 933, Manila, Philippines

    Google Scholar 

  • Cayton MTC (1985) Boron toxicity in rice. IRRI Res Pap Ser 113, 10 pp Cay ton MTC, Reyes ED, Neue HU (1985) Effect of zinc fertilization on the mineral nutrition of rices differing in tolerance to zinc deficiency. Plant Soil 87: 319–327

    Article  CAS  Google Scholar 

  • Chaney RL (1984) Diagnostic practices to identify iron deficiency in higher plants. J Plant Nutr 7: 47–67

    Article  CAS  Google Scholar 

  • Chaney RL, Brown JC, Tiffin LO (1972) Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol 50: 208–213

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry FM, Alam SM, Rashid A, Latif A (1977) Mechanism of differential susceptibility of two rice varieties to zinc deficiency. Plant Soil 46: 637–642

    Article  CAS  Google Scholar 

  • Chaudhry MS, McLean EO (1963) Comparative effects of flooded and unflooded soil conditions and nitrogen application on growth and nutrient uptake by rice plants. Agron J 55: 565–567

    Article  CAS  Google Scholar 

  • Cheshire MY, Bick W, de Kock PC, Inkson RH E (1982) The effect of copper and nitrogen on the amino acid composition of oat straw. Plant Soil 66: 139–147

    CAS  Google Scholar 

  • Cho DY, Ponnamperuma FN (1971) Influence of soil temperature on the chemical kinetics of flooded soils and the growth of rice. Soil Sci 112: 184–194

    Article  CAS  Google Scholar 

  • Clark F, Nearpass DC, Specht AU (1957) Influence of organic addition and flooding on iron and manganese uptake by rice. Agron J 49: 586–589

    Article  CAS  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31: 239–298

    Article  CAS  Google Scholar 

  • Dabin P, Marafante E, Mousny JM, Myttenaere C (1978) Absorption distribution and binding of cadmium and zinc in irrigated rice plants. Plant Soil 50: 329–341

    Article  CAS  Google Scholar 

  • Dennis EJ (1971) Micronutrients - a new dimension in agriculture. Publ Nation Fert Sol Assoc, Peoira, 111, USA

    Google Scholar 

  • Driessen PM (1978) Peat soils. In: Soils and rice. International Rice Research Institute, Manila, Philippines, pp 763–779

    Google Scholar 

  • Dugger W (1983) Boron in plant metabolism [nutrients]. In: Encyclopedia of plant physiology, New Series, vol 15B. Inorganic plant nutrition. Springer, Berlin Heidelberg New York, pp 626–650

    Google Scholar 

  • Elstner EF, Wagner GA, Schutz W (1988) Activated oxygen in green plants in relation to stress situations. Curr Top Plant Biochem Physiol 7: 159–187

    Google Scholar 

  • Fageria NK, Carvalho JRP (1982) Influence of Al in nutrient solutions on chemical composition in upland rice cultivars. Plant Soil 69: 31–44

    Article  CAS  Google Scholar 

  • Forno DA, Asher CJ, Yoshida S (1975a) Zinc deficiency in rice. I. Soil factors associated with the deficiency. Plant Soil 42: 537–550

    Google Scholar 

  • Forno DA, Asher CJ, Yoshida S (1975b) Zinc deficiency in rice. II. Studies on two varieties differing in susceptibility to Zn deficiency. Plant Soil 42: 551–563

    Google Scholar 

  • Foster JG, Hess JL (1980) Responses of SOD and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol 66: 482–487

    Article  PubMed  CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29: 511–566

    Article  CAS  Google Scholar 

  • Fridovich I (1986) Superoxide dismutases. Adv Enzymol 41: 35–97

    Google Scholar 

  • Giordano PM, Mortvedt J J (1974) Response of several rice cultivars to zinc. Agron J 66: 220–223

    Article  CAS  Google Scholar 

  • Giordano PM, Noggle JC, Mortvedt J J (1974) Zinc uptake by rice as affected by metabolic inhibitors and competing cations. Plant Soil 41: 637–646

    Article  CAS  Google Scholar 

  • Graham RD (1975) Male sterility in wheat plants deficient in copper. Nature 254: 514–515

    Article  CAS  Google Scholar 

  • Gris E (1844) Nouvelles experiences sur Taction des composes ferrugineux solubles, appliques a la vegetation, et specialement au traitement de la chlorose et de la debilite des plantes. C R Acad Sci Paris 19: 1118–1119

    Google Scholar 

  • Gris E (1847) Addition a une precedente. Note concernant des experiences sur l’application des sels de fer a la vegetation, et specialement au traitement des plantes chlorosees, languissantes et menacees d’une mort prochaine. C R Acad Sci Paris 25: 276–278

    Google Scholar 

  • Gupta RK, Elihout SVD, Abrol IP (1987) Effect of pH on zinc adsorption–precipitation reactions in an alkali soil. Soil Sci 143: 198–204

    Article  CAS  Google Scholar 

  • Haldar M, Mandal LN (1981) Effect of P and Zn on the growth and P, Zn, Cu, Fe and Mn nutrition of rice. Plant Soil: 415–425

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J219: 1–14

    CAS  Google Scholar 

  • Hewitt EJ (1958) The role of mineral elements in the activity of plant enzyme systems. In: Ruhland W (ed) Handbuch Pflanzenphysiologie, BdlV. Die mineralische Ernahrung der Pflanze. Springer, Berlin Heidelberg New York, pp 427–481

    Google Scholar 

  • Honna Y, Hirata H (1978) Noticeable increase in cadmium absorption by zinc deficiency rice plants. Soil Sci Plant Nutr 24: 295–297

    Google Scholar 

  • Horiguchi T (1988) Mechanism of manganese toxicity and tolerance of plants. IV. Effectsof silicon on alleviation of manganese toxicity of rice plants. Soil Sci Plant Nutr 34: 65–73

    CAS  Google Scholar 

  • Horst WJ, Marschner H (1978) Einfluss von Silizium auf den Bindungszustand von Mangan im Blattgewebe von Bohnen ( Phaseolus vulgaris ). Z Pflanzenernaehr Bodenkd 141: 487–497

    Google Scholar 

  • Howeler RH (1973) Iron induced oranging disease of rice in relation to physicochemical changes in a flooded Oxisol. Soil Sci Soc Am Proc 37: 898–903

    Article  CAS  Google Scholar 

  • Ice KL, Pulflnd ID, Duncan HJ (1981) Influence of waterlogging and lime and organic matter addition on the distribution of trace metals in an acid soil. II. Zn and Cu. Plant Soil 59: 327–333

    Google Scholar 

  • IRRI (1963) Annu Rep 1962. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • IRRI (1966) Annu Rep 1965. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • IRRI (1970) Annu Rep 1969. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • IRRI (1971) Annu Rep 1970. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • IRRI (1972) Annu Rep 1971. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • IRRI (1973) Annu Rep 1972. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • IRRI (1978) Annu Rep 1977. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • IRRI (1979) Annu Rep 1978. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • IRRI (1980) Annu Rep 1979. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • IRRI (1989) IRRI Toward 2000 and beyond. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • IRRI (1991) World rice statistics 1990. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Jugsujinda A, Patrick WH (1977) Growth and nutrient uptake by rice under controlled oxidation-reduction and pH conditions in flooded soil. Agron J 69: 705–710

    Article  CAS  Google Scholar 

  • Kamprath EJ, Foy CD (1971) Lime–fertilizer–plant interactions in acid soils. In: Ulsor RA, Army TJ, Hamway JJ, Kilmer VJ (eds) Fertilizer technology and use, 2nd edn. Soil Sci Soc Am, Madison, WI, pp 105–151

    Google Scholar 

  • Katyal JC (1972) A study of Zn equilibria in flooded soils and amelioration of Zn- deficient soils of Agusan del Norte. Terminal Report. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Katyal JC, Ponnamperuma FN (1975) Zinc deficiency: a widespread nutritional disorder of rice in Agusan del Norte. Philipp Agric J 58: 79–89

    CAS  Google Scholar 

  • Kaur NP, Nayyar VK (1986) Some physiological studies on rice grown on manganese-deficient soil. IRRI Newsl 11 (1): 29–30

    Google Scholar 

  • Kausar MA, Chaudhry FM, Rashid A, Latif A, Alam SM (1976) Micronutrient availability to cereals from calcareous soils. I. Comparative Zn and Cu deficiency and their mutual interaction in rice and wheat. Plant Soil 45: 397–410

    Google Scholar 

  • Keil P, Hecht-Buchholz Ch, Ortmann U (1986) Zum Einfluss von erhohtem Manganan-gebot auf Fichtensamlinge. Allg Forstztg 41: 855–858

    Google Scholar 

  • Keren R, Bingham FT (1985) Boron in water, soils and plants. Adv Soil Sci 1: 229–276

    Article  CAS  Google Scholar 

  • Kitagishi K, Obata H (1986) Effects of zinc deficiency on the nitrogen metabolism of meristematic tissues of rice plants with reference to protein synthesis. Soil Sci Plant Nutr 32: 397–405

    CAS  Google Scholar 

  • Kovda VA, van der Berg C, Hogan RG (eds) (1973) International source book. Irrigation, drainage and salinity. FAO/UNESCO, Hutchinson, London, pp 206–290

    Google Scholar 

  • Krauskopf KG (1972) Geochemistry of micronutrients. In: Mortvedt JJ, Giordano PM, Lindsay WL (eds) Micronutrients in agriculture. Soil Sci Soc Am Madison, WI, pp 7–36

    Google Scholar 

  • Kumar B, Gangwar MS, Rathore VS (1976) Effect of dimethyl sulfoxide (DMSO) on zinc availability ( L–value), growth and metabolic activities of rice plants. Plant Soil 45: 235–246

    Google Scholar 

  • Lantin RS (1977) The factors limiting growth of rice on peat soil. Grains J 2: 17–19

    Google Scholar 

  • Lindsay WL (1972) Inorganic phase equilibria of micronutrients in soils. In: Mortvedt J J, Giordano PM, Lindsay WL (eds) Micronutrients in agriculture. Soil Sci Soc Am, Madison, WI, p 41

    Google Scholar 

  • Lindsay WL (1974) Role of chelation in micronutrient availability. In: Carson EW (ed) The plant root and its environment. University of Virginia Press, Charlottesville, pp 507–522

    Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York

    Google Scholar 

  • Lindsay WL (1991) Iron oxide solubilization by organic matter and its effect in iron availability. Plant Soil 130: 27–34

    Article  CAS  Google Scholar 

  • Lopes AS (1980) Micronutrients in soils of the tropics as constraints to food production. In: Soil–related constraints to food production in the tropics. International Rice Research Institute, Manila, Philippines, pp 277–298

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Marschner H, Romheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9: 695–713

    Article  CAS  Google Scholar 

  • Marschner H, Romheld V, Kissel M (1987) Localization of phytosiderophore release and of iron uptake along intact barley roots. Physiol Plant 71: 157–162

    Article  CAS  Google Scholar 

  • Matsunaka S (1960) Studies on the respiratory enzyme system of plants. I. enzymatic oxidation of a-naphthylamine in rice roots. J Biochem 47: 820–829

    CAS  Google Scholar 

  • Matters G, Scandalios JG (1986) Effect of free radical generating herbicide paraquat on the expression of the superoxide dismutase genes in maize. Biochim Biophys Acta 882: 29–38

    Article  PubMed  CAS  Google Scholar 

  • Mengel K (1984) Ernahrung und Stoffwechsel der Pflanze, 6. Aufl. Fischer, Jena Mengel K, Biibl W (1983) Verteilung von Eisen in Blattern von Weinreben mit HCO3- induzierter Fe-Chlorose. Z Pflanzenernaehr Bodenkd 146: 560–571

    Article  Google Scholar 

  • Mengel K, Kirkby EA (1978) Principles of plant nutrition. International Potash Institute, Worklaufen, Switzerland

    Google Scholar 

  • Mengel K, Scherer HW (1984) Iron distribution in vine leaves with HCO3 induced chlorosis. J Plant Nutr 7: 715–724

    Article  CAS  Google Scholar 

  • Mikkelsen DS, Kuo S (1977) Zinc fertilization and behavior in flooded soils. Spec Publ 5. Commonwealth Bureau of Soils, Harpenden UK

    Google Scholar 

  • Miller DM, Aust SD (1983) Studies of ascorbate dependent iron catalyzed lipid peroxidation. Arch Biochem Biophys 271: 113–119

    Article  Google Scholar 

  • Mitchell RL (1964) Trace elements in soils. In: Bear FR (ed) Chemistry of the soil, 2nd edn. Reinhold, New York, pp 320–368

    Google Scholar 

  • Mitsui S (1956) Inorganic nutrition, fertilization, and soil amelioration for lowland rice. Yokendo, Tokyo

    Google Scholar 

  • Moore PA, Patrick WH Jr (1988) Effect of zinc deficiency on alcohol dehydrogenase activity and nutrient uptake in rice. Agron J 80: 882–885

    Article  CAS  Google Scholar 

  • Moore PA, Patrick WH Jr (1989a) Iron availability and uptake in acid sulphate soils. Soil Sci Soc Am J 53: 471–476

    Article  CAS  Google Scholar 

  • Moore PA, Patrick WH Jr (1989b) Manganese availability and uptake by rice in acid sulphate soils. Soil Sci Soc Am J 53: 104–109

    Article  CAS  Google Scholar 

  • Moormann FR, van Breemen N (1978) Rice: soil, water, land. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Mori S, Nishizawa N, Hayashi H, Chino M, Yoshimura E, Ishikara J (1991) Why are young rice plants highly susceptible to iron deficiency? Plant Soil 130: 143–156

    Article  CAS  Google Scholar 

  • Mulleriyama RP (1966) Some factors influencing bronzing - a physiological disease of rice in Ceylon. MS Thesis, University of the Philippines, Los Banos

    Google Scholar 

  • Neue HU (1988) Holistic view of chemistry of flooded soils. In: Panichapon GS, Wada H (Scientific eds) Elliott CR, Leslie RN (publ. eds) Proc 1st Int Symp Paddy Soil Fertility. IBSRAM, Bangkok, pp 21–53

    Google Scholar 

  • Neue HU (1991) Adverse soil tolerance of rice: mechanisms and screening techniques. In: Deturck P, Ponnamperuma FN (eds) Rice Production on acid soils in the tropics. Institute of Fundamental Studies, Kandy, Sri Lanka, pp 243–250

    Google Scholar 

  • Neue HU, Singh VP (1984) Management of wetland rice and fishponds on problem soils in the tropics. In: Petersen JB (ed) Ecology and management of problem soils in Asia. FFTC Book Ser 27, Taipei, pp 352–366

    Google Scholar 

  • Neue HU, Lantin RS, Cayton MTC, Autor NU (1990) Screening of rices for adverse soil tolerance. In: El Bassam N, Dambroth M, Loughman BC (eds) Genetic aspects of plant nutrition. Kluwer Academic, Dordrecht, pp 523–531

    Chapter  Google Scholar 

  • Nhung MT, Ponnamperuma FN (1966) Effect of calcium carbonate, manganese dioxide, ferric hydroxide, and prolonged flooding on chemical and electrochemical changes and growth of rice in a flooded acid sulphate soil. Soil Sci 102: 29–41

    Article  CAS  Google Scholar 

  • Okajima H (1964) Environmental factors and nutrient uptake. In: Proc Symp mineral nutrition of the rice plant. Hopkins, Baltimore, pp 63–73

    Google Scholar 

  • Okajima H, Uritani I, Kun–huang H (1975) The significance of minor elements on plant physiology. Food and Fertilizer Technology Center, Taipei, Taiwan, Rep China

    Google Scholar 

  • Orticio MR (1979) Zinc deficiency: a widespread nutritional disorder of rice in the Philippines. Saturday Seminar, International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Ota Y, Yamada N (1962) Physiological study on bronzing of rice plant in Ceylon (preliminary report). Proc Crop Sci Soc Jpn 31: 90–97

    Article  Google Scholar 

  • Ottow JCG, Benckiser G, Watanabe I (1982) Iron toxicity of rice as a multiple nutritional soil stress. Trop Agric Res Ser 15: 167–179

    CAS  Google Scholar 

  • Park YD, Tanaka A (1968) Studies of the rice plant man “akiochi” soil in Korea. Soil Sci Plant Nutr 14: 27–34

    Google Scholar 

  • Pasricha NS, Ponnamperuma FN (1976) Na+–(Ca2+ + Mg2+) exchange equlibria under submerged soil conditions. Soil Sci 123: 220–223

    Article  Google Scholar 

  • Perumal S (1961) Leaf-tip-drying disease on rice (Oryza sativa). Soil Sci 91: 218–221

    Article  CAS  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24: 29–95

    Article  CAS  Google Scholar 

  • Ponnamperuma FN (1974) Problem rice soils. In: Proc Int Rice Research Conf, April 22–25, 1974. International Rice Research Institute, Philippines, p 11

    Google Scholar 

  • Ponnamperuma FN (1975) Growth-limiting factors of aerobic soils. In: Major research in upland rice. International Rice Research Institute, Manila, Philippines, pp 40–43

    Google Scholar 

  • Ponnamperuma FN (1979) Soil Problems in the IRRI Farm. Paper presented at a Thursday seminar, 8 November 1979. International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Ponnamperuma FN, Lantin RS (1985) Diagnosis and amelioration of nutritional disorders of rice. In: Int Rice Res Conf, International Rice Research Institute, Manila, Philippines

    Google Scholar 

  • Ponnamperuma FN, Solivas JL (1982) Field amelioration of an acid sulphate soil with manganese dioxide and lime. In: Dost H, van Breemen N (eds) Proc Bangkok Symp acid sulphate soils. International Institute for Land Reclamation and Improvement, Wageningen, pp 213–222

    Google Scholar 

  • Ponnamperuma FN, Yuan WL (1966) Toxicity of boron to rice. Nature 211: 780–781

    Article  CAS  Google Scholar 

  • Ponnamperuma FN, Loy TA, Tianco EM (1969) Redox equilibria in flooded soils. II. The manganese oxide systems. Soil Sci 108: 48–57

    Google Scholar 

  • Ponnamperuma FN, Cayton MTC, Lantin RS (1981) Dilute hydrochloric acid as an extractant for available Zn, Cu and B in rice. Plant Soil 61: 297–310

    Google Scholar 

  • Rains DV (1976) Mineral metabolism. In: Bonner J, Varner JE (eds) Plant Biochemistry. Academic Press, New York, pp 561–597

    Google Scholar 

  • Ramani S, Kannan S (1975) Manganese absorption and transport in rice. Physiol Plant 33: 133–137

    Article  CAS  Google Scholar 

  • Rashid A, Chaudry FM, Sharif M (1976) Micronutrient availability to cereals from calcareous soils. III. Zn absorption by rice and its inhibitions by important ions, in submerged soils. Plant Soil 45: 613–623

    Google Scholar 

  • Romheld U, Marschner H (1986) Mobilization of iron in the rhizosphere of different plant species. In: Tinder B, Lauchli A (eds) Advances in Plant Nutrition, vol 2. Praeger Scientific, New York, pp 155–205

    Google Scholar 

  • Sadana US, Takkar PN (1983) Effect of calcium and maganesium on 65Zn absorption and translocation in rice seedlings. J Plant Nutr 6: 705–715

    Article  CAS  Google Scholar 

  • Sajwan KS, Lindsay WL (1986) Effects of redox on zinc deficiency in paddy rice. Soil Sci Soc Am J 50: 1264–1269

    Article  CAS  Google Scholar 

  • Sakal R (1980) Iron and zinc nutrition of rice. J Indian Soc Soil Sci 28: 547–549 Scharpenseel HW, Eichwald E, Haupenthal Ch, Neue HU (1983) Zinc deficiency in a soil toposequence grown to rice at Tiaong, Quezon Province, Philippines. Catena 10: 115–132

    Google Scholar 

  • Schwab AP, Lindsay WL (1983) The effect of redox on the solubility and availability of iron. Soil Sci Soc Am J 47: 201–205

    Article  CAS  Google Scholar 

  • Shim SC, Vose PB (1965) Varietal difference in the kinetics of iron uptake. J Exp Bot 16: 216–232

    Article  CAS  Google Scholar 

  • Singh B, Bollu RP (1984) Effect of chelated and inorganic zinc and manganese on cation exchange capacity of rice roots. Oryza 21: 167–169

    CAS  Google Scholar 

  • Singh M (1981) Effect of zinc, P and N on tryptophan concentrations in rice grains grown on limed and unlimed soils. Plant Soil 62: 305–308

    CAS  Google Scholar 

  • Skoog F (1940) Relationships between zinc and auxin in the growth of higher plants. Am J Bot 27: 935–951

    Article  Google Scholar 

  • Snyder GH, Jones DB, Coale FJ (1990) Occurrence and correction of manganese deficiency in Histosol grown rice. Soil Sci Soc Am J 54: 1634–1638

    Article  CAS  Google Scholar 

  • Sommer AL (1931) Copper as an essential element for plant growth. Plant Physiol 6: 339–345

    Article  PubMed  CAS  Google Scholar 

  • Stout PR, Meagber WR, Pearson GA, Johnson CM (1951) Molybdenum nutrition of crop plants. I. The influence of phosphate and sulphate on the absorption of molybdenum from soils and solution cultures. Plant Soil 3: 51–87

    Google Scholar 

  • Sugiura Y, Tanaka H, Mino Y, Yoshida T, Ota N, Inove M,. Nomoto K, Yoshiota H, Takemata T (1981) Structure, properties and transport mechanism of iron ( III) complex of mugineic acid, a possible phytosiderophere. J Am Chem Soc 103: 6979–6982

    Google Scholar 

  • Takagi S (1976) Naturally occurring chelating compounds in oat and rice root washings. I. Activity measurement and preliminary characterization. Soil Sci Plant Nutr 22: 423–433

    CAS  Google Scholar 

  • Tanaka A, Navasero SA (1966) Interaction between iron and manganese in the rice plant. Soil Sci Plant Nutr 12: 29–33

    Google Scholar 

  • Tanaka A, Yoshida S (1970) Nutritional disorder of the rice plant in Asia. Int Rice Res Inst Tech Bull 10. International Rice Research Institute, Manila, Philippines Tanaka A, Loe R, Navasero SA (1966) Some mechanisms involved in the development of iron toxicity symptoms in the rice plant. Soil Sci Plant Nutr 12: 32–38

    Google Scholar 

  • Tanaka A, Mulleriyama RP, Yasu T (1968) Possibility of hydrogen sulfide-induced iron toxicity of the rice plant. Soil Sci Plant Nutr 14: 1–6

    CAS  Google Scholar 

  • Tanaka A, Tadano T, Fujiyama H (1975) Comparison of adaptability to heavy metals among crop plants. (1) Adaptability to manganese studies on the comparative plant nutrition. J Sci Soil Manure 46: 425–430 (in Japanese)

    CAS  Google Scholar 

  • Tang Li-Hua (1980) The status of micronutrients in relation to crop production in paddy soil of China. I I. Molybdenum. Proc Symp paddy soils. Science Press, Beijing

    Google Scholar 

  • Thompson JE, Legge RL, Barber RF (1987) The role of free radicals in senescence and wounding. New Phytol 105: 317–344

    Article  CAS  Google Scholar 

  • Tisdale SL, Nelson WL, Beaton JD (1985) Soil fertility and fertilizers. MacMillan, New York

    Google Scholar 

  • Tiwari KN, Pathak AN (1982) Studies on Fe–Zn interrelationships in rice under flooded and unflooded conditions. J Plant Nutr 5: 741–742

    Article  Google Scholar 

  • Treeby M, Marschner H, Romheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial and synthetic metal chelators. Plant Soil 114: 217–226

    Article  CAS  Google Scholar 

  • Trier K, Bergmann W (1974) Ergebnisse zur wechselseitigen Beeinflussung der Zink–und Phosphorsaureernahrung von Mais ( Zea mays L. ). Arch Acker Pflanzenbau Bodenkd 18: 65–75

    Google Scholar 

  • Trierweiler JF, Lindsay WL (1969) EDTA ammonium carbonate soil test for zinc. Soil Sci Soc Am Proc 33: 49–53

    Article  CAS  Google Scholar 

  • Trolldenier G (1977) Mineral nutrition and reduction processes in the rhizosphere of rice. Plant Soil 47: 193–202

    Article  CAS  Google Scholar 

  • Ulrich B (1984) Waldsterben durch saure Niederschlage. Umschau 11: 348–353

    Google Scholar 

  • van Breemen N (1978) Landscape, hydrology and chemical aspects of some problem soils in the Philippines and in Sri Lanka. A terminal report submitted to IRRI. International Rice Research Institute, Manila, Philippines, pp 247–282

    Google Scholar 

  • Vianello A, Macri F, Bindoli A (1987) Lipid peroxidation induced NAD(P)H and NAD+ dependent in soybean mitochondria. Plant Cell Physiol 28: 1263–1269

    CAS  Google Scholar 

  • Vlamis J, Williams DE (1967) Manganese and silica interactions in the graminae. Plant Soil 28: 131–140

    Article  Google Scholar 

  • Wallace A, Cha JW (1986) Influence of iron efficiency in soybeans on concentration of many trace elements in plant parts and implications on iron-efficiency mechanisms. J Plant Nutr 9: 787–803

    Article  CAS  Google Scholar 

  • Xie RJ, MacKenzie AF (1989) Effect of sorbed orthophosphate on zinc status in three soils of Eastern Canada. Can J Soil Sci 40: 49–58

    Article  CAS  Google Scholar 

  • Xie RJ, MacKenzie AF (1990) Sorbed ortho– and pyrophosphate effects on zinc reactions compared in three autoclaved soils. Soil Sci Soc Am J 54: 744–749

    Article  CAS  Google Scholar 

  • Yoshida S (1981) Fundamentals of rice crop science. International Rice Research Institute, Los Banos, Philippines

    Google Scholar 

  • Yoshida S, Tanaka A (1969) Zinc deficiency of the rice plant in calcareous soils. Soil Sci Plant Nutr 15: 75–80

    CAS  Google Scholar 

  • Yoshida S, Ahn JS, Forno DH (1973) Occurrence, diagnosis and correction of zinc deficiency of lowland rice. Soil Sci Plant Nutr 19: 83–93

    CAS  Google Scholar 

  • Zhang F, Romheld V, Marschner H (1989) Effect of zinc deficiency in wheat on the release of zinc and iron mobilizing root exudates. Z Pflanzenernahr Bodenkd 152: 205–210

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neue, H.U., Lantin, R.S. (1994). Micronutrient Toxicities and Deficiencies in Rice. In: Yeo, A.R., Flowers, T.J. (eds) Soil Mineral Stresses. Monographs on Theoretical and Applied Genetics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84289-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84289-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84291-7

  • Online ISBN: 978-3-642-84289-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics