Skip to main content

Porphyrin Metabolism as Indicator of Metal Exposure and Toxicity

  • Chapter
Toxicology of Metals

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 115))

Abstract

Numerous studies during the past several decades have demonstrated that porphyrins and other constituents of the heme biosynthetic pathway might serve as sensitive and specific biomarkers of toxic metal exposures in human subjects. Porphyrins (in the reduced form, porphyrinogens) are formed as intermediates of heme biosynthesis in essentially all eukaryotic tissues and are readily measured following extraction in the oxidized form (porphyrins) in blood cells, urine, feces, and other accessible tissues. The utility of porphyrins as biomarkers of metal exposures is based largely on the properties of metals to selectively alter porphyrinogen metabolism in target tissues by mechanisms which lead to metal-specific changes in urinary porphyrin excretion patterns. Of particular importance with respect to the utility of porphyrins as biomarkers of metal effects in target tissues is the property of some specific metals, not only to impair porphyrin(ogen) metabolism, but also to facilitate the oxidation of reduced porphyrins which subsequently accumulate in tissue cells. Evidence indicates that the pro-oxidant action of metals which promotes porphyrinogen oxidation may also underlie the oxidation of other cellular constituents, such as lipids and proteins, a postulated cause of cell injury. Hence, a common mechanistic etiology underlying the porphyrinogenic and tissue-damaging properties of metals provides the rationale for use of porphyrin measurements as an indicator of metal exposure as well as potential toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdulla M, Svensson S, Haeger-Aronsen B (1979) Antagonistic effects of zinc and aluminum on lead inhibition of δ-aminolevulinic acid dehydratase. Arch Environ Health 34:464–469

    PubMed  CAS  Google Scholar 

  • Alexopoulos CG, Chalevelakis G, Katsoulis C, Pallikaris G (1986) Adverse effects of cis-diamminedichloroplatinum II ( CDDP) on porphyrin metabolism in man. Cancer Chemother Pharmacol 17:165–170

    Article  PubMed  CAS  Google Scholar 

  • Anderson PM, Desnick RJ (1980) Purification and properties of uroporphyrinogen I synthase from human erythrocytes. J Biol Chem 255:1993–1999

    PubMed  CAS  Google Scholar 

  • Angle CR (1993) Childhood lead poisoning and its treatment. Annu Rev Pharmacol Toxicol 32:409–434

    Article  Google Scholar 

  • Astrin KH, Bishop DF, Wetmur JG, Kaul B, Davidow B, Desnick RJ (1987) δ-Aminolevulinic acid dehydratase isozymes and lead toxicity. Ann N Y Acad Sci 514:23–29

    Article  PubMed  CAS  Google Scholar 

  • Baghurst PA, McMichael AJ, Wigg NR, Vimpani GV, Robertson EF, Roberts RJ, Tong S-L (1992) Environmental exposure to lead and children’s intelligence at the age of seven years. N Engl J Med 327:1279–1284

    Article  PubMed  CAS  Google Scholar 

  • Batlle AM del C, Benson A, Rimington C (1965) Purification and properties of coproporphyrinogenase. Biochem J 97:731–740

    PubMed  CAS  Google Scholar 

  • Benkmann HG, Bogdanski P, Goedda HW (1983) Polymorphism of delta-aminolevulinic acid dehydratase in various populations. Hum Hered 33:61–64

    Article  Google Scholar 

  • Bernard A, Lauwerys R (1987) Metal-induced alterations of δ-aminolevulinic acid dehydratase. Ann N Y Acad Sci 514:41–47

    Article  PubMed  CAS  Google Scholar 

  • Bird TD, Hamernynik P, Nutter JY, Labbe RF (1979) Inherited deficiency of delta-aminolevulinic acid dehydratase. Am J Hum Genet 31:662–668

    PubMed  CAS  Google Scholar 

  • Bonkovsky HL, Sinclair PR, Bement WJ, Lambrecht RW, Sinclair JF (1987) Role of cytochrome P-450 in porphyria caused by halogenated aromatic compounds. Ann N Y Acad Sci 514:96–112

    Article  PubMed  CAS  Google Scholar 

  • Borup P, Vordac V, Pederson JS, With TK (1980) The porphyrin pattern of normal urine. Int J Biochem 12:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Bowers MA, Aicher LD, Davis HA, Woods JS (1992) Quantitative determination of porphyrins in rat and human urine and evaluation of urinary porphyrin profiles during mercury and lead exposures. J Lab Clin Med 120:272–281

    PubMed  CAS  Google Scholar 

  • Cantoni O, Evans RM, Costa M (1982) Similarity in the acute cytotoxic response of mammalian cells to mercury and X-rays:DNA damage and glutathion depletion. Biochem Biophys Res Commun 108:614–619

    Article  PubMed  CAS  Google Scholar 

  • Cherian MG, Goyer RA, Delaquerriere-Richardson L (1976) Cadmium-metallothionein-induced nephropathy. Toxicol Appl Pharmacol 38:399–408

    Article  PubMed  CAS  Google Scholar 

  • Chisolm JJ Jr (1971) Screening techniques for undue lead exposure in children:biological and practical considerations. J Pediatr 79:719–725

    Article  PubMed  CAS  Google Scholar 

  • Clement RP, Kohashi K, Piper WN (1982) Rat hepatic uroporphyrinogen III cosynthase:purification, properties, and inhibition by metal ions. Arch Biochem Biophys 214:657–667

    Article  PubMed  CAS  Google Scholar 

  • Dailey HA, Fleming JE (1983) Bovine ferrochelatase. Kinetic analysis of inhibition by N-methylprotoporphyrin, manganese and heme. J Biol Chem 258:11453–11459

    PubMed  CAS  Google Scholar 

  • De Bruin A (1968) Effect of lead exposure on the level of δ-aminolevulinic dehydratase activity. Med Lav 59:411–418

    PubMed  Google Scholar 

  • De Matteis F (1988) Role or iron in the hydrogen peroxide-dependent oxidation of hexahydroporphyrins (porphyrinogens):a possible mechanism for the exacerbation by iron of hepatic uroporphyria. Mol Pharmacol 33:463–469

    PubMed  Google Scholar 

  • De Matteis F, Harvey C, Reed C, Hempenius R (1988) Increased oxidation of uroporphyrinogen by an inducible liver microsomal system. Biochem J 250:161–169

    PubMed  Google Scholar 

  • De Salamanca RE, Molina C, Olmos A, Chinarro S, Perpina J, Munoz JJ, Pena ML, Vails V (1983) Excretion de porfirinas y precursores en ratas cronicamente intoxicadas por mercurio. Gastroenterol Hepatol 6:20–23

    Google Scholar 

  • Doss M, Muller WA (1982) Acute lead poisoning in inherited porphobilinogen synthase (aminolevulinic acid dehydrase) deficiency. Blut 45:131–139

    Article  PubMed  CAS  Google Scholar 

  • Echeverria D, Heyer N, Woods JS, Martin MD, Naleway CA (1994) Effects of low-level exposure to elemental mercury among dentists. Neurotoxicol Teratol (to be published)

    Google Scholar 

  • Elder GH, Evans JO (1978) Evidence that coproporphyrinogen oxidase activity in rat liver is situated in the intermembrane space of mitochondrion. Biochem J 172:345–351

    PubMed  CAS  Google Scholar 

  • Elder GH, Urquhart AJ (1984) Human uroporphyrinogen decarboxylase. Do tissue-specific isoenzymes exist? Biochem Soc Trans 12:663–664

    CAS  Google Scholar 

  • Elder GH, Tovey JA, Sheppard DM (1983) Purification of uroporphyrinogen decarboxylase from human erythrocytes. Biochem J 215:45–55

    PubMed  CAS  Google Scholar 

  • Farant JP, Wigfield DC (1987) Interaction of divalent metal ions with normal and lead-inhibited human erythrocytic porphobilinogen synthetase in vitro. Toxicol Appl Pharmacol 89:9–18

    Article  PubMed  CAS  Google Scholar 

  • Fell GS (1984) Lead toxicity:problems of definition and laboratory evaluation. Ann Clin Biochem 21:453–460

    PubMed  CAS  Google Scholar 

  • Ferioli A, Harvey C, De Matteis F (1984) Drug-induced accumulation of uroporphyrin in chicken hepatocyte cultures. Biochem J 224:769–777

    PubMed  CAS  Google Scholar 

  • Ford RE, Ou CN, Ellefson RD (1981) Liquid-chromatographic analysis for urinary porphyrins. Clin Chem 27:397–401

    PubMed  CAS  Google Scholar 

  • Fowler BA, Mahaffey KR (1978) Interaction among lead, cadmium and arsenic in relation to porphyrin excretion patterns. Environ Health Perspect 25:87–90

    Article  PubMed  CAS  Google Scholar 

  • Fowler BA, Woods JS (1977) Ultrastructural and biochemical changes in renal mitochondria following chronic oral methyl mercury exposure:the relationship to renal function. Exp Mol Pathol 27:403 - 412

    Article  PubMed  CAS  Google Scholar 

  • Fowler BA, Kimmel CA, Woods JS, McConnell EE, Grant LD (1980) Chronic low level toxicity of lead in the rat. III. An integrated assessment of long-term toxicity with special reference to the kidney. Toxicol Appl Pharmacol 56:59–77

    Article  PubMed  CAS  Google Scholar 

  • Francis JE, Smith AG (1988) Oxidation of uroporphyrinogen by free radicals. Evidence for nonporphyrin products as potential inhibitors of uroporphyrinogen decarboxylase. FEBS Lett 233:311–314

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Vargas GG, Garcia-Rangel A, Aguilar-Romo M, Garcia-Salcedo J, Maria del Razo L, Ostrosky-Wegman P, Cortinas de Nava C, Cebrian ME (1991) A pilot study on the urinary excretion of porphyrins in human populations chronically exposed to arsenic in Mexico. Hum Exp Toxicol 10:189–193

    Article  PubMed  CAS  Google Scholar 

  • Gibson RD, Neuberger A, Scott JJ (1955) The purification and properties of δ-aminolevulinate dehydratase. Biochem J 61:618–629

    PubMed  CAS  Google Scholar 

  • Goering PL, Fowler BA (1987) Mechanism of urinary excretion of δ-aminolevulinic acid after intrathecal instillation of gallium arsenide. Ann N Y Acad Sci 514:330–332

    Article  Google Scholar 

  • Goldwater LJ, Joselow MM (1967) Absorption and excretion of mercury in man. XII. Effects of mercury exposure on urinary excretion of coproporphyrin and delta-aminolevulinic acid. Arch Environ Health 15:327–331

    PubMed  CAS  Google Scholar 

  • Goyer RA (1993) Lead toxicity:current concerns. Environ Health Perspect 100:177–187

    Article  PubMed  CAS  Google Scholar 

  • Granick S, Sassa S (1971) δ-Aminolevulinic acid synthetase and the control of heme and chlorophyll synthesis. In:Vogel HJ (ed) Metabolic pathways, vol V, 3rd edn. Academic, New York, pp 77–141

    Google Scholar 

  • Haeger-Aronsen B (1960) Studies on urinary excretion of δ-aminolevulinic acid and other haem, precursors in lead workers and lead intoxicated rabbits. Scand J Clin Lab Invest 12 [Suppl 47]:1–28

    PubMed  CAS  Google Scholar 

  • Haeger-Aronsen B (1982) Why is the patient with lead intoxication not light sensitive? Acta Dermatol 100 [Suppl]:67–71

    CAS  Google Scholar 

  • Henderson MJ, Toothill C (1983) Urinary coproporphyrin in lead intoxication:a study in the rabbit. Clin Sci 65:527–532

    PubMed  CAS  Google Scholar 

  • Hermes-Lima M, Pereira B, Bechara EJH (1991) Are free radicals involved in lead poisoning? Xenobiotica 8:1095–1090

    Google Scholar 

  • Hernberg S, Nikkanen J (1970) Enzyme inhibition by lead under normal urban conditions. Lancet i:63–64

    Article  CAS  Google Scholar 

  • Hernberg S, Nikkanen J, Mellin G, Lilius H (1970) δ-Aminolevulinic acid dehydratase as a measure of lead exposure. Arch Environ Health 21:140–145

    PubMed  CAS  Google Scholar 

  • Ho JW (1990) Determination of porphyrins in human blood by high performance liquid chromatography. J Liquid Chromatog 13:2179–2192

    Article  CAS  Google Scholar 

  • Ichiba M, Tomokuni K (1987) Urinary excretion of 5-hydroxyindoleacetic acid, δ- aminolevulinic acid and coproporphyrin isomers in rats and men exposed to lead. Toxicol Lett 38:91–96

    Article  PubMed  CAS  Google Scholar 

  • Iscan M, Maines MD (1990) Differential regulation of heme and drug metabolism in rat testis and prostate:response to cis-platinum and human chorionic gonadotropin. J Pharmacol Exp Ther 253:73–79

    PubMed  CAS  Google Scholar 

  • Jaffe EK, Bagla S, Michini PA (1991) Réévaluation of a sensitive indicator of early lead exposure. Biol Trace Element Res 28:223–231

    Article  CAS  Google Scholar 

  • Jones MS, Jones OTG (1969) The structural organization of heme synthesis in rat liver mitochondria. Biochem J 113:507–514

    PubMed  CAS  Google Scholar 

  • Kardish R, Fowler BA, Woods JS (1980) Alteration in urinary coproporphyrin and hepatic coproporphyrinogen III oxidase activity following exposure to toxic metals. 19th annual meeting of the Society of Toxicology, abstract A125

    Google Scholar 

  • Labbe RF, Hubbard N (1961) Metal specificity of the iron-protoporphyrin chelating enzyme. Biochim Biophys Acta 52:131–135

    Article  Google Scholar 

  • Labbe RF, Finch CA, Smith NJ, Doan RN, Sood SK, Nishi M (1979) Erythrocyte protoporphyrin/heme ratio in the assessment of iron status. Clin Chem 25:87–92

    PubMed  CAS  Google Scholar 

  • Labbe RF, Rettmer RL, Shah AG, Turnlund JR (1987) Zinc protoporphyrin. Past, present and future. Ann N Y Acad Sci 514:7–14

    Article  PubMed  CAS  Google Scholar 

  • Lamola AA, Yamane T (1974) Zinc protoporphyrin in the erythrocytes of patients with lead intoxication and iron deficiency anaemia. Science 186:936–938

    Article  PubMed  CAS  Google Scholar 

  • Lamola AA, Joselow M, Yamane T (1975) Zinc protoporphyrin (ZPP):a simple sensitive fluorometric screening test for lead poisoning. Clin Chem 21:93–97

    PubMed  CAS  Google Scholar 

  • Lim CK, Peters TP (1984) Urine and faecal porphyrin profiles by reversed-phase high-performance liquid chromatography in the porphyrias. Clin Chem Acta 139:55–63

    Article  CAS  Google Scholar 

  • Lund B, Miller DM, Woods JS (1991) Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney mitochondria. Biochem Pharmacol 42:S181–S187

    Article  PubMed  CAS  Google Scholar 

  • Lund BO, Miller DM, Woods JS (1993) Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem Pharmacol 45:2017–2024

    Article  PubMed  CAS  Google Scholar 

  • Maines MD (1984) New developments in the regulation of heme metabolism and their implications. Crit Rev Toxicol 12:241–314

    Article  PubMed  CAS  Google Scholar 

  • Maines MD (1986) Differential effect of cis-platinum (cis-diammine-dichloro-platinum) on the regulation of liver and kidney heme and hemoprotein metabolism:possible involvement of γ-glutamyl cycle enzymes. Biochem J 237:713–721

    PubMed  CAS  Google Scholar 

  • Maines MD (1990) Effect of cis-platinum on heme, drug, and steroid metabolism pathways:possible involvement in nephrotoxicity and infertility. Crit Rev Toxicol 21:1–20

    Article  PubMed  CAS  Google Scholar 

  • Maines MD, Kappas A (1977) Enzymes of heme metabolism in the kidney. J Exp Med 146:1286–1293

    Article  PubMed  CAS  Google Scholar 

  • Marks GS (1985) Exposure to toxic agents:the heme biosynthetic pathway and hemoproteins as indicator. Crit Rev Toxicol 15:151–179

    Article  PubMed  Google Scholar 

  • Martinez G, Cebrian M, Chamorro G, Jauge P (1983) Urinary uroporphyrin as an indicator of arsenic exposure in rats. Proc West Pharmacol Soc 26:171

    PubMed  CAS  Google Scholar 

  • Mayo Medical Laboratories Interpretive Handbood (1990) Mayo Medical Laboratories, Rochester, MN, pp 149–152

    Google Scholar 

  • Meredith PA, Moore MR, Goldberg A (1974) The effects of aluminum, lead and zinc on δ-aminolevulinic acid dehydratase. Biochem Soc Trans 2:1243–1245

    CAS  Google Scholar 

  • Millar JA, Cumming RL, Battistini V, Cabswell F, Goldberg A (1970) Lead and δ- aminolevulinic acid dehydratase levels in mentally retarded children and in lead-poisoned suckling rats. Lancet ii:695–698

    Article  Google Scholar 

  • Miller DM, Woods JS (1993) Redox activities of mercury-thiol complexes:Implications for mercury-induced porphyria and toxicity. Chem Biol Interact 88:23–35

    Article  PubMed  CAS  Google Scholar 

  • Miller DM, Lund B, Woods JS (1991) Reactivity of Hg(II) with superoxide:evidence for the catalytic dismutation of superoxide by Hg(II). J Biochem Toxicol 6:293–298

    Article  PubMed  CAS  Google Scholar 

  • Mukerji S, Pimstone N (1990) Free radical mechanism of oxidation of uroporphyrinogen in the presence of ferrous iron. Arch Biochem Biophys 281:177–184

    Article  PubMed  CAS  Google Scholar 

  • Nakemura M, Yasuhochi Y, Minokami S (1975) Effects of cobalt on heme biosynthesis in rat liver and spleen. J Biochem 78:373–380

    Google Scholar 

  • Naleway C, Chou H-N, Muller T, Dabney J, Roxe D, Siddiqui F (1991) On-site screening for urinary Hg concentrations and correlation with glomerular and renal tubular function. J Public Health Dent 51:12–17

    Article  PubMed  CAS  Google Scholar 

  • Needleman HL, Gatsonis CA (1990) Low-level lead exposure and the IQ of children. J Am Med Assoc 263:673–678

    Article  CAS  Google Scholar 

  • Nordman Ch, Hernberg S, Nikkanen J, Rykanen A (1973) Blood lead levels and erythrocyte δ-aminolevulinic acid dehydratase activity in people living around a secondary lead smelter. Work Environ Health 10:19–25

    CAS  Google Scholar 

  • Ockner RK, Schmid R (1961) Acquired porphyria in man and rat due to hexachlorobenzene intoxication. Nature 189:499

    Article  PubMed  CAS  Google Scholar 

  • Omae K, Sakurai H, Higashi T, Hosoda K, Teruya K, Suzuki Y (1988) Reevaluation of urinary excretion of coproporphyrins in lead-exposed workers. Int Arch Occup Environ Health 60:107–110

    Article  PubMed  CAS  Google Scholar 

  • Piomelli S, Davidow B (1972) Free erythrocyte protoporphyrin concentration:a promising screening test for led poisoning. Pediatr Res 6:366

    Google Scholar 

  • Piomelli S, Young P, Gay G (1972) A micromethod forree erythrocyte porphyrins:the FEP test. J Lab Clin Med 81:932–940

    Google Scholar 

  • Piomelli S, Davidow B, Guinee VF, Young P, Gay G (1973) The FEP (free erythrocyte porphyrins) test:a screening micromethod for lead poisoning. Pediatrics 51:254–259

    PubMed  CAS  Google Scholar 

  • Piomelli S, Lamola AA, Poh-Fitzpatrick MB, Seaman C, Harber L (1975) Erythropoietic protoporphyria and Pb intoxication:the molecular basis for difference in cutaneous sensitivity. I. Different rates of diffusion of protoporphyrin from erythrocytes, both in vivo and in vitro. J Clin Invest 56:1519–1527

    Article  PubMed  CAS  Google Scholar 

  • Piomelli S, Seaman C, Kapoor S (1987) Lead-induced abnormalities of porphyrin metabolism. The relationship with iron deficiency. Ann N Y Acad Sci 514:278–288

    Article  PubMed  CAS  Google Scholar 

  • Piper WN, Tephly TR (1974) Differential inhibition of erythrocyte and hepatic uroporphyrinogen I synthetase activity by lead. Life Sci 14:873–876

    Article  PubMed  CAS  Google Scholar 

  • Piper WN, van Lier RBL (1977) Pteridine regulation of inhibition of hepatic uroporphyrinogen I synthetase activity by lead chloride. Mol Pharmacol 13:1126–1135

    PubMed  CAS  Google Scholar 

  • Piper WN, Tse J, Clement RP, Kohashi M (1983) Evidence for a folate bound to rat hepatic uroporphyrinogen III cosynthase and its role in the biosynthesis of heme. In:Blair IA (ed) Chemistry and biology of pteridines. De Gruyter, Berlin, p 415

    Google Scholar 

  • Poulson R (1976) The enzymatic conversion of protoporphyrinogen IX to protoporphyrin IX in mammalian mitochondria. J Biol Chem 251:3730–3733

    PubMed  CAS  Google Scholar 

  • Quinlan GJ, Halliwell B, Moorhouse CP, Gutteridge JMC (1988) Action of lead and aluminum ions on iron-stimulated lipid peroxidation in liposomes, erythrocytes and rat liver microsomal fractions. Biochim Biophys Acta 962:196–200

    PubMed  CAS  Google Scholar 

  • Roels H, Buchet JP, Lauwerys R, Hubermont G, Bruaux P, Claeys-Thoreau F, Lafontaine A, Van Overschelde J (1976) Impact of air pollution by lead on the heme biosynthesis pathway in school-age children. Arch Environ Health 31:310–316

    PubMed  CAS  Google Scholar 

  • Rossi E, Attwood PV, Garcia-Webb P (1992) Inhibition of human coproporphyrinogen oxidase activity by metals, bilirubin and haemin. Biochim Biophys Acta 1135:262–268

    Article  PubMed  CAS  Google Scholar 

  • Rossi E, Taketani S, Garcia-Webb P (1993) Lead and the terminal mitochondrial enzymes of haem synthesis. Biomed Chromatog 7:1–6

    Article  CAS  Google Scholar 

  • San Martin de Viale LC, Viale AA, Nacht S, Grinstein M (1970) Experimental porphyria induced in rats by hexachlorobenzene. A study of the porphyrins excreted by urine. Clin Chem Acta 28:13–17

    Article  CAS  Google Scholar 

  • Sassa S (1978) Toxic effects of lead, with particular reference to porphyrin and heme metabolism. In:DeMatteis F, Aldridge WN (eds) Heme and hemoproteins, chap 11. Springer, Berlin Heidelberg New York, pp 333–371

    Google Scholar 

  • Sears WG, Eales L (1973) Aluminum-induced porphyria in the rat. IRCS International Research Communication System J (73–11) 3–10–35

    Google Scholar 

  • Sheehra JS, Gore MG, Chaudhry AG, Jordan PM (1981) δ-Aminolevulinic acid dehydratase: the role of sulphydryl groups in 5-ALA dehydratase from bovine liver. Eur J Biochem 114:263–269

    Article  Google Scholar 

  • Simmonds PL, Luckhurst CL, Woods JS (1994) Quantitative evaluation of heme biosynthetic pathway parameters as biomarkers of low level lead exposure in rats. J Toxicol Environ Health (in press)

    Google Scholar 

  • Sinclair PR, Lambrecht R, Sinclair J (1987) Evidence for cytochrome P-450-mediated oxidation of uroporphyrinogen by cell-free liver extracts from chick embryos treated with 3-methylcholanthrene. Biochem Biophys Res Commun 146:1324–1329

    Article  PubMed  CAS  Google Scholar 

  • Smith AG, Francis JE (1987) Chemically-induced formation of an inhibitor of hepatic uroporphyrinogen decarboxylase in inbred mice with iron overload. Biochem J 246:221–226

    PubMed  CAS  Google Scholar 

  • Sun J, Wang J, Liu J (1992) Effects of lead exposure on porphyrin metabolism indicators in smelter workers. Biomed Environ Sci 5:76–85

    PubMed  CAS  Google Scholar 

  • Sunderman FW Jr (1986) Metals and lipid peroxidation. Acta Pharmacol Toxicol 59 [Suppl 7]:248–255

    CAS  Google Scholar 

  • Taketani S, Tokunaga R (1981) Rat liver ferrochelatase:purification, properties and stimulation by fatty acids. J Biol Chem 256:12748–12753

    PubMed  CAS  Google Scholar 

  • Taketani S, Tanaka A, Tokunaga R (1985) Reconstitution of heme-synthesizing activity from ferric ion and porphyrins, and the effect of lead on the activity. Arch Biochem Biophys 242:291–296

    Article  PubMed  CAS  Google Scholar 

  • Taketani S, Tanaka-Yoshioka A, Masaki R, Tashiro Y, Tokunaga R (1986) Association of ferrochelatase with complex I in bovine heart mitochondria. Biochim Biophys Acta 883:227–283

    Google Scholar 

  • Taljaard JJF, Shanley BC, Deppe WM, Joubert SM (1972) Porphyrin metabolism in experimental hepatic siderosis in the rat. II. Combined effect of iron overload and hexachlorobenzene. Br J Haematol 23:513–517

    Article  PubMed  CAS  Google Scholar 

  • Telolahy P, Javelaud B, Cluet J, de Ceaurriz J, Boudene C (1993) Urinary excretion of porphyrins by smelter workers chronically exposed to arsenic dust. Toxicol Lett 66:89–95

    Article  PubMed  CAS  Google Scholar 

  • Tephly TR, Hasegawa D, Baron J (1971) Effects of drugs on heme synthesis in the liver. Metabolism 20:200–210

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto Y, Iwanami S, Marumo F (1980) Disturbances of trace element concentrations in plasma of patients with chronic renal failure. Nephron 26:174–179

    Article  PubMed  CAS  Google Scholar 

  • Watson CJ (1946) Some newer concepts of the natural derivatives of hemoglobin. Blood 1:99–120

    PubMed  CAS  Google Scholar 

  • Webb DR, Sipes IG, Carter DE (1984) In vitro solubility and in vivo toxicity of gallium arsenide. Toxicol Appl Pharmacol 76:96–104

    Article  PubMed  CAS  Google Scholar 

  • Weisberg JB, Lipschultz F, Osko FA (1971) δ-Aminolevulinic acid dehydratase activity in circulating blood cells: a sensitive laboratory test for the detection of childhood lead poisoning. N Engl J Med 284:565–569

    Article  Google Scholar 

  • Westerlund J, Pudek M, Schreiber WE (1988) A rapid and accurate spectrophotometric method for quantification and screening of urinary porphyrins. Clin Chem 34:345–351

    PubMed  CAS  Google Scholar 

  • Wetmur JG, Lehnert G, Desnick RJ (1991) The δ-aminolevulinate dehydrase polymorphism:higher blood lead levels in lead workers and environmentally exposed children with the 1–2 and 2–2 isozymes. Environ Res 56:109–119

    Article  PubMed  CAS  Google Scholar 

  • Woods JS (1988a) Attenuation of porphyrinogen oxidation by glutathione and reversal by porphyrinogenic trace metals. Biochem Biophys Res Commun 152:1428–1434

    Article  PubMed  CAS  Google Scholar 

  • Woods JS (1988b) Regulation of porphyrin and heme metabolism in the kidney. Semin Hematol 25:336–348

    PubMed  CAS  Google Scholar 

  • Woods JS (1989) Mechanisms of metal-induced alterations of cellular heme metabolism. Comments Toxicol 3:3–25

    CAS  Google Scholar 

  • Woods JS, Calas CA (1989) Iron stimulation of free radical-mediated porphyrinogen oxidation by hepatic and renal mitochondria. Biochem Biophys Res Comm 160:101–108

    Article  PubMed  CAS  Google Scholar 

  • Woods JS, Fowler BA (1977) Renal porphyrinuria during chronic methyl mercury exposure. J Lab Clin Med 90:266–272

    PubMed  CAS  Google Scholar 

  • Woods JS, Fowler BA (1978) Altered regulation of mammalian hepatic heme biosynthesis and uroporphyrin excretion during prolonged exposure to sodium arsenate. Toxicol Appl Pharmacol 43:361–371

    Article  PubMed  CAS  Google Scholar 

  • Woods JS, Fowler BA (1982) Selective inhibition of delta-aminolevulinic acid dehydratase by indium chloride in rat kidney:biochemical and ultrastructural studies. Exp Mol Pathol 36:306–315

    Article  PubMed  CAS  Google Scholar 

  • Woods JS, Fowler BA (1987) Metal alteration of uroporphyrinogen decarboxylase and coproporphyrinogen oxidase. Ann N Y Acad Sci 514:55–64

    Article  PubMed  CAS  Google Scholar 

  • Woods JS, Southern MR (1989) Studies on the etiology of trace metal-induced porphyria:effects of porphyrinogenic metals on coproporphyrinogen oxidase in rat liver and kidney. Toxicol Appl Pharmacol 97:183–190

    Article  PubMed  CAS  Google Scholar 

  • Woods JS, Miller HD (1993) Quantitative measurement of porphyrins in biological tissues and evaluation of tissue porphyrins during toxicant exposures. Fundam Appl Toxicol 21:291–297

    Article  PubMed  CAS  Google Scholar 

  • Woods JS, Kardish RM, Fowler BA (1981) Studies on the action of porphyrinogenic trace metals on the activity of hepatic uroporphyrinogen decarboxylase. Biochem Biophys Res Commun 103:264–271

    Article  PubMed  CAS  Google Scholar 

  • Woods JS, Eaton DL, Lukens CB (1984) Studies on porphyrin metabolism in the kidney. Effects of trace metals and glutathione on renal uroporphyrinogen decarboxylase. Mol Pharmacol 26:366–341

    Google Scholar 

  • Woods JS, Calas CA, Aicher LD, Robinson BH, Mailer C (1990a) Stimulation of porphyrinogen oxidation by mercuric ion. I. Evidence of free radical formation in the presence of thiols and hydrogen peroxide. Mol Pharmacol 38:253–260

    CAS  Google Scholar 

  • Woods JS, Calas CA, Aicher LD (1990b) Stimulation of porphyrinogen oxidation by mercuric ion. II. Promotion of oxidation from the interaction of mercuric ion, glutathione, and mitochondria-generated hydrogen peroxide. Mol Pharmacol 38:261–266

    CAS  Google Scholar 

  • Woods JS, Bowers MA, Davis HA (1991) Urinary porphyrin profiles as biomarkers of trace metal exposure and toxicity:studies on urinary porphyrin excretion patterns in rats during prolonged exposure to methyl mercury. Toxicol Appl Pharmacol 110:464–476

    Article  PubMed  CAS  Google Scholar 

  • Woods JS, Martin MD, Naleway CA, Echeverría D (1993) Urinary porphyrin profiles as a biomarker of mercury exposure:studies in dentists with occupational exposure to mercury vapor. J Toxicol Environ Health 40:239–250

    Google Scholar 

  • Yamanaka K, Hoshino M, Okamoto M, Sawamura R, Hasegawa A, Okada S (1990) Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Biophys Res Commun 168:58–64

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga T, Sano S (1980) Coproporphyrinogen oxidase. II. Reaction mechanism and role of tyrosine residues on the activity. J Biol Chem 255:4727–4731

    PubMed  CAS  Google Scholar 

  • Zwennis WCM, Franssen AC, Wijnans MJ (1990) Use of zinc protoporphyrin in screening individuals for exposure to lead. Clin Chem 36:1456–1459

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woods, J.S. (1995). Porphyrin Metabolism as Indicator of Metal Exposure and Toxicity. In: Goyer, R.A., Cherian, M.G. (eds) Toxicology of Metals. Handbook of Experimental Pharmacology, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79162-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79162-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79164-2

  • Online ISBN: 978-3-642-79162-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics