Skip to main content

Boron in Water, Soils, and Plants

  • Chapter
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 1))

Abstract

Boron is one of the seven essential micronutrients required for the normal growth of most plants. Boron has a marked effect on plants, from the standpoint of both plant nutrition—if boron is deficient in soil—and toxicity—if it is present in excessive amounts. There is a relatively small range between levels of soil boron causing deficiency and toxicity symptoms in plants. Of deficiencies of the known essential micronutrients, boron deficiency in plants is most widespread. The deficiency of boron has been reported for one or more crops in 43 states of the United States (Sparr, 1970) and in many countries of the world. McMurtrey (1948) lists the visual symptoms of a number of crops, and in nearly all, the main visual symptoms of boron deficiency are that terminal growth ceases, internodes become shortened, and the plant often acquires a rosetted (bushy) appearance. It is essential to remember that with boron, as with phosphorus and several other plant nutrient elements, deficiency may be present long before visual deficiency symptoms occur. Some of the most severe disorders caused by boron deficiency include brown-heart of rutabaga (Brassica napobrassica L. Mill), and internal brown-spot of sweet potatoes (Iponoea batatas L. Lam).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, R.M. 1964. Boron, metallo-boron compounds and boranes. John Wiley & Sons, Inc.

    Google Scholar 

  • Barnhisel, R.I., and C.I. Rich. 1963. Gibbsite formation from aluminum-interlayers in montmorillonite. Soil Sci. Soc. Am. Proc. 27: 632–635.

    CAS  Google Scholar 

  • Bartlett, R.J., and C.J. Picarelli. 1973. Availability of boron and phosphorus as affected by liming an acid potato soil. Soil Sci. 116: 77–83.

    CAS  Google Scholar 

  • Berger, K.C. 1949. Boron in soils and crops. Adv. Agron. 1:321–351. Academic Press, Inc., New York.

    Google Scholar 

  • Berger, K.C., and P.F. Pratt. 1963. In: Fertilizer technology and usage, M.H. McVickar, G.L. Bridger,and L.B. Nelson, eds. pp. 281–340. Soil Sci. Soc. Am., Madison, Wisconsin.

    Google Scholar 

  • Berger, K.C., and E. Truog. 1939. Boron determination in soils and plants. Ind. Eng. Chem. Anal. Ed. 11: 540–545.

    CAS  Google Scholar 

  • Biggar, J.W., and M. Fireman. 1960. Boron adsorption and release by soils. Soil Sci. Soc. Am. Proc. 24: 115–120.

    CAS  Google Scholar 

  • Bingham, F.T., A. Elseewi, and J.J. Oertli. 1970. Characteristics of boron adsorption by excised barley roots. Soil Sci. Soc. Am. Proc. 34: 613–617.

    CAS  Google Scholar 

  • Bingham, F.T., and A.L. Page. 1971. Specific character of boron adsorption by an amorphous soil. Soil Sci. Soc. Am. Proc. 35: 892–893.

    CAS  Google Scholar 

  • Bingham, F.T., A.L. Page, N.T. Coleman, and K. Flach. 1971. Boron adsorption characteristics of selected amorphous soils from Mexico and Hawaii. Soil Sci. Soc. Am. Proc. 35: 546–550.

    CAS  Google Scholar 

  • Bingham, F.T., A.W. Marsh, R Branson, R. Mahler, and G. Ferry. 1972. Reclamation of salt affected high boron soils in western Kern County. Hilgardia 41: 195–211.

    CAS  Google Scholar 

  • Bingham, F.T., F.J. Peryea, and J.D. Rhoades. 1981. Boron tolerance character of wheat. Proc. Inter-American Salinity and Water Management Technology, pp. 207–216. Juarez, Mexico, Dec. 11 - 12, 1980.

    Google Scholar 

  • Blackmore, A.V., and R.D. Miller. 1961. Tactoid size and osmotic swelling in calcium montmorillonite. Soil Sci. Soc. Am. Proc. 25: 169–173.

    CAS  Google Scholar 

  • Bockris, J. and A.K.N. Reddy. 1970. Modern electrochemistry, V. 1 and 2. Plenum Press, New York. 1432 pp.

    Google Scholar 

  • Boeseken, J. 1949. The use of boric acid for the determination of the configuration of carbohydrates. Advances in Carbohydrate Chemistry 4: 189–210.

    CAS  Google Scholar 

  • Bradford, G.R. 1966. Chapter 4. Boron, pp. 33–61. In: Diagnostic criteria for plants and soils ( H.D. Chapman, ed.), University of California, Division of Agricultural Sciences.

    Google Scholar 

  • Byrne, R.J. Jr., and D.R. Kester. 1974. Inorganic speciation of boron in seawater. J. Mar. Res. 32: 119–127.

    CAS  Google Scholar 

  • Christ, C.L. 1960. Crystal chemistry and systematic classification of hydrated borate minerals. Am. Mineralogist. 45: 334–340.

    CAS  Google Scholar 

  • Christ, C.L. and J.R. Clark. 1976. A crystal-chemical classification of borate structures with emphasis in hydrated borates. Phys. Chem. Miner. 2: 59–87.

    Google Scholar 

  • Cotton, F.A., and G. Wilkinson. 1980. Advanced inorganic chemistry, 4th ed. John Wiley & Sons, New York.

    Google Scholar 

  • Couch, E.L., and RE. Grim. 1968. Boron fixation by illites. Clays and Clay Minerals 16: 249–256.

    Google Scholar 

  • Dyal, RS. and S.B. Hendricks. 1950. Total surface of clays in polar liquids as a characteristic index. Soil Sci. 69: 421–432.

    CAS  Google Scholar 

  • Dyrssen, D., and I.Hansson. 1973. Ionic medium effects in sea water. Comparison of acidity constants of carbonic acid in sodium chlorde and synthetic sea water. Mar. Chem. 1: 137–149.

    CAS  Google Scholar 

  • Eaton, F.M., R.D. McCallum, and M.S. Mayhugh. 1941. Quality of irrigation waters of the Hollister area of California. U.S.D.A. Tech. Bull. 746.

    Google Scholar 

  • Eaton, F.M. 1944. Deficiency, toxicity, and accumulation of boron in plants. J. Agr. Res. 69: 237–277.

    Google Scholar 

  • Eaton, F.M., and L.V. Wilcox. 1939. The behavior of boron in soils. U.S.D.A. Tech. Bull. 696.

    Google Scholar 

  • Eaton, F.M. 1935. Boron in soils and irrigation waters and its effect on plants, with particular reference to the San Joaquin Valley of California. U.S.D.A. Tech. Bull. 448.

    Google Scholar 

  • Edwards, J.O. 1953. Detection of anionic complexes by pH measurements: I. Polymeric borates. J. Am. Chem. Soc. 75: 6151–6154.

    CAS  Google Scholar 

  • Edwards, J.O., G.C. Morrison, V.F. Ross, and J.W. Schultz. 1955. The structure of the aqueous borate ion. J. Am. Chem. Soc. 77: 266–268.

    CAS  Google Scholar 

  • Elrashidi, M.A., and G.A. O’Connor. 1982. Boron sorption and desorption in soils. Soil Sci. Soc. Am. J. 46: 27–31.

    Google Scholar 

  • El-Sheikh, A.M., A. Ulrich, S.K. Awad, and A.E. Mawardy. 1971. Boron tolerance of squash, melon, cucumber, and corn. J. Am. Soc. Hort. Sci. 96: 536–537.

    Google Scholar 

  • Forsyth, W.G.C. 1950. Studies on the more soluble complexes of soil organic matter. 2. The composition of the soluble polysaccharide fraction. Biochem. J. 46: 141–146.

    PubMed  CAS  Google Scholar 

  • Geraldson, C.M., G.R. Klacan, and O.A. Lorenz. 1973. Chapter 22. Plant analysis as an aid in fertilizing vegetable crops. In: Soil testing and plant analysis, Rev. ed., L.M. Walsh, and J.D. Beaton, eds. pp. 365–379. Soil Sci. Soc. Am. Inc., Madison, Wisconsin.

    Google Scholar 

  • Good, C.D., and D.M. Ritter. 1962. Alkenylboranes: II. Improved preparative methods and new observations on methylvinylboranes. J. Am. Chem. Soc. 84: 1162–1166.

    CAS  Google Scholar 

  • Goulden, J.D.S . 1959. Infrared spectroscopy of aqueous solutions. Spectrochim. Acta. 657–671.

    Google Scholar 

  • Griffin, R.A., and R.G. Burau. 1974. Kinetic and equilibrium studies of boron desorption from soil. Soil Sci. Soc. Am. Proc. 38: 892–897.

    CAS  Google Scholar 

  • Gupta, E.U. 1968. Relationship of total and hot-water soluble boron, and fixation of added boron, to properties of Podzol soils. Soil Sci. Soc. Am. Proc. 32: 45–47.

    CAS  Google Scholar 

  • Gupta, U.C. 1979. Boron nutrition of crops. Adv. Agron. 31:273–307. Academic Press, Inc., New York.

    Google Scholar 

  • Gupta, U.C., and J. A. MacLeod. 1977. Influence of calcium and magnesium sources on boron uptake and yield of alfalfa and rutabagas as related to soil pH. Soil Sci. 124: 279–284.

    CAS  Google Scholar 

  • Haas, A.R.C. 1929. Toxic effect of boron on fruit trees. Bot. Gaz. 88: 113–131.

    CAS  Google Scholar 

  • Hadas, A., and J. Hagin. 1972. Boron adsorption by soils as influenced by potassium. Soil Sci. 113: 189–193.

    CAS  Google Scholar 

  • Hatcher, J.T., G.Y. Blair, and C.A. Bower. 1959. Response of beans to dissolved and adsorbed boron. Soil Sci. 88: 98–100.

    CAS  Google Scholar 

  • Hatcher, J.T. and C.A. Bower. 1958. Equilibria and dynamics of boron adsorption by soils. Soil Sci. 85: 319–328.

    CAS  Google Scholar 

  • Hatcher, J.T. and C.A. Bower. 1967. Adsorption of boron by soils as influenced by hydroxy aluminum and surface area. Soil Sci. 104: 422–426.

    CAS  Google Scholar 

  • Hingston, F.J. 1964. Reaction between boron and clays. Aust. J. Soil Res. 2: 83–95.

    CAS  Google Scholar 

  • Hingston, F.J., A.M. Posner, and J.P. Quirk. 1972. Anion adsorption by goethite and gibbsite. I. The role of the proton in determining adsorption envelopes. J. Soil Sci. 23: 177–191.

    CAS  Google Scholar 

  • Hingston, F.J., A.M. Posner, and J.P. Quirk. 1974. Anion adsorption by goethite and gibbsite. II. Desorption of anions from hydrous oxide surfaces. J. Soil Sci. 25: 16–26.

    CAS  Google Scholar 

  • Huettl, P.J.V. 1976. The pH dependent sorption of boron by soil organic matter. M.Sc. Thesis, University of Wisconsin, Madison, Wisconsin.

    Google Scholar 

  • Ingri, N. 1963. Equilibrium studies of the polyanions containing BIII, SiIV, GeIV and Vv. Svensk. Kem. Tidskr. 75: 199–230.

    CAS  Google Scholar 

  • Ingri, N., G. Lagerstrom, M. Frydman, and L.G. Sillen. 1957. Equilibrium studies of polyanions. II. Polyborates in NaC104 medium. Acta Chem. Scand. 11: 1034–1058.

    CAS  Google Scholar 

  • James, R.O., and T.W. Healy. 1972. Adsorption of hydrolyzable metal ions at the oxide-water interface. III. A thermodynamic model of adsorption. J. Colloid Interface Sci. 40: 65–81.

    CAS  Google Scholar 

  • Jepson, W.B., D.G. Jeffs, and A.P. Ferris. 1976. The adsorption of silica on gibbsite and its relevance to the kaolinite surface. J. Colloid Interface Sci. 55: 454–461.

    CAS  Google Scholar 

  • Jones, J.B., Jr., and W.J.A. Steyn. 1973. Chapter 16. Sampling, handling, and analyzing plant tissue samples. In: Soil testing and plant analysis, Rev. ed., L.M. Walsh and J.D. Beaton, eds. pp. 249–270. Soil Sci. Soc. Am. Inc., Madison, Wisconsin.

    Google Scholar 

  • Kelley, W.P., and S.M. Brown. 1928. Boron in soils and irrigation waters of Southern California and its relation to citrus and walnut culture. Hilgardia 3: 445–458.

    CAS  Google Scholar 

  • Keren, R. 1979. The effect of hydroxy-aluminum precipitation on the exchange properties of montmorillonite. Clays and Clay Min. 27: 303–304.

    CAS  Google Scholar 

  • Keren, R. 1980. Effects of titration rate, pH, and drying process on cation exchange capacity reduction and aggregate size distribution of montmorillonite hydroxyl aluminum complexes. Soil Sci. Soc. Am. J. 44: 1209–1212.

    CAS  Google Scholar 

  • Keren, R., and R.G. Gast. 1981. Effects of wetting and drying, and of exchangeable cations, on boron adsorption and release by montmorillonite. Soil Sci. Soc. Am. J. 45: 478–482.

    CAS  Google Scholar 

  • Keren, R., and R.G. Gast. 1983. pH-dependent boron adsorption by mont-morillonite hydroxy-aluminum complexes. Soil Sci. Soc. Am. J. 47:1116–1121.

    Google Scholar 

  • Keren, R., R.G. Gast, and B. Bar-Yosef. 1981. pH-dependent boron adsorption by Na-montmorillonite. Soil Sci. Soc. Am. J. 45:45–48.

    Google Scholar 

  • Keren, R., R.G. Gast, and R.I. Barnhisel. 1977. Ion exchange reactions in nondried Chambers montmorillonite hydroxy-aluminum complexes. Soil Sci. Soc. Am. J. 41: 34–39.

    CAS  Google Scholar 

  • Keren, R., and U. Mezuman. 1981. Boron adsorption by clay minerals using a phenomenological equation. Clays and Clay Min. 29: 198–204.

    CAS  Google Scholar 

  • Keren, R., and G.A. O’Connor. 1982. Effect of exchangeable ions and ionic strength on boron adsorption by montmorillonite and illite. Clays and Clay Min. 30: 341–346.

    CAS  Google Scholar 

  • Keren, R., and H. Talpaz. 1984. Boron adsorption by montmorillonite as affected by particle size. Soil Sci. Soc. Am. J. in press.

    Google Scholar 

  • Khudairi, A.K. 1961. Boron toxicity and plant growth. In: Salinity problems in the arid zones, Proc. Teheran Symp., UNESCO 14: 175–179.

    Google Scholar 

  • Kitano, Y., M. Okumura, and M. Idogaki. 1978. Coprecipitation of borate-boron with calcium carbonate. Geochem. J. 12: 183–189.

    CAS  Google Scholar 

  • Konopik, N., and O. Leberl. 1949. Colorimetric determination of pH in the range of 10 to 15. Monatsh. 80: 420–429.

    CAS  Google Scholar 

  • Lappert, M.F. 1956. Organic compounds of boron. Chem. Rev. 56: 959–1064.

    CAS  Google Scholar 

  • Leomahardt, H., and A. Weller. 1960. Kinetische protondonatorwirkung hydratisierter kationer. Naturwiss. 47: 58–59.

    Google Scholar 

  • Lowrijsen-Teyssedre, M. 1955. Contribution a l’etude des phenomenes de condensation en chimie minerale. 9. Constitution des solutions de borates. Bull Soc. Chim. France 1111–1117.

    Google Scholar 

  • Maas, E.V. 1984. Salt tolerance of plants. In: Handbook of plant science in agriculture, B.R. Christie, ed. CRC Press, Inc., Cleveland, Ohio 44128, in press.

    Google Scholar 

  • Martin, W.E., and J.E. Matocha. 1973. Chapter 24. Plant analysis as an aid in the fertilization of forage crops. In: Soil testing and plant analysis, Rev. ed., L.M. Walsh, and J.D. Beaton, eds. pp. 393–426. Soil Sci. Soc. Am. Inc., Madison, Wisconsin.

    Google Scholar 

  • McMurtrey, J.E. Jr. 1948. Diagnostic techniques for soils and crops. Am. Potash Institute, Washington, pp. 238–251.

    Google Scholar 

  • McPhail, M., A.L. Page, and F.T. Bingham. 1972. Adsorption interactions of monosilicic and boric acid on hydrous oxides of iron and aluminum. Soil Sci. Soc. Am. Proc. 36: 510–514.

    CAS  Google Scholar 

  • Mesmer, R.E., C.F. Baes, Jr., and F.H. Sweeton. 1972. Acidity measurements at elevated temperature. VI. Boric acid equilibria. Inorg. Chem. 11: 537–543.

    CAS  Google Scholar 

  • Mezuman, U., and R. Keren. 1981. Boron adsorption by soils using a phenomenological adsorption equation. Soil Sci. Soc. Am. J. 45: 722–726.

    CAS  Google Scholar 

  • Midgley, A.R., and D.E. Dunklee. 1940. The cause and nature of over-liming injury. Vermont Agr. Exp. Stn. Bull. 460.

    Google Scholar 

  • Norrish, K., and J.P. Quirk. 1954. Crystalline swelling of montmorillonite. Nature 173: 255–256.

    CAS  Google Scholar 

  • Oertli, J.J. 1963. The influence of certain environmental conditions on water and nutrient uptake and nutrient distribution in barley seedlings with special reference to boron. Advancing Frontiers of Plant Sci. 6: 55–85.

    CAS  Google Scholar 

  • Oertli, J.J., and E. Grgurevic. 1975. Effect of pH on the adsorption of boron by excised barley roots. Agron. J. 67: 278–280.

    CAS  Google Scholar 

  • Olson, R.V., and K.C. Berger. 1946. Boron fixation as influenced by pH, organic matter content, and other factors. Soil Sci. Soc. Am. Proc. 11: 216–220.

    Google Scholar 

  • Onak, T.P., H. Landesman, R.E. Williams, and I. Shapiro. 1959. The B11 nuclear magnetic resonance chemical shifts and spin coupling values for various compounds. J. Phys. Chem. 63: 1533–1535.

    CAS  Google Scholar 

  • Owen, B.B. 1934. The dissociation constant of boric acid from 10 to 50°. J. Am. Chem. Soc. 56: 1695–1697.

    CAS  Google Scholar 

  • Owen, B.B., and E.J. King. 1943. The effect of sodium chloride upon the ionization of boric acid at various temperatures. J. Am. Chem. Soc. 65: 1612–1620.

    CAS  Google Scholar 

  • Parks, G.A. 1965. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 65: 177–198.

    CAS  Google Scholar 

  • Parks, W.L., and J.L. White. 1952. Boron retention by clay and humus systems saturated with various cations. Soil Sci. Soc. Am. Proc. 16: 298–300.

    CAS  Google Scholar 

  • Peterson, L.A., and R.C. Newman. 1976. Influence of soil pH on the availability of added boron. Soil Sci. Soc. Am. J. 40: 280–282.

    CAS  Google Scholar 

  • Prather, R.J. 1977. Sulfuric acid as an amendment for reclaiming soils high in boron. Soil Sci. Soc. Am. J. 41: 1098–1101.

    CAS  Google Scholar 

  • Reardon, E.J. 1976. Dissociation constants for alkali earth and sodium borate ion pairs from 10 to 50°C. Chemical Geology 18: 309–325.

    CAS  Google Scholar 

  • Reeve, R.C., A.F. Pillsbury, and L.V. Wilcox. 1955. Reclamation of a saline and high boron soil in the Coachella Valley of California. Hilgardia 24: 69–91.

    CAS  Google Scholar 

  • Reisenauer, H.M., L.M. Walsh, and R.G. Hoeft. 1973. Chapter 12. Testing soils for sulphur, boron, molybdenum, and chlorine. In: Soil testing and plant analysis, Rev. ed., L.M. Walsh, and J.D. Beaton, eds. pp. 173–200. Soil Sci. Soc. Am. Inc., Madison, Wisconsin.

    Google Scholar 

  • Rhoades, J.D., R.D. Ingvalson, and J.T. Hatcher. 1970a. Adsorption of boron by ferromagnesian minerals and magnesium hydroxide. Soil Sci. Soc. Am. Proc. 34: 938–941.

    CAS  Google Scholar 

  • Rhoades, J.D., R.D. Ingvalson, and J.T. Hatcher. 1970b. Laboratory determination of leachable soil boron. Soil Sci. Soc. Am. Proc. 34: 871–875.

    CAS  Google Scholar 

  • Rogers, H.T. 1947. Boron response and tolerance of various legumes to borax. J. Am. Soc. Agron. 39: 897–913.

    CAS  Google Scholar 

  • Ryans, J., S. Miyamoto, and J.L. Stroehlein. 1977. Relation of solute and sorbed boron to the boron hazard in irrigation water. Plant and Soil 47: 253–256.

    Google Scholar 

  • Schalscha, E.B., F.T. Bingham, G.G. Galindo, and M.P. Galvan. 1973. Boron adsorption by volcanic ash soils in Southern Chile. Soil Sci. 116: 70–76.

    CAS  Google Scholar 

  • Scofleld, C.S. 1935. The salinity of irrigation water. Smithsonian Institution Ann. Rpt. 1935:275–287.

    Google Scholar 

  • Scofleld, C.S., and L.V. Wilcox. 1931. Boron in irrigation waters. U.S.D.A. Tech. Bull. 264.

    Google Scholar 

  • Scott, H.D., S.D. Beasley, and L.F. Thompson. 1975. Effect of lime on boron transport to and uptake by cotton. Soil Sci. Soc. Am. Proc. 39: 1116–1121.

    CAS  Google Scholar 

  • Servoss, R.R., and H.M. Clark. 1957. Vibrational spectra of normal and isotopically labeled boric acid. J. Chem. Phys. 26: 1175–1178.

    CAS  Google Scholar 

  • Shainberg, I., and H. Otoh. 1968. Size and shape of montmorillonite particles saturated with Na/Ca ions. Israel J. Chem. 6: 251–259.

    CAS  Google Scholar 

  • Sims, J.R., and F.T. Bingham. 1967. Retention of boron by layer silicates, sesquioxides and soil materials: I. Layer silicates. Soil Sci. Soc. Am. Proc. 31: 728–732.

    CAS  Google Scholar 

  • Sims, J.R., and F.T. Bingham. 1968a. Retention of boron by layer silicates, sesquioxides and soil materials: II. Sesquioxides. Soil Sci. Soc. Am. Proc. 32: 364–369.

    CAS  Google Scholar 

  • Sims, J.R., and F.T. Bingham. 1968b. Retention of boron by layer silicates, sesquioxides and soil materials: III. Iron- and aluminum-coated layer silicates and soil materials. Soil Sci. Soc. Am. Proc. 32: 369–373.

    CAS  Google Scholar 

  • Singh, S.S. 1964. Boron adsorption equilibrium in soils. Soil Sci. 98: 383–387.

    Google Scholar 

  • Singh, RN., and J.R. Singh. 1974. Studies of the influence of boron nutrition on the growth characteristics of garlic (Allium sativum L.). Indian J. Hort. 31: 255–258.

    Google Scholar 

  • Sparr, M.C. 1970. Micronutrient needs—which, where, on what—in the United States. Commun. Soil Sci. Plant Anal. 1: 241–262.

    Google Scholar 

  • Sposito, G., and S.V. Mattigod. 1979. GEOCHEM: A computer program for the calculation of chemical equilibria in soil solutions and other natural water systems. Kearney Foundation of Soil Science, University of California, Riverside, CA. USA.

    Google Scholar 

  • Tanji, K.K. 1970. A computer analysis on the leaching of boron from stratified soil columns. Soil Sci. 110: 44–51.

    CAS  Google Scholar 

  • Thygesen, J.E. 1938. Uber die selbstkomplexbildung der borsawre. Z Anorg. Allgem. Chem. 237: 101–112.

    CAS  Google Scholar 

  • Ulrich, A., and F.J. Hills. 1973. Chapter 17. Plant analysis as an aid in fertilizing sugar crops: Part I. Sugar Beets. In: Soil testing and plant analysis, Rev. ed., L.M. Walsh, and J.D. Beaton, eds. pp. 271–288. Soil Sci. Soc. Am. Inc., Madison, Wisconsin.

    Google Scholar 

  • University of California Agricultural Extension Service. 1969. Report of soil analysis. Agr. Ext. Lab., Univ. of Calif., Davis.

    Google Scholar 

  • U.S. Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. Agr. Handbk. No. 60, USD A, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Vlamis, J., and A. Ulrich. 1973. Boron tolerance of sugar beets in relation to growth and boron content of tissues. J. Am. Soc. Sugarbeet Technol. 17: 280–288.

    CAS  Google Scholar 

  • Walsh, L.M., and J.D. Beaton (Editors). 1973. Soil testing and plant analysis, Rev. ed., Soil Sci. Soc. Am. Inc., Madison, Wisconsin.

    Google Scholar 

  • Warkentin, B.P., G.H. Bolt, and R.D. Miller. 1957. Swelling pressure of montmorillonite. Soil Sci. Soc. Am. Proc. 21: 495–497.

    Google Scholar 

  • Wear, J.I., and R.M. Patterson. 1962. Effect of soil pH and texture on the availability of water-soluble boron in the soil. Soil Sci. Soc. Am. Proc. 26: 344–346.

    CAS  Google Scholar 

  • Weller, A. 1957. Protolytische reaktionen des angeregten acridins. Z. Elektrochem. 61: 956–961.

    CAS  Google Scholar 

  • Wilcox, L.V., and W.H. Durum. 1967. Quality of irrigation waters. In: Irrigation of agricultural lands, R.M. Hagan, H.R. Haise, and T.C. Edminster, eds. pp. 104–122. Am. Soc. Agron., Madison, Wisconsin.

    Google Scholar 

  • Woodbridge, C.G. 1955. The boron requirements of stone fruit trees. Can. J. Agr. Sci. 35: 282–286.

    CAS  Google Scholar 

  • Yousif, Y.H., F.T. Bingham, and D.M. Yermanos. 1972. Growth, mineral composition, and seed oil of sesame (Sesamum indicum L.) as affected by boron and exchangeable sodium. Soil Sci. Soc. Am. Proc. 36: 923–926.

    CAS  Google Scholar 

  • Zachariasen, W.H. 1954. The precise structure of orthoboric acid. Acta Cryst. 7: 305–310.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Keren, R., Bingham, F.T. (1958). Boron in Water, Soils, and Plants. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5046-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5046-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9539-6

  • Online ISBN: 978-1-4612-5046-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics