Skip to main content

Slowly Conducting Afferent Fibers from Deep Tissues: Neurobiological Properties and Central Nervous Actions

  • Chapter
Progress in Sensory Physiology 6

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 6))

Abstract

Subjective sensations from deep tissues, which are probably mediated by slowly conducting afferent fibers, play an important role in everyday life. Thus, deep pain is a much commoner reason for consulting a physician than is cutaneous pain. Similarly, reflexes elicited by these fibers (e.g., cardiopulmonary (CP) adjustments during exercise) are essential for the normal functioning of a living organism. Yet most studies dealing with the function of afferent fiber systems have concentrated either on cutaneous fibers or on deep receptors with rapidly conducting afferent fibers. For example, in two of the most elaborate reviews on muscle receptors published to date (Matthews 1972, Barker 1974), only a few pages are devoted to receptive endings with fibers of small diameter. The present report gives an overview of the current knowledge of the physiology and morphology of these afferent units.

To Inge

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abrahams VC (1977) The physiology of neck muscles; their role in head movement and maintenance of posture. Can J Physiol Pharmacol 55: 332–338

    PubMed  CAS  Google Scholar 

  • Abrahams VC, Lynn B, Richmond FJR (1984) Organization and sensory properties of small myelinated fibers in the dorsal cervical rami of the cat. J Physiol (Lond) 347: 177–187

    CAS  Google Scholar 

  • Adrian ED, Zotterman Y (1926) The impulses produced by sensory nerve–endings. 2. The response of a single end–organ. J Physiol (Lond) 61:151 –171

    Google Scholar 

  • Akoev GN (1981) Catecholamines, acetylcholine and excitability of mechanoreceptors. Prog Neurobiol 15: 269–294

    Google Scholar 

  • Alam M, Smirk FH (1937) Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J Physiol (Lond) 89: 372–383

    CAS  Google Scholar 

  • Alam M, Smirk FH (1938) Observations in man on a pulse–accelerating reflex from the voluntary muscles of the legs. J Physiol (Lond) 92: 167–177

    CAS  Google Scholar 

  • Amassian VE, Berlin L (1958) Early cortical projection of group I afferents in the forelimb muscle nerves of cat. J Physiol 143:61P An outline of Chinese acupuncture ( 1975 ) The academy of traditional Chinese medicine, Foreign Language Press, Peking

    Google Scholar 

  • Andres KH, During M von, Schmidt RF (1985) Sensory innervation of the achilles tendon by group III and IV afferent fibers. Anat Embryol, to be published

    Google Scholar 

  • Angaut–Petit D (1975) The dorsal column system: II. Functional properties and bulbar relay of the postsynaptic fibers of the cat’s fasciculus gracilis. Exp Brain Res 22: 471–493

    PubMed  Google Scholar 

  • Anrep GV, Barsoum GS (1935) Appearance of histamine in the venous blood during muscular contraction. J Physiol (Lond) 85: 409–420

    CAS  Google Scholar 

  • Appelberg B, Johansson H, Kalistratov G (1977) The influence of group II muscle afferents and low threshold skin afferents on dynamic fusimotor neurones to the triceps surae of the cat. Brain Res 132: 153–158

    PubMed  CAS  Google Scholar 

  • Appelberg B, Hulliger M, Johansson H, Sojka P (1983a) Actions on y-motoneurones elicited by electrical stimulation of group II muscle afferent fibers in the hind limb of the cat. J Physiol (Lond) 335: 255–273

    CAS  Google Scholar 

  • Appelberg B, Hulliger M, Johansson H, Sojka P (1983b) Actions on y-motoneurones elicited by electrical stimulation of group III muscle afferent fibers in the hind limb of the cat. J Physiol (Lond) 335: 275–292

    CAS  Google Scholar 

  • Applebaum AE, Beall JE, Foreman RD, Willis WD (1975) Organization and receptive fields of primate spinothalamic tract neurons. J Neurophysiol 38: 572–586

    PubMed  CAS  Google Scholar 

  • Applebaum AE, Leonard RB, Kenshalo DR, Martin RF, Willis WD (1979) Nuclei in which functionally identified spinothalamic tract neurons terminate. J Comp Neurol 188: 575–586

    PubMed  CAS  Google Scholar 

  • Armstrong RB, Ogilvie RW, Schwane J A (1983) Eccentric exercise–induced injury to rat skeletal muscle. J Appl Physiol 54: 80–93

    PubMed  CAS  Google Scholar 

  • Asmussen E (1956) Observation on experimental muscular soreness. Acta Rheumatol Scand 2: 109–116

    PubMed  CAS  Google Scholar 

  • Asmussen E, Nielsen M (1964) Experiments on nervous factors controlling respiration and circulation during exercise employing blocking of the blood flow. Acta Physiol Scand 60: 103–111

    PubMed  CAS  Google Scholar 

  • Asmussen E, Johansen SH, Jorgensen M, Nielsen M (1965) On the nervous factors controlling respiration and circulation during exercise. Acta Physiol Scand 63: 343–350

    PubMed  CAS  Google Scholar 

  • Banister EW, Allen ME, Mekjavic IB, Singh AK, Legge B, Mutch BJC (1983) The time course of ammonia and lactate accumulation in blood during bicycle exercise. Eur J Appl Physiol 51: 195–202

    CAS  Google Scholar 

  • Barker D (1962) The structure and distribution of muscle receptors. In: Barker D (ed) Symposium on muscle receptors. Hong Kong University Press, Hong Kong, pp 227–240

    Google Scholar 

  • Barker D (1974) The morphology of muscle receptors. In: Hunt CC (ed) Muscle receptors. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol 3/2)

    Google Scholar 

  • Barker D, Ip MC, Adal MN (1962) A correlation between the receptor population of the cat’s soleus muscle and the afferent fibre-diameter spectrum of the nerve supplying it. In: Barker D (ed) Symposium on muscle receptors. Hong Kong University Press, Hong Kong, pp 257–261

    Google Scholar 

  • Barrack RL, Skinner HB, Cook SD, Haddad RJ (1983) Effect of articular disease and total knee arthroplasty on knee joint–position sense. J Neurophysiol 50: 684–687

    PubMed  CAS  Google Scholar 

  • Barron W, Coote JH (1973) The contribution of articular receptors to cardiovascular reflexes elicited by passive limb movement. J Physiol (Lond) 235: 423–436

    CAS  Google Scholar 

  • Basbaum Al, Clanton CH, Fields HL (1978) Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J Comp Neurol 178: 209–224

    PubMed  CAS  Google Scholar 

  • Baxendale RH, Ferrell WR (1983) Discharge characteristics of the elbow joint nerve of the cat. Brain Res 261: 195–203

    PubMed  CAS  Google Scholar 

  • Beacham WS, Perl ER (1964) Characteristics of a spinal sympathetic reflex. J Physiol (Lond) 173: 431–448

    CAS  Google Scholar 

  • Beck PW, Handwerker HO (1974) Bradykinin and serotonin effects on various types of cutaneous nerve fibres. Pfliigers Arch 347:209 – 222

    Google Scholar 

  • Berkley KJ (1973) Response properties of cells in ventrobasal and posterior group nuclei of the cat. J Neurophysiol 36: 940–952

    PubMed  CAS  Google Scholar 

  • Bessou P, Laporte Y (1958) Activation des fibres afferentes amyeliniques d’origine musculaire. C R Soc Biol (Paris) 152: 1587–1590

    CAS  Google Scholar 

  • Bessou P, Laporte Y (1961) Étude des récepteurs musculaires innervés par les fibres afférentes du groupe III (fibres myélinisées fines) chez le chat. Arch Ital Biol 99:293 – 321

    Google Scholar 

  • Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32: 1025–1043

    PubMed  CAS  Google Scholar 

  • Bessou P, Dejours P, Laporte Y (1959) Effets ventilatoires reflexes de la stimulation des

    Google Scholar 

  • fibres afferentes de grand diametre d’origine musculaire chez le chat. C R Soc Biol (Paris) 153:447–481

    Google Scholar 

  • Bishop GH, Heinbecker P (1935) The afferent functions of non-myelinated or C fibers. Am J Phsiol 114: 179–193

    Google Scholar 

  • Bockman EL, Berne RM, Rubio R (1976) Adenosine and active hyperemia in dog skeletal muscle. Am J Physiol 230:1531 –1537

    Google Scholar 

  • Boivie J (1971) The termination of the spinothalamic tract in the cat. An experimental study with silver impregnation methods. Exp Brain Res 12:331 – 353

    Google Scholar 

  • Bonica J J (1979) Causalgia and other reflex sympathetic dystrophies. In: Bonica J J, Liebeskind JC, Albe-Fessard DG (eds) Advances in pain research and therapy, vol 3. Raven, New York, pp 141 –166

    Google Scholar 

  • Boyd I A, Davey MR (1968) Composition of peripheral nerves. Livingstone, Edinburgh

    Google Scholar 

  • Boyd I A, Roberts TDM (1953) Proprioceptive discharges from stretch-receptors in the knee-joint of the cat. J Physiol (Lond) 122: 38–58

    CAS  Google Scholar 

  • Brock LG, Eccles JC, Rail W (1951) Experimental investigations on the afferent fibres in muscle nerves. Proc R Soc Lond [Biol] 138: 453–475

    CAS  Google Scholar 

  • Brown AG (1973) Ascending and long spinal pathways: dorsal columns, spinocervical tract and spinothalamic tract. In: Iggo A (ed) Handbook of sensory physiology, vol II. Somatosensory system. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Brown AG (1981) Organization in the spinal cord. The anatomy and physiology of identified neurones. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Brushart TM, Mesulam M-M (1980) Transganglionic demonstration of central sensory projections from skin and muscle with HRP–lectin conjugates. Neurosci Lett 17: 1–6

    PubMed  CAS  Google Scholar 

  • Bryan RN, Trevino DL, Coulter JD, Willis WD (1973) Location and somatotopic organization of the cells of origin of the spino–cervical tract. Exp Brain Res 17: 177–189

    PubMed  CAS  Google Scholar 

  • Burgess PR, Clark FJ (1969) Characteristics of knee joint receptors in the cat. J Physiol (Lond) 203: 317–335

    CAS  Google Scholar 

  • Burgess PR, Jen Yu WEI, Clark FJ, Simon J (1982) Signaling of kinesthetic information by peripheral sensory receptors. Ann Rev Neurosci 5:171 –187

    Google Scholar 

  • Campbell JN, Meyer RA, LaMotte RH (1979) Sensitization of myelinated nociceptive afferents that innervate monkey hand. J Neurophysiol 42: 1669–1679

    PubMed  CAS  Google Scholar 

  • Carcassi AM, Concu A, Decandia M, Onnis M, Orani GP, Piras MB (1984) Effects of long lasting stimulation of extensor muscle nerves on pulmonary ventilation in cats. Pflügers Arch 400:409 – 412

    Google Scholar 

  • Carstens E, Trevino DL (1978) Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. J Comp Neurol 182: 151–166

    Google Scholar 

  • Cassirer R (1899) Über Veränderungen der Spinalganglienzellen und ihrer centralen Fortsatze nach Durchschneidung der zugehorigen peripheren Nerven. Dtsch Z Nervenheilkd 14: 150–166

    Google Scholar 

  • Cauna N (1966) Fine structure of the receptor organs and its probable functional significance. In: de Reuck AVS, Knight J (eds) Touch, heat and pain. Churchill, London, pp 117–127

    Google Scholar 

  • Cervero F, Connell LA (1984) Fine afferent fibers from viscera do not terminate in the substantia gelatinosa of the thoracic spinal cord. Brain Res 294: 370–374

    PubMed  CAS  Google Scholar 

  • Cervero F, Iggo A (1980) The substantia gelatinosa of the spinal cord. A critical review. Brain 103: 717–772

    Google Scholar 

  • Cervero F, Iggo A, Ogawa H (1976) Noeiceptor-driven dorsal horn neurones in the lumbar spinal cord of the cat. Pain 2: 5–24

    PubMed  CAS  Google Scholar 

  • Cervero F, Iggo A, Molony V (1979) Ascending projections of nociceptor-driven lamina I neurones in the cat. Exp Brain Res 35: 135–149

    PubMed  CAS  Google Scholar 

  • Chang H-T (1980) Neurophysiological interpretation of acupuncture analgesia. Endeavour 4: 92–96

    PubMed  CAS  Google Scholar 

  • Chang SC, Wei JY, Mao CP (1983) Deep innervation of sural nerve. Brain Res 279: 262–265

    PubMed  CAS  Google Scholar 

  • Chiang C-Y, Chang C-T, Chu H-L, Yang L-F (1973) Peripheral afferent pathway for acupuncture analgesia. Sci Sin 16: 210–217

    Google Scholar 

  • Clark FJ (1975) Information signaled by sensory fibers in medial articular nerve. J Neurophysiol 38: 1464–1472

    PubMed  CAS  Google Scholar 

  • Clark FJ, Burgess PR (1975) Slowly adapting receptors in cat knee joint: can they signal joint angle? J Neurophysiol 38: 1448–1463

    Google Scholar 

  • Coggeshall RE, Ito H (1977) Sensory fibres in ventral roots L7 and S1 in the cat. J Physiol (Lond) 267: 215–235

    CAS  Google Scholar 

  • Coggeshall RE, Maynard CW, Langford LA (1980) Unmyelinated sensory and preganglionic fibers in rat L6 and S1 ventral spinal roots. J Comp Neurol 193:41 – 47

    Google Scholar 

  • Coggeshall RE, Hong KAP, Langford LA, Schaible H-G, Schmidt RF (1983) Discharge characteristics of fine medial articular afferents at rest and during passive movements of inflamed knee joints. Brain Res 272: 185–188

    PubMed  CAS  Google Scholar 

  • Colle J, Gybels J (1957) Étude des réactions tensionelles, respiratoires et corticales produites par Pexcitation électrique des fibres afferentes d’un nerf somatique. Arch Int Physiol Biochim 65: 547–567

    PubMed  CAS  Google Scholar 

  • Comroe JH, Schmidt CF (1943) Reflexes from the limbs as a factor in the hyperpnea of muscular exercise. Am J Physiol 138: 536–547

    Google Scholar 

  • Coote JH (1975) Physiological significance of somatic afferent pathways from skeletal muscle and joints with reflex effects on the heart and circulation. Brain Res 87:139 –144

    Google Scholar 

  • Coote JH, Dodds WN (1976) The baroreceptor reflex and the cardiovascular changes associated with sustained muscular contraction in the cat. Pfltigers Arch 363: 167–173

    CAS  Google Scholar 

  • Coote JH, Pérez-González JF (1970) The response of some sympathetic neurones to volleys in various afferent nerves. J Physiol (Lond) 208: 261–278

    CAS  Google Scholar 

  • Coote JH, Hilton SM, Perez-Gonzalez JF (1969) Muscle afferents responsible for the pressor response to exercise. J Physiol (Lond) 201:34–35P

    Google Scholar 

  • Craig AD (1976) Spinocervical tract cells in cat and dog, labeled by the retrograde transport of horseradish peroxidase. Neurosci Lett 3: 173–177

    PubMed  Google Scholar 

  • Craig AD, Burton H (1979) Spinothalamic terminations in the ventroposterolateral nucleus of the cat. Soc Neurosci Abstr 5: 705

    Google Scholar 

  • Craig AD, Burton H (1981) Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J Neurophysiol 45: 443–466

    PubMed  Google Scholar 

  • Craig AD, Kniffki K-D (1982) Spinothalamic lumbosacral lamina I cells responding to algesic muscle stimulation in the cat. Pfltigers Arch 394:R 57

    Google Scholar 

  • Craig AD, Mense S (1983) The distribution of afferent fibers from the gastrocnemiussoleus muscle in the dorsal horn of the cat, as revealed by the transport of horseradish peroxidase. Neurosci Lett 41: 233–238

    PubMed  CAS  Google Scholar 

  • Crayton SC, Mitchell JH, Payne FC (1981) Reflex cardiovascular response during injection of capsaicin into skeletal muscle. Am J Physiol 240:H315 – H319

    Google Scholar 

  • Cross MJ, McCloskey DI (1973) Position sense following surgical removal of joints in man. Brain Res 55: 443–445

    PubMed  CAS  Google Scholar 

  • Cross BA, Davey A, Guz A, Katona PG, MacLean M, Murphy K, Semple SJG, Stidwell R (1982) The role of spinal cord transmission in the ventilatory response to electrically induced exercise in the anesthetized dog. J Physiol (Lond) 329: 37–55

    CAS  Google Scholar 

  • Culberson JL, Brown PB (1984) Projections of hindlimb dorsal roots to lumbosacral spinal cord of cat. J Neurophysiol 51: 516–528

    PubMed  CAS  Google Scholar 

  • Cunningham DJC, Petersen ES, Peto R, Pickering TG, Sleight P (1972) Comparison of the effect of different types of exercise on the baroreflex regulation of heart rate. Acta Physiol Scand 86: 444–455

    PubMed  CAS  Google Scholar 

  • De Groat WC, Nadelhaft I, Morgan C, Schauble T (1978) Horseradish peroxidase tracing of visceral efferent and primary afferent pathways in cat’s sacral spinal cord using benzidine processing. Neurosci Lett 10: 103–108

    PubMed  Google Scholar 

  • Dejours P (1964) Control of respiration in muscular exercise. In: Handbook of physiology, Section 3: Respiration, vol I. American Physiological Society, Washington, DC

    Google Scholar 

  • De Troyer A, Sampson M, Sigrist S, Macklem PT (1981) The diaphragm: two muscles. Science 213: 237–238

    PubMed  Google Scholar 

  • Devor M (1983) Nerve pathophysiology and mechanisms of pain in causalgia. J Auton NervSyst 7: 371–384

    PubMed  CAS  Google Scholar 

  • Devor M, Janig W (1981) Activation of myelinated afferents ending in a neuroma by stimulation of the sympathetic supply in the rat. Neurosci Lett 24:43 – 47

    Google Scholar 

  • DeVries HA (1966) Quantitative electromyographic investigation of the spasm theory of muscle pain. Am J Phys Med 45: 119–134

    CAS  Google Scholar 

  • Digiesi V, Bartoli V, Dorigo B (1975) Effect of a proteinase inhibitor on intermittent claudication or on pain at rest in patients with peripheral arterial disease. Pain 1: 385–389

    PubMed  CAS  Google Scholar 

  • Dogiel AS (1902) Die Nervenendigungen im Bauchfell, in den Sehnen, den Muskelspindeln und dem Centrum tendineum des Diaphragmas beim Menschen und bei Saugetieren. Arch Mikroskop Anat 59: 1–31

    Google Scholar 

  • Dong WK, Ryu H, Wagman IH (1978) Nociceptive responses of neurons in medial thalamus and their relationship to spinothalamic pathways. J Neurophysiol 41: 1592–1613

    PubMed  CAS  Google Scholar 

  • Dreyer DA, Schneider RJ, Metz CB, Whitsel BL (1974) Differential contributions of spinal pathways to body representation in postcentral gyrus of Macaca mulatta. J Neurophysiol 37: 119–145

    PubMed  CAS  Google Scholar 

  • Eccles, JC, Eccles RM, Lundberg A (1957) Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents. J Physiol (Lond) 138: 227–252

    CAS  Google Scholar 

  • Eccles RM, Lundberg A (1959a) Supraspinal control of interneurones mediating spinal reflexes. J Physiol (Lond) 147: 565–584

    CAS  Google Scholar 

  • Eccles RM, Lundberg A (1959b) Synaptic actions in motoneurones by afferents which may evoke the flexion reflex. Arch Ital Biol 97: 199–221

    Google Scholar 

  • Eldred E, Schnitzlein HN, Buchwald J (1960) Response of muscle spindles to stimulation of the sympathetic trunk. Exp Neurol 2: 13–25

    PubMed  CAS  Google Scholar 

  • Ellaway PH, Murthy KSK (1984) Reflex effects from high threshold neck muscle afferents on hindlimb extensor gamma motoneurones in the cat. Exp Brain Res 54: 212–216

    PubMed  CAS  Google Scholar 

  • Ellaway PH, Murphy PR, Tripathi A (1982) Closely coupled excitation of γ–motoneurones by group III muscle afferents with low mechanical threshold in the cat. J Physiol (Lond) 331: 481–498

    CAS  Google Scholar 

  • Erlanger J, Gasser HS (1924) The compound nature of the action current of nerve as disclosed by the cathode ray oscillograph. Am J Physiol 70: 624–666

    Google Scholar 

  • Erlanger J, Gasser HS (1930) The action potential in fibers of slow conduction in spinal roots and somatic nerves. Am J Physiol 92: 43–82

    Google Scholar 

  • Feindel WH, Weddel G, Sinclair DC (1948) Pain sensibility in deep somatic structures. J Neurol Neurosurg Psychiatry 11: 113–117

    PubMed  CAS  Google Scholar 

  • Felix W (1922) Anatomische, experimentelle und klinische Untersuchungen iiber den Phrenicus und iiber die Zwerchfellinnervation. Dtsch Z Chir 171: 283–397

    Google Scholar 

  • Fernandez de Molina A, Achard O, Wyss OAM (1953) Respiratory and vasomotor responses to stimulation of afferent fibers in somatic nerves. Helv Physiol Pharmacol Acta 11: 1–19

    Google Scholar 

  • Fields HL, Clanton CH, Anderson SD (1977) Somatosensory properties of spinoreticular neurons in the cat. Brain Res 120: 49–66

    PubMed  CAS  Google Scholar 

  • Fisher ML, Nutter DO (1974) Cardiovascular reflex adjustments to static muscular contractions in the canine hindlimb. Am J Physiol 226: 648–655

    PubMed  CAS  Google Scholar 

  • Fitzgerald M, Lynn B (1977) The sensitization of high threshold mechanoreceptors with myelinated axons by repeated heating. J Physiol (Lond) 265: 549–563

    CAS  Google Scholar 

  • Fjällbrant N, Iggo A (1961) The effect of histamine, 5–hydroxytryptamine and acetylcholine on cutaneous afferent fibers. J Physiol (Lond) 156: 578–590

    Google Scholar 

  • Fock S, Mense S (1976) Excitatory effects of 5-hydroxytryptamine, histamine and potassium ions on muscular group IV afferent units: a comparison with bradykinin. Brain Res 105:459 – 469

    Google Scholar 

  • Foreman RD, Kenshalo DR, Schmidt RF, Willis WD (1979a) Field potentials and excitation of primate spinothalamic neurones in response to volleys in muscle afferents. J Physiol (Lond) 286: 197–213

    CAS  Google Scholar 

  • Foreman RD, Schmidt RF, Willis WD (1979b) Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. J Physiol (Lond) 286: 215–231

    CAS  Google Scholar 

  • Franz M, Mense S (1975) Muscle receptors with group IV afferent fibers responding to application of bradykinin. Brain Res 92: 369–383

    PubMed  CAS  Google Scholar 

  • Freeman MAR, Wyke B (1967) The innervation of the knee joint. An anatomical and histological study in the cat. J Anat (Lond) 101: 505–532

    Google Scholar 

  • Frey M von (1914) Studien über den Kraftsinn. Z Biol 63: 129–154

    Google Scholar 

  • Fromm C, Haase J, Wolf E (1977) Depression of the recurrent inhibition of extensor motoneurones by the action of group II afferents. Brain Res 120:459 – 468

    Google Scholar 

  • Fyffe REW (1979) The morphology of group II muscle afferent fiber collaterals. J Physiol (Lond) 296: 39P–40 P

    CAS  Google Scholar 

  • Gandevia SC, Burke D, McKeon B (1984) The projection of muscle afferents from the hand to cerebral cortex in man. Brain 107: 1–13

    PubMed  Google Scholar 

  • Gardner E (1944) The distribution and termination of nerves in the knee joint of the cat. J Comp Neurol 80: 11–32

    Google Scholar 

  • Gardner E (1950) Reflex muscular responses to stimulation of articular nerves in the cat. Am J Physiol 161: 133–141

    PubMed  CAS  Google Scholar 

  • Gardner E, Haddad B (1953) Pathways to the cerebral cortex for afferent fibres from the hindlimb of the cat. Am J Physiol 172:475 – 482

    Google Scholar 

  • Gardner E, Jacobs J (1948) Joint reflexes and regulation of respiration during exercise. Am J Physiol 153: 567–579

    PubMed  CAS  Google Scholar 

  • Gardner E, Lenn NJ (1977) Fibers in monkey posterior articular nerves. Anat Rec 187: 99–106

    PubMed  CAS  Google Scholar 

  • Gasser HS (1950) Unmedullated fibers originating in dorsal root ganglia. J Gen Physiol 33: 651–690

    PubMed  CAS  Google Scholar 

  • Gasser HS, Grundfest H (1939) Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers. Am J Physiol 127: 393–414

    Google Scholar 

  • Gautron M, Guilbaud G (1982) Somatic responses of ventrobasal thalamic neurones in polyarthritic rats. Brain Res 237:459 – 471

    Google Scholar 

  • Gaze RM, Gordon G (1954) The representation of cutaneous sense in the thalamus of the cat and monkey. Q J Exp Physiol 39: 279–304

    CAS  Google Scholar 

  • Gelfan S, Carter S (1967) Muscle sense in man. Exp Neurol 18:469 – 473

    Google Scholar 

  • Gernandt B (1946) Pain conduction in the phrenic nerve. Acta Physiol Scand 12:255 – 260

    Google Scholar 

  • Giesler GJ, Cannon JT, Urea G, Liebeskind JC (1978) Long ascending projections from substantia gelatinosa Rolandi and the subjacent dorsal horn in the rat. Science 202: 984–986

    PubMed  Google Scholar 

  • Gobel S, Binck JM (1977) Degenerative changes in primary trigeminal axons and in neurons in nucleus caudalis following tooth pulp extirpation in the cat. Brain Res 132: 347–354

    PubMed  CAS  Google Scholar 

  • Gobel S, Falls WM, Humphrey E (1981) Morphology and synaptic connections of ultrafine primary axons in lamina I of the spinal dorsal horn: candidates for the terminal axonal arbors of primary neurons with unmyelinated ( C) axons. J Neurosci 10: 1163–1179

    Google Scholar 

  • Godwin-Austen RB (1969) The mechanoreceptors of the costo–vertebral joints. J Physiol (Lond) 202: 737–753

    CAS  Google Scholar 

  • Goldscheider A (1920) Das Sehmerzproblem. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Goodwin GM (1976) The sense of limb position and movement. Exerc Sport Sci Rev 4: 87–124

    PubMed  CAS  Google Scholar 

  • Goodwin GM, McCloskey DI, Mitchell JH (1972a) Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J Physiol (Lond) 226: 173–190

    CAS  Google Scholar 

  • Goodwin GM, McCloskey DI, Matthews PBC (1972b) The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 95:705 – 748

    Google Scholar 

  • Grandjean E (1943) Atmungsveranderungen bei Reizung der afferenten Phrenicusfasern. Helv Physiol Acta 1: 205–220

    Google Scholar 

  • Grandpierre R, Franck C, Violette F (1951) Hyperventilation provoquee par les mouvements passifs. C R Soc Biol (Paris) 145: 1100–1104

    CAS  Google Scholar 

  • Granit R (1950) Reflex self-regulation of muscle contraction and autogenetic inhibition. J Neurophysiol 13: 351–372

    PubMed  CAS  Google Scholar 

  • Grant G, Ygge J (1981) Somatotopic organization of the thoracic spinal nerve in the dorsal horn demonstrated with transganglionic degeneration. J Comp Neurol 202: 357–364

    PubMed  CAS  Google Scholar 

  • Grant G, Arvidsson J, Robertson B, Ygge J (1979) Transganglionic transport of horseradish peroxidase in primary sensory neurons. Neurosci Lett 12: 23–28

    PubMed  CAS  Google Scholar 

  • Grigg P (1976) Response of joint afferent neurons in cat medial articular nerve to active and passive movements of the knee. Brain Res 118: 482–485

    PubMed  CAS  Google Scholar 

  • Grigg P, Finerman GA, Riley LH (1973) Joint-position sense after total hip replacement. J Bone Surg 55A: 1016–1025

    PubMed  CAS  Google Scholar 

  • Grigg P, Hoffman AH, Fogarty KE (1982) Properties of Golgi-Mazzoni afferents in cat knee joint capsule, as revealed by mechanical studies of isolated joint capsule. J Neurophysiol 47: 31–40

    PubMed  CAS  Google Scholar 

  • Grillner S, Hongo T, Lund S (1969) Descending monosynaptic and reflex control of γ-motoneurones. Acta Physiol Scand 75: 592–613

    PubMed  CAS  Google Scholar 

  • Guilbaud G, Caille D, Bessou JM, Benelli G (1977) Single units activities in ventral posterior and posterior group thalamic nuclei during nociceptive and non–nociceptive stimulations in the cat. Arch Ital Biol 115: 38–56

    PubMed  CAS  Google Scholar 

  • Guilbaud G, Peschanski M, Gautron M, Binder D (1980) Neurones responding to noxious stimulation in VB complex and caudal adjacent regions in the thalamus of the rat. Pain 8: 303–318

    PubMed  CAS  Google Scholar 

  • Guilbaud G, Iggo A, Tegnér R (1984) Sensory receptors in the joints of rats with adjuvantinduced arthritis. J Physiol (Lond) 346: 58 P

    Google Scholar 

  • Guzman F, Braun C, Lim RKS (1962) Visceral pain and the pseudaffective response to intra–arterial injection of bradykinin and other algesic agents. Arch Int Pharmacodyn Ther 136: 353–384

    PubMed  CAS  Google Scholar 

  • Ha H, Liu C–N (1968) Cell origin of the ventral spinocerebellar tract. J Comp Neurol 133: 185–206

    PubMed  CAS  Google Scholar 

  • Hamann WC, Hong SK, Kniffki K-D, Schmidt RF (1978) Projections of primary afferent fibres from muscle to neurones of the spinocervical tract of the cat. J Physiol (Lond) 283: 369–378

    CAS  Google Scholar 

  • Hardy TL, Bertrand G, Thompson CJ (1980) Position and organization of thalamic cellular activity during diencephalic recording. II. Joint- and muscle-evoked activity. Appl Neurophysiology 43:28 – 36

    Google Scholar 

  • Hari R, Kaukoranta E, Reinikainen K, Huopaniemie T, Mauno J (1983) Neuromagnetic localization of cortical activity evoked by painful dental stimulation in man. Neurosci Lett 42: 77–82

    PubMed  CAS  Google Scholar 

  • Harpuder K, Stein I (1943) Studies on the nature of pain arising from an ischemic limb. Am Heart J 25:429 – 448

    Google Scholar 

  • Harris FA (1970) Population analysis of somatosensory thalamus in the cat. Nature 225: 559–562

    PubMed  CAS  Google Scholar 

  • Hassler R (1976) Wechselwirkungen zwischen dem System der schnellen Schmerzempfindung und dem des langsamen, nachhaltigen Schmerzgefiihls. Langenbecks Arch Chir 342: 47–61

    PubMed  CAS  Google Scholar 

  • Head H, Rivers WHR, Sherren J (1905) The afferent nervous system from a new aspect. Brain 28: 99–115

    Google Scholar 

  • Hellon RF, Mitchell D (1975) Characteristics of neurones in the ventrobasal thalamus of the rat which respond to noxious stimulation of the tail. J Physiol (Lond) 250:29P – 30P

    Google Scholar 

  • Hensel H (1973) Cutaneous thermoreceptors. In: Iggo A (ed) Somatosensory system. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol 2 )

    Google Scholar 

  • Hensel H (1974) Thermoreceptors. Ann Rev Physiol 36: 233–249

    CAS  Google Scholar 

  • Hensel H, Zotterman Y (1951) The response of mechanoreceptors to thermal stimulation. J Physiol (Lond) 115: 16–24

    CAS  Google Scholar 

  • Hensel H, Andres KH, During M von (1974) Structure and function of cold receptors. Pfltigers Arch 352:1 – 10

    Google Scholar 

  • Hertel H-C, Howaldt B, Mense S (1976) Responses of group IV and group III muscle afferents to thermal stimuli. Brain Res 113: 201–205

    PubMed  CAS  Google Scholar 

  • Hinsey JC (1927) Some observations on the innervation of skeletal muscle of the cat. J Comp Neurol 44:87 –195

    Google Scholar 

  • Hinsey JC (1928) Observations on the innervation of the blood vessels in skeletal muscle. J Comp Neurol 47:23 – 60

    Google Scholar 

  • Hinsey JC, Phillips RA (1940) Observations upon diaphragmatic sensation. J Neurophysiol 3: 175–181

    Google Scholar 

  • Hiss E, Mense S (1976) Evidence for the existence of different receptor sites for algesic agents at the endings of muscular group IV afferent units. Pflügers Arch 362:141 –146

    Google Scholar 

  • Hník, P, Hudlická O, Kučera J, Payne R (1969) Activation of muscle afferents by nonproprioceptive stimuli. Am J Physiol 217:1451 –1457

    Google Scholar 

  • Hník P, Holas M, Krekule I, Křiž N, Mejsnar J, Smiesko V, Ujec E, Vyskočil F (1976) Work–induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion–exchanger microelectrodes. Pfltigers Arch 362: 85–94

    Google Scholar 

  • Hodgson HJF, Matthews PBC (1968) The ineffectiveness of excitation of the primary endings of the muscle spindle by vibration as a respiratory stimulant in the decerebrate cat. J Physiol (Lond) 194: 555–563

    CAS  Google Scholar 

  • Holmqvist B, Lundberg A (1961) Differential supraspinal control of synaptic actions evoked by volleys in the flexion reflex afferents in alpha motoneurones. Acta Physiol Scand 54: 1–51

    Google Scholar 

  • Holmqvist B, Lundberg A, Oscarsson O (1960) Supraspinal inhibitory control of transmission to three ascending spinal pathways influenced by the flexion reflex afferents. Arch Ital Biol 98: 60–80

    Google Scholar 

  • Honda CN, Perl ER (1981) Properties of neurons in lamina X and the midline dorsal horn of the sacrococcygeal spinal cord of the cat ( Abstr ). Soc Neurosci 7: 610

    Google Scholar 

  • Honda CN, Mense S, Perl ER (1983) Neurons in ventrobasal region of cat thalamus selectively responsive to noxious mechanical stimulation. J Neurophysiol 49:662 – 673

    Google Scholar 

  • Hong SK, Kniffki K–D, Schmidt RF (1978) Reflex discharges of extensor and flexor gamma motoneurones by chemically induced muscle pain ( Abstr ). Pain 1: 58

    Google Scholar 

  • Hong SK, Kniffki K-D, Mense S, Schmidt RF, Wendisch M (1979) Descending influences on the responses of spinocervical tract neurones to chemical stimulation of fine muscle afferents. J Physiol (Lond) 290: 129–140

    CAS  Google Scholar 

  • Hough T (1902) Ergographic studies in muscular soreness. Am J Physiol 7: 76–92

    Google Scholar 

  • Hunt CC, Jami L, Laporte Y (1982) Effects of stimulating the lumbar sympathetic trunk on cat hindlimb muscle spindles. Arch Ital Biol 120:371 – 384

    Google Scholar 

  • Hutter OF, Loewenstein WR (1955) Nature of neuromuscular facilitation by sympathetic stimulation in the frog. J Physiol (Lond) 130: 559–571

    CAS  Google Scholar 

  • Iaria CT, Jalar UH, Kao FF (1959) The peripheral neural mechanism of exercise hyperpnoea. J Physiol (Lond) 148: 49–50 P

    Google Scholar 

  • Iggo A (1961) Non–myelinated afferent fibres from mammalian skeletal muscle. J Physiol (Lond) 155: 52–53 P

    Google Scholar 

  • Iggo A (1969) Cutaneous thermoreceptors in primates and sub primates. J Physiol (Lond) 200:403 – 430

    Google Scholar 

  • Iggo A, Guilbaud G, Tégner R (1984) Sensory mechanisms in arthritic rat joints. In: Kruger L, Liebeskind JC (eds) Advances in pain research and therapy, vol 6. Raven, New York, pp 83–93

    Google Scholar 

  • Iles JF (1976) Central terminations of muscle afferents on motoneurones in the cat spinal cord. J Physiol (Lond) 262:91 –117

    Google Scholar 

  • Iwamura Y, Kniffki K-D, Mizumura K, Wilberg K (1981) Responses of feline SI neurones to noxious stimulation of muscle and tendon. Pain [Suppl]l:S213

    Google Scholar 

  • Jessen C, Feistkora G, Nagel A (1983) Temperature sensitivity of skeletal muscle in the conscious goat. J Appl Physiol 54: 880–886

    PubMed  CAS  Google Scholar 

  • Joekes AM (1982) Cramp: a review. J R Soc Med 75: 546–549

    PubMed  CAS  Google Scholar 

  • Johansson B (1962) Circulatory responses to stimulation of somatic afferents. Acta Physiol Scand [Suppl 198] 57:1 – 91

    Google Scholar 

  • Jones EG, Friedman DP (1982) Projection pattern of functional components of thalamic ventrobasal complex on monkey somatosensory cortex. J Neurophysiol 48:521 – 544

    Google Scholar 

  • Jones LA, Hunter IW (1983) Effect of fatigue on force sensation. Exp Neurol 81:640 – 650

    Google Scholar 

  • Juan H (1978) Prostaglandins as modulators of pain. Gen Pharmacol 9: 403–409

    PubMed  CAS  Google Scholar 

  • Juan H, Sametz W, Petronijevič S, Lembeck F (1984) Prostaglandin release and nociceptor stimulation by peptides. Naunyn–Schmiedeberg’s Arch Pharmacol 326: 64–68

    PubMed  CAS  Google Scholar 

  • Kalia M, Senapati JM, Parida B, Panda A (1972) Reflex increase in ventilation by muscle receptors with nonmedullated fibers ( C fibers ). J Appl Physiol 32: 189–193

    Google Scholar 

  • Kalia M, Mei SS, Kao FF (1981) Central projections from ergoreceptors ( C fibers) in muscle involved in cardiopulmonary responses to static exercise. Circ Res [Suppl I] 48: 48–62

    Google Scholar 

  • Kao FF (1963) An experimental study of the pathway involved in exercise hyperpnoea employing cross–circulation techniques. In: Cunningham DJC, Lloyd BB (eds) The regulation of human respiration. Blackwell, Oxford, pp 461–502

    Google Scholar 

  • Kao FF, Ray LH (1954a) Respiratory and circulatory responses of anesthetized dogs to induced muscular work. Am J Physiol 179:249 – 254

    Google Scholar 

  • Kao FF, Ray LH (1954b) Regulation of cardiac output in anesthetized dogs during induced muscular work. Am J Physiol 179: 255–260

    PubMed  CAS  Google Scholar 

  • Kao FF, Michel CC, Mei SS, Li WK (1963) Somatic afferent influence on respiration. Ann NY Acad Sci 109:696 – 711

    Google Scholar 

  • Kaufman MP, Iwamoto GA, Longhurst JC, Mitchell JH (1982) Effects of capsaicin and bradykinin on afferent fibers with endings in skeletal muscle. Circ Res 50: 133–139

    PubMed  CAS  Google Scholar 

  • Kaufman MP, Longhurst JC, Rybicki KJ, Wallach JH, Mitchell JH (1983) Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J Appl Physiol 55: 105–112

    PubMed  CAS  Google Scholar 

  • Kellgren JH (1938a) A preliminary account of referred pains arising from muscle. Br Med J 1: 325–327

    PubMed  CAS  Google Scholar 

  • Kellgren JH (1938b) Observations of referred pain arising from muscle. Clin Sci 3: 175–190

    Google Scholar 

  • Kellgren JH, McGowan AJ (1948) On the behaviour of deep and cutaneous sensibility during nerve blocks. Clin Sci 7:1 – 11

    Google Scholar 

  • Kellgren JH, McGowan AJ, Hughes ESR (1948) On deep hyperalgesia and cold pain. Clin Sci 7: 14–27

    Google Scholar 

  • Kenshalo DR, Isensee O (1983) Responses of primate SI cortical neurons to noxious stimuli. J Neurophysiol 50: 1479–1496

    PubMed  Google Scholar 

  • Kenshalo DR, Giesler GJ, Leonard RB, Willis WD (1980) Responses of neurons in primate ventral posterior lateral nucleus to noxious stimuli. J Neurophysiol 43: 1594–1614

    PubMed  Google Scholar 

  • Kirkwood PA, Sears TA (1974) Monosynaptic excitation of motoneurons from secondary endings of muscle spindles. Nature 252:243 – 244

    Google Scholar 

  • Kniffki K-D, Mizumura K (1983) Responses of neurons in VPL and VPL-VL region of the cat to algesic stimulation of muscle and tendon. J Neurophysiol 49:649 – 661

    Google Scholar 

  • Kniffki K–D, Mense S, Schmidt RF (1978) Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation. Exp Brain Res 31: 511–522

    PubMed  CAS  Google Scholar 

  • Kniffki K–D, Schomburg ED, Steffens H (1979) Synaptic responses of lumbar a–motoneurons to chemical algesic stimulation of skeletal muscle in spinal cats. Brain Res 160: 549–552

    PubMed  CAS  Google Scholar 

  • Kniffki K–D, Schomburg ED, Steffens H (1980) Action of muscular group III and IV afferents on spinal locomotor activity in cat. Brain Res 186: 445–447

    PubMed  CAS  Google Scholar 

  • Kniffki K–D, Schomburg ED, Steffens H (1981) Synaptic effects from chemically activated fine muscle afferents upon a–motoneurones in decerebrate and spinal cats. Brain Res 206: 361–370

    PubMed  CAS  Google Scholar 

  • Koerber HR, Brown PB (1980) Projections of two hindlimb cutaneous nerves to cat dorsal horn. J Neurophysiol 44:259 – 269

    Google Scholar 

  • Koerber HR, Brown PB (1982) Somatotopic organization of hindlimb cutaneous nerve projections to cat dorsal horn. J Neurophysiol 48: 481–489

    PubMed  CAS  Google Scholar 

  • Kohrman RM, Nolasco JB, Wiggers CJ (1947) Types of afferent fibers in the phrenic nerve. Am J Physiol 151: 547–553

    PubMed  CAS  Google Scholar 

  • Koizumi K, Ushiyama J, McC Brooks C (1961) Muscle afferents and activity of respiratory neurons. Am J Physiol 200:679 – 684

    Google Scholar 

  • Koizumi K, Sato A, Kaufman A, McC Brooks C (1968) Studies of sympathetic neuron discharges modified by central and peripheral excitation. Brain Res 11: 212–224

    PubMed  CAS  Google Scholar 

  • Kruger L, Perl ER, Sedivec MJ (1981) Fine structure of myelinated mechanical nociceptor endings in cat hairy skin. J Comp Neurol 198: 137–154

    PubMed  CAS  Google Scholar 

  • Kumazawa T, Mizumura K (1976) The polymodal C-fiber receptor in the muscle of the dog. Brain Res 101: 589–593

    PubMed  CAS  Google Scholar 

  • Kumazawa T, Mizumura K (1977) Thin–fiber receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J Physiol (Lond) 273: 179–194

    CAS  Google Scholar 

  • Kumazawa T, Tadaki E, Mizumura K, Kim K (1983) Post-stimulus facilitatory and inhibitory effects on respiration induced by chemical and electrical stimulation of thinfiber muscular afferents in dogs. Neurosci Lett 35: 283–287

    PubMed  CAS  Google Scholar 

  • Kuo DC, Nadelhaft I, Hisamitsu T, De Groat WC (1983) Segmental distribution and central projections of renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase. J Comp Neurol 216: 162–174

    PubMed  CAS  Google Scholar 

  • LaMotte RH, Thalhammer JG, Torebjork HE, Robinson CJ (1982) Peripheral neural mechanisms of cutaneous hyperalgesia following mild injury by heat. J Neurosci 2: 765–781

    PubMed  CAS  Google Scholar 

  • Lamour Y, Wilier JC, Guilbaud G (1983) Rat somatosensory ( SmI) cortex: I. Characteristics of neuronal responses to noxious stimulation and comparison with responses to non-noxious stimulation. Exp Brain Res 49: 35–45

    Google Scholar 

  • Lanari A, Muchnik S, Rey N, Semeniuk G (1973) Muscular cramp mechanism. Medicina 33: 235–240

    PubMed  CAS  Google Scholar 

  • Landau BR, Akert K, Roberts TS (1962) Studies on the innervation of the diaphragm. J Comp Neurol 119: 1–10

    Google Scholar 

  • Landau W, Bishop GH (1953) Pain from dermal, periosteal, and fascial endings and from inflammation. Arch Neurol Psychiatry 69: 490–504

    CAS  Google Scholar 

  • Landgren S, Silfvenius H (1969) Projection to cerebral cortex of group I muscle afferents from the cat’s hindlimb. J Physiol (Lond) 200: 353–372

    CAS  Google Scholar 

  • Langford LA (1983) Unmyelinated axon ratios in cat motor, cutaneous and articular nerves. Neurosci Lett 40: 19–22

    PubMed  CAS  Google Scholar 

  • Langford LA, Schmidt RF (1983a) Afferent and efferent axons in the medial and posterior articular nerves of the cat. Anat Rec 206:71 – 78

    Google Scholar 

  • Langford LA, Schmidt RF (1983b) An electron microscopic analysis of the left phrenic nerve in the rat. Anat Rec 205:207 – 213

    Google Scholar 

  • Laporte Y, Bessou P, Bouisset S (1960) Action réflexe des differents types de fibres afferentes d’origine musculaire sur la pression sanguine. Arch Ital Biol 98: 206–221

    Google Scholar 

  • Laporte Y, Leitner L-M, Pages B (1962) Absence d’effets reflexes eirculatoires des fibres afferentes du groupe I. C R Soc Biol (Paris) 156: 2130–2133

    Google Scholar 

  • Layzer RB (1981) Leg muscle cramps. JAMA 245: 2298

    Google Scholar 

  • Layzer RB, Rowland LP (1971) Cramps. N Engl J Med 285: 31–40

    CAS  Google Scholar 

  • Lehmann-Willenbrock E, Mense S, Prabakhar NR (1984) Correlation between function and spinal projection in slowly conducting afferent units from deep tissues. Pflugers Arch [Suppl]400:R16

    Google Scholar 

  • Leitner L-M, Dejours P (1971) Reflex increase in ventilation induced by vibrations applied to the triceps surae muscles in the cat. Respir Physiol 12: 199–204

    PubMed  CAS  Google Scholar 

  • Lembeck F, Popper H, Juan H (1976) Release of prostaglandins by bradykinin as an intrinsic mechanism of its algesic effect. Naunyn-Schmiedeberg’s Arch Pharmacol 294: 69–73

    PubMed  CAS  Google Scholar 

  • Levitt J, Levitt M (1968) Sensory hind–limb representation in SmI cortex of the cat. A unit analysis. Exp Neurol 22: 259–275

    Google Scholar 

  • Lewis T (1932) Pain in muscular ischemia. Arch Intern Med 49: 713–727

    Google Scholar 

  • Lewis T (1942) Pain. Macmillian, London. (Facsimilie edition, 1981 )

    Google Scholar 

  • Lewis T, Kellgren JH (1939 – 42) Observations relating to referred pain, visceromotor reflexes and other associated phenomena. Clin Sci 4:47–71

    Google Scholar 

  • Lewis T, Pickering GW, Rothschild P (1931) Observations upon muscular pain in intermittent claudication. Heart 15: 359–383

    Google Scholar 

  • Light AR, Metz CB (1978) The morphology of the spinal cord efferent and afferent neurons contributing to the ventral roots of the cat. J Comp Neurol 179: 501–515

    PubMed  CAS  Google Scholar 

  • Light AR, Perl ER (1979a) Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol 186: 117–132

    PubMed  CAS  Google Scholar 

  • Light AR, Perl ER (1979b) Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 186: 133–150

    PubMed  CAS  Google Scholar 

  • Lind AR, McNicol GW (1967) Muscular factors which determine the cardiovascular responses to sustained and rhythmic exercise. Can Med Assoc J 96: 706–713

    PubMed  CAS  Google Scholar 

  • Lind AR, Taylor SH, Humphreys PW, Kennelly BM, Donald KW (1964) The circulatory effects of sustained voluntary muscle contraction. Clin Sci 27:229 – 244

    Google Scholar 

  • Lindahl O (1970) Experimental muscle pain produced by chemical stimulus. Acta Orthop Scand 40: 741–750

    Google Scholar 

  • Liu CT, Huggins RA, Hoff HE (1969) Mechanisms of intra–arterial K+–induced cardiovascular and respiratory responses. Am J Physiol 217: 969–973

    PubMed  CAS  Google Scholar 

  • Lloyd DPC (1943) Neuron patterns controlling transmission of ipsilateral hindlimb reflexes in cat. J Neurophysiol 6:293 – 315

    Google Scholar 

  • Loewenstein WR (1956) Modulation of cutaneous mechanoreceptors by sympathetic stimulation. J Physiol (Lond) 132: 40–60

    CAS  Google Scholar 

  • Longhurst JC, Mitchell JH, Moore MB (1980) The spinal cord ventral root: an afferent pathway of the hind limb pressor reflex in cats. J Physiol (Lond) 301:467 – 476

    Google Scholar 

  • Ludbrook J (1983) Reflex control of blood pressure during exercise. Ann Rev Physiol 45: 155–168

    CAS  Google Scholar 

  • Lund JP, Matthews B (1981) Responses of temporomandibular joint afferents recorded in the gasserian ganglion of the rabbit to passive movements of the mandible. In

    Google Scholar 

  • Kawamura Y, Dubner R (eds) Oral-facial sensory and motor functions. Quintessence Books, Tokyo, pp 153 –160

    Google Scholar 

  • Lundberg A (1979) Multisensory control of spinal reflex pathways. Prog Brain Res 50: 11–28

    PubMed  CAS  Google Scholar 

  • Lundberg A, Oscarsson O (1961) Three ascending pathways in the dorsal part of the lateral funiculus. Acta Physiol Scand 51: 1–16

    PubMed  CAS  Google Scholar 

  • Lundberg A, Malmgren K, Schomburg ED (1977) Comments on reflex actions evoked by electrical stimulation of group II muscle afferents. Brain Res 122: 551–555

    PubMed  CAS  Google Scholar 

  • Maendly R, Rtiegg DG, Wiesendanger M, Wiesendanger R, Lagowska J, Hess B (1981) Thalamic relay for group I muscle afferents of forelimb nerves in the monkey. J Neurophysiol 46:901 – 917

    Google Scholar 

  • Maison GL (1939) Studies on the genesis of ischemic pain: the influence of the potassium, lactate and ammonium ions. Am J Physiol 127: 315–321

    CAS  Google Scholar 

  • Mallart A (1968) Thalamic projection of muscle nerve afferents in the cat. J Physiol (Lond) 194: 337–353

    CAS  Google Scholar 

  • Marfurt CF, Turner DF (1983) Sensory nerve endings in the rat oro-facial region labeled by the anterograde and transganglionic transport of horseradish peroxidase: a new method for tracing peripheral nerve fibers. Brain Res 260:1 – 12

    Google Scholar 

  • Marshall J (1951) Sensory disturbances in cortical wounds with special reference to pain. J Neurol Neurosurg Psychiatry 14: 187–204

    PubMed  CAS  Google Scholar 

  • Masumoto K (1934a) Histologische Studien über die peripheren Nerven des Zwerchfells. I. Mitteilung. Mitt Med Akad Kioto 10: 1015–1018

    Google Scholar 

  • Masumoto K (1934b) Histologische Studien tiber die peripheren Nerven des Zwerchfells. II. Mitteilung. Mitt Med Akad Kioto 11: 1214–1217

    Google Scholar 

  • Matsushita M, Tanami T (1983) Contralateral termination of primary afferent axons in the sacral and caudal segments of the cat, as studied by anterograde transport of horseradish peroxidase. J Comp Neurol 220:206 – 218

    Google Scholar 

  • Matthews BHC (1931) The response of a single end organ. J Physiol (Lond) 71: 64–110

    CAS  Google Scholar 

  • Matthews BHC (1933) Nerve endings in mammalian muscle. J Physiol (Lond) 78: 1–53

    CAS  Google Scholar 

  • Matthews PBC (1969) Evidence that secondary as well as the primary endings of muscle spindles may be responsible for the tonic stretch reflex of the decerebrate cat. J Physiol (Lond) 204: 365–393

    CAS  Google Scholar 

  • Matthews PBC (1972) Mammalian muscle receptors and their central actions. Arnold, London

    Google Scholar 

  • Matthews PBC (1982) Where does Sherrington’s “muscular sense” originate? Muscles, joints, corollary discharges? Ann Rev Neurosci 5: 189–218

    Google Scholar 

  • Maunz RA, Pitts NG, Peterson BW (1978) Cat spinoreticular neurons: locations, responses and changes in responses during repetitive stimulation. Brain Res 148:365 – 379

    Google Scholar 

  • McCloskey DI (1978) Kinaesthetic sensibility. Physiol Rev 58: 763–820

    PubMed  CAS  Google Scholar 

  • McCloskey DI (1983) Proprioception and control of movement in man. IUPS Proc XV:464

    Google Scholar 

  • McCloskey DI, Mitchell JH (1972) Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol (Lond) 224: 173–186

    CAS  Google Scholar 

  • McCloskey DI, Streatfeild KA (1975) Muscular reflex stimuli to the cardiovascular system during isometric contractions of muscle groups of different mass. J Physiol (Lond) 250: 431–441

    CAS  Google Scholar 

  • McCloskey DI, Matthews PBC, Mitchell JH (1972) Absence of appreciable cardiovascular and respiratory responses to muscle vibration. J Appl Physiol 33: 623–626

    PubMed  CAS  Google Scholar 

  • Mclntyre AK (1974) Central actions of impulses in muscle afferent fibers. In: Hunt CC (ed) Muscle receptors. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol 3/2)

    Google Scholar 

  • McLachlan EM, Janig W (1983) The cell bodies of origin of sympathetic and sensory axons in some skin and muscle nerves of the cat hindlimb. J Comp Neurol 214: 115–130

    PubMed  CAS  Google Scholar 

  • McRitchie RJ, Vatner SF, Boettcher D, Heyndrickx GR, Patrick TA, Braunwald E (1976) Role of arterial baroreceptors in mediating cardiovascular response to exercise. Am J Physiol 230: 85–89

    PubMed  CAS  Google Scholar 

  • Mehler WR (1969) Some neurological species differences - a posteriori. Ann NY Acad Sci 167:424 – 468

    Google Scholar 

  • Menétrey D, Giesler GJ, Besson JM (1977) An analysis of response properties of spinal cord dorsal horn neurones to nonnoxious and noxious stimuli in the spinal rat. Exp Brain Res 27: 15–33

    PubMed  Google Scholar 

  • Menétrey D, Chaouch A, Besson JM (1980) Location and properties of dorsal horn neurons at origin of spinoreticular tract in lumbar enlargement of the rat. J Neurophysiol 44: 862–877

    PubMed  Google Scholar 

  • Mense S (1977a) Nervous outflow from skeletal muscle following chemical noxious stimulation. J Physiol (Lond) 267:75 – 88

    Google Scholar 

  • Mense S (1977b) Muscular nociceptors. J Physiol (Paris) 73: 233–240

    CAS  Google Scholar 

  • Mense S (1978) Muskelreceptoren mit dünnen markhaltigen und marklosen afferenten Fasern: Receptive Eigenschaften und mögliche Funktion. Habilitation thesis, Kiel University

    Google Scholar 

  • Mense S (1982) Reduction of the bradykinin-induced activation of feline group III and IV muscle receptors by acetylsalicylic acid. J Physiol (Lond) 326: 269–283

    CAS  Google Scholar 

  • Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol (Lond) 363: 403–417

    CAS  Google Scholar 

  • Mense S, Schmidt RF (1974) Activation of group IV afferent units from muscle by algesic agents. Brain Res 72: 305–310

    PubMed  CAS  Google Scholar 

  • Mense S, Stahnke M (1983) Responses in muscle afferent fibers of slow conduction velocity to contractions and ischemia in the cat. J Physiol (Lond) 342:383 – 397

    Google Scholar 

  • Mense S, Light AR, Perl ER (1981) Spinal terminations of subcutaneous high-threshold mechanoreceptors. In: Brown AG, Réthelyi M (eds) Spinal cord sensation. Scottish Academic, Edinburgh, pp 79–86

    Google Scholar 

  • Mense S, Meyer H, Prabakhar NR (1983) Response properties of nociceptors in deep tissues. Neurosci Lett [Suppl] 14:S 246

    Google Scholar 

  • Mense S, Craig AD, Lehmann-Willenbrock E, Meyer H (1985) Neurobiology of smalldiameter afferent fibers from deep tissues. In: Rowe M, Willis WD (eds) Development, organization and processing in somatosensory pathways. Liss, New York, pp 299–308

    Google Scholar 

  • Mesulam M-M (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction–product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26: 106–117

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Brushart TM (1979) Transganglionic and anterograde transport of horseradish peroxidase across dorsal root ganglia: a tetramethylbenzidine method for tracing central sensory connections of muscles and peripheral nerves. Neuroscience 4: 1107–1117

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Rosene DL (1979) Sensitivity in horseradish peroxidase neurohistochemistry: a comparative and quantitative study of nine methods. J Histochem Cytochem 27:763 – 773

    Google Scholar 

  • Millar J (1975) Flexion-extension sensitivity of elbow joint afferents in cat. Exp Brain Res 24:209 – 214

    Google Scholar 

  • Mitchell D, Hellon RF (1977) Neuronal and behavioural responses in rats during noxious stimulation of the tail. Proc R Soc Lond B 197: 169–194

    PubMed  CAS  Google Scholar 

  • Mitchell JH, Schmidt RF (1983) Cardiovascular reflex control by afferent fibers from skeletal muscle receptors. In: Shepherd JT, Abboud FM (eds) Handbook of physiology, Section 2: The cardiovascular system, vol III: Peripheral circulation and organ blood flow, part 2. American Physiological Society, Bethesda, pp 623–658

    Google Scholar 

  • Mitchell JH, Kaufman MP, Iwamoto GA (1983) The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Ann Rev Physiol 45:229 – 242

    Google Scholar 

  • Mizumura K, Kumazawa T (1976) Reflex respiratory response induced by chemical stimulation of muscle afferents. Brain Res 109: 402–406

    PubMed  CAS  Google Scholar 

  • Moberg E (1983) The role of cutaneous afferents in position sense, kinaesthesia, and motor function of the hand. Brain 106:1 – 19

    Google Scholar 

  • Moore RM, Moore RE (1933) Studies on the pain–sensibility of arteries. I. Some observations on the pain-sensibility of arteries. Am J Physiol 104: 259–266

    Google Scholar 

  • Moore RM, Singleton AO (1933) Studies on the pain-sensibility of arteries. II. Peripheral paths of afferent neurones from the arteries of the extremities and of the abdominal viscera. Am J Physiol 104: 267–275

    Google Scholar 

  • Moore RM, Moore RE, Singleton AO (1934) Experiments on the chemical stimulation of pain-endings associated with small blood–vessels. Am J Physiol 107: 594–602

    CAS  Google Scholar 

  • Morgan DP, Kao F, Lim TPK, Grodins FS (1955) Temperature and respiratory responses in exercise. Am J Physiol 183: 454–458

    PubMed  CAS  Google Scholar 

  • Morgan-Hughes JA (1979) Painful disorders of muscle. Br J Hosp Med 22: 360–365

    PubMed  CAS  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20: 408–434

    PubMed  CAS  Google Scholar 

  • Mountcastle VB, Powell TPS (1959) Central nervous mechanisms subserving position sense and kinesthesis. Bull Johns Hopkins Hosp 105: 173–200

    PubMed  CAS  Google Scholar 

  • Mountcastle VB, Covian MR, Harrison CR (1950) The central representation of some forms of deep sensibility. Res Publ Assoc Res Nerv Ment Dis 30: 339–370

    Google Scholar 

  • Mounicastle VB, Poggio GF, Werner G (1963) The relation of thalamic cell response to peripheral stimuli varied over an intensive continuum. J Neurophysiol 26: 807–834

    Google Scholar 

  • Munson JB, Sypert GW, Zengel JE, Lofton SA, Fleshman JW (1982) Monosynaptic projections of individual spindle group II afferents to type–identified medial gastrocnemius motoneurons in the cat. J Neurophysiol 48: 1164–1174

    PubMed  CAS  Google Scholar 

  • Nahin RL, Madsen AM, Giesler GJ (1983) Anatomical and physiological studies of the gray matter surrounding the spinal cord central canal. J Comp Neurol 220: 321–335

    PubMed  CAS  Google Scholar 

  • Nathan PW (1980) Involvement of the sympathetic nervous system in pain. In: Kosterlitz HW, Terenius LY (eds) Pain and society (Dahlem Konferenzen). Chemie, Weinheim, pp 311–324

    Google Scholar 

  • Norrsell V, Wolpow ER (1966) An evoked potential study of different pathways from the hind–limb to somatosensory areas in the cat. Acta Physiol Scand 66: 19–33

    PubMed  CAS  Google Scholar 

  • Noth J, Thilmann A (1980) Autogenetic excitation of extensor γ-motoneurones by group II muscle afferents in the cat. Neurosci Lett 17: 23–26

    PubMed  CAS  Google Scholar 

  • O’Connor BL (1984) The mechanoreceptor innervation of the posterior attachments of the lateral meniscus of the dog knee joint. J Anat 138: 15–26

    PubMed  Google Scholar 

  • O’Connor BL, Gonzales J (1979) Mechanoreceptors of the medial collateral ligament of the cat knee joint. J Anat 129: 719–729

    PubMed  Google Scholar 

  • O’Connor BL, Kunz B, Peterson RG (1982) The composition of the medial articular nerve to the knee in the dog. J Anat 135: 139–145

    PubMed  Google Scholar 

  • O’Leary J, Heinbecker P, Bishop GH (1935) Analysis of function of a nerve to muscle. Am J Physiol 110: 636–658

    Google Scholar 

  • Oscarsson O, Rosen I (1963) Projection to cerebral cortex of large muscle spindle afferents in forelimb nerves of the cat. J Physiol (Lond) 169:924 – 945

    Google Scholar 

  • Paintal AS (1954) The response of gastric stretch receptors and certain other abdominal and thoracic vagal receptors to some drugs. J Physiol (Lond) 126:271 – 285

    Google Scholar 

  • Paintal AS (1959) Facilitation and depression of muscle stretch receptors by repetitive antidromic stimulation, adrenaline and asphyxia. J Physiol (Lond) 148:252 – 266

    Google Scholar 

  • Paintal AS (1960) Functional analysis of group III afferent fibers of mammalian muscles. J Physiol (Lond) 152: 250–270

    CAS  Google Scholar 

  • Paintal AS (1961) Participation by pressure–pain receptors of mammalian muscles in the flexion reflex. J Physiol (Lond) 156: 498–514

    CAS  Google Scholar 

  • Paintal AS (1967) A comparison of the nerve impulses of mammalian non–medullated nerve fibers with those of the smallest diameter medullated fibers. J Physiol (Lond) 193: 523–533

    CAS  Google Scholar 

  • Parida B, Senapati JM, Kalia M (1969) Role of carotid body in hypernea due to stimulation of muscle receptors in the dog. J Appl Physiol 27: 519–522

    PubMed  CAS  Google Scholar 

  • Passatore M, Filippi GM (1982) A dual effect of sympathetic nerve stimulation on jaw muscle spindles. J Auton Nerv Syst 6:347 – 361

    Google Scholar 

  • Passatore M, Filippi GM (1983) Sympathetic modulation of periodontal mechanoreceptors. Arch Ital Biol 121: 55–65

    PubMed  CAS  Google Scholar 

  • Paterson WD (1928) Circulatory and respiratory changes in response to muscular exercise in man. J Physiol (Lond) 66: 323–345

    CAS  Google Scholar 

  • Paul DH (1961) The effects of anoxia on the isolated rat phrenic nerve–diaphragm preparation. J Physiol (Lond) 155: 358–371

    CAS  Google Scholar 

  • Paulev P-E (1973) Cardiac rate and ventilatory volume rate reactions to a muscle contraction in man. J Appl Physiol 34:578 – 583

    Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389–443

    Google Scholar 

  • Perez-Gonzalez JF, Coote JH (1972) Activity of muscle afferents and reflex circulatory responses to exercise. Am J Physiol 223:138 – 143

    Google Scholar 

  • Perl ER (1984) Pain and nociception. In: Darian–Smith (ed) Handbook of physiology, Section 1, The nervous system, vol III, part 2. American Physiological Society, Bethesda, pp 915–975

    Google Scholar 

  • Perl ER, Whitlock DG (1961) Somatic stimuli exciting spinothalamic projections to thalamic neurons in cat and monkey. Exp Neurol 3: 256–296

    PubMed  CAS  Google Scholar 

  • Perl ER, Kumazawa T, Lynn B, Kenins P (1976) Sensitization of high threshold receptors with unmyelinated (C) afferent fibers. Prog Brain Res 43:263 – 276

    Google Scholar 

  • Peschanski M, Lee CL, Ralston HJ (1984) The structural organization of the ventrobasal complex of the rat as revealed by the analysis of physiologically characterized neurons injected intracellularly with horseradish peroxidase. Brain Res 297:63 – 74

    Google Scholar 

  • Phillips CG, Powell TPS, Wiesendanger M (1971) Projection from low–threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex. J Physiol (Lond) 217: 419–446

    CAS  Google Scholar 

  • Pickering GW, Wayne EJ (1933–34) Observations on angina pectoris and intermittent claudication in anaemia. Clin Sci 1:305–325

    Google Scholar 

  • Piper PJ (1984) Formation and actions of leukotrienes. Physiol Rev 64:744 – 761

    Google Scholar 

  • Poggio GF, Mountcastle VB (1963) The functional properties of ventrobasal thalamic neurons studied in unanesthetized monkeys. J Neurophysiol 26:775 – 806

    Google Scholar 

  • Pollock LJ, Davis L (1935) Visceral and referred pain. Arch Neurol Psychiatry 24: 1041–1054

    Google Scholar 

  • Pomeranz B, Wall PD, Weber WV (1968) Cord cells responding to fine myelinated afferents from viscera, muscle and skin. J Physiol (Lond) 199: 511–532

    CAS  Google Scholar 

  • Proshansky E, Egger MD (1977) Staining of the dorsal root projection to the cat’s dorsal horn by anterograde movement of horseradish peroxidase. Neurosci Lett 5: 103–110

    PubMed  CAS  Google Scholar 

  • Ralston HJ, Ralston DD (1979) The distribution of dorsal root axons in laminae I, II and III of the macaque spinal cord: A quantitative electron microscope study. J Comp Neurol 184: 643–684

    Google Scholar 

  • Ranson SW, Davenport HK (1931) Sensory unmyelinated fibers in the spinal nerves. Am J Anat 48: 331–353

    Google Scholar 

  • Réthelyi M, Szentagothai J (1973) Distribution and connections of afferent fibres in the spinal cord. In: Iggo A (ed) Somatosensory system. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol 2 )

    Google Scholar 

  • Réthelyi M, Trevino DL, Perl ER (1979) Distribution of primary afferent fibers within the sacrococcygeal dorsal horn: an autoradiographic study. J Comp Neurol 185: 603–622

    PubMed  Google Scholar 

  • Réthelyi M, Light AR, Perl ER (1982) Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers. J Comp Neurol 207:381 – 393

    Google Scholar 

  • Rexed B (1952) The eytoarchiteetonic organization of the spinal cord in the cat. J Comp Neurol 96: 415–496

    Google Scholar 

  • Rexed B, Therman P-O (1948) Calibre spectra of motor and sensory nerve fibers to flexor and extensor muscles. J Neurophysiol 11: 133–139

    PubMed  CAS  Google Scholar 

  • Richmond FJR, Anstee GCB, Sherwin EA, Abrahams VC (1976) Motor and sensory fibers of neck muscle nerves in the cat. Can J Physiol Pharmacol 54:294 – 304

    Google Scholar 

  • Rodbard S (1975) Pain associated with muscular activity. Am Heart J 90: 84–92

    PubMed  CAS  Google Scholar 

  • Roland PE, Ladegaard-Pedersen H (1977) A quantitative analysis of sensations of tension and of kinaesthesia in man. Evidence for a peripherally originating muscular sense and for a sense of effort. Brain 100: 671–692

    Google Scholar 

  • Rowell LB (1974) Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev 54: 75–159

    PubMed  CAS  Google Scholar 

  • Rowell LB, Hermansen L, Blackmon JR (1976) Human cardiovascular and respiratory responses to graded muscle ischemia. J Appl Physiol 41: 693–701

    PubMed  CAS  Google Scholar 

  • Sahlin K, Harris RC, Nylind B, Hultman E (1976) Lactate content and pH in muscle samples obtained after dynamic exercise. Pflugers Arch 367:143 – 149

    Google Scholar 

  • Sahlin K, Palmskog G, Hultman E (1978) Adenine nucleotide and IMP contents of the quadriceps muscle in man after exercise. Pflugers Arch 374:193 –198

    Google Scholar 

  • Samuel EP (1952) The autonomic and somatic innervation of the articular capsule. Anat Rec 113: 53–70

    PubMed  CAS  Google Scholar 

  • Sato A, Schmidt RF (1966) Muscle and cutaneous afferents evoking sympathetic reflexes. Brain Res 2: 399–401

    PubMed  CAS  Google Scholar 

  • Sato A, Schmidt RF (1973) Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev 53: 916–947

    Google Scholar 

  • Sato A, Kaufman A, Koizumi K, McC Brooks C (1969) Afferent nerve groups and sympathetic reflex pathways. Brain Res 14:575 – 587

    Google Scholar 

  • Sato A, Sato Y, Schmidt RF (1981) Heart rate changes reflecting modifications of efferent cardiac sympathetic outflow by cutaneous and muscle afferent volleys. J Auton Nerv Syst 4: 231–247

    PubMed  CAS  Google Scholar 

  • Sato A, Sato Y, Schmidt RF (1982) Changes in heart rate and blood pressure upon injection of algesic substances into skeletal muscle. Pflugers Arch 393: 31–36

    PubMed  CAS  Google Scholar 

  • Sato Y, Schaible H-G, Schmidt RF (1983) Types of afferents from the knee joint evoking sympathetic reflexes in cat inferior cardiac nerves. Neurosci Lett 39:71 – 75

    Google Scholar 

  • Scadding JW (1981) Development of ongoing activity, mechanosensitivity, and adrenaline sensitivity in severed peripheral nerve axons. Exp Neurol 73: 345–364

    PubMed  CAS  Google Scholar 

  • Schaible H-G, Schmidt RF (1983a) Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. J Neurophysiol 49:35 – 44

    Google Scholar 

  • Schaible H–G, Schmidt RF (1983b) Responses of fine medial articular nerve afferents to passive movements of knee joint. J Neurophysiol 49: 1118–1126

    Google Scholar 

  • Schibye B, Mitchell JH, Payne FC, Saltin B (1981) Blood pressure and heart rate response to static exercise in relation to electromyographic activity and force development. Acta Physiol Scand 113: 61–66

    PubMed  CAS  Google Scholar 

  • Schmidt A (1916) Zur Pathologie und Therapie des Muskelrheumatismus (Myalgie). Munch Med Wochenschr 63:593 – 595

    Google Scholar 

  • Schmidt RF, Schönfuss K (1970) An analysis of the reflex activity in the cervical sympathetic trunk induced by myelinated somatic afferents. Pflugers Arch 314: 175–198

    PubMed  CAS  Google Scholar 

  • Schmidt RF, Kniffki K-D, Schömburg ED (1981) Der EinfiuB kleinkalibriger Muskelafferenzen auf den Muskeltonus. In: Bauer HJ, Koella WP, Struppler A (eds) Therapie der

    Google Scholar 

  • Spastik. Verlag fur angewandte Wissenschaften, Munich, pp 71–86

    Google Scholar 

  • Schumann H-J (1972) Überlastungsnekrosen der Skelettmuskulatur nach experimentellem Laufzwang. Zentralbl Allg Pathol 116: 181–190

    PubMed  CAS  Google Scholar 

  • Sell R, Erdelyi A, ScMfer H (1958) Untersuchungen iiber den Einflufl peripherer Nervenreizung auf die sympathische Aktivitat. Pflugers Arch 267: 566–581

    Google Scholar 

  • Seltzer Z, Devor M (1979) Ephaptic transmission in chronically damaged peripheral nerves. Neurology 29:1061 –1064

    Google Scholar 

  • Senapati JM (1966) Effect of stimulation of muscle afferents on ventilation of dogs. J Appl Physiol 21:242 – 246

    Google Scholar 

  • Sherrington CS (1894) On the anatomical constitution of nerves of skeletal muscles; with remarks on recurrent fibers in the ventral spinal nerve-root. J Physiol (Lond) 17: 211–258

    Google Scholar 

  • Sherrington CS (1910) Flexion-reflex of the limb, crossed extension–reflex, and reflex stepping and standing. J Physiol (Lond) 40: 28–121

    CAS  Google Scholar 

  • Shyu BC, Andersson SA, Thorén P (1982) Endorphin mediated increase in pain threshold induced by long-lasting exercise in rats. Life Sci 10:833 – 840

    Google Scholar 

  • Shyu BC, Andersson SA, Thorén P (1985) Spontaneous running in wheels. A computer assisted method for measuring physiological parameters during exercise in rodents. Acta Physiol Scand: in press

    Google Scholar 

  • Sicuteri F, Franchi G, Fanciullacci M (1964) Bradichinina e dolore da ischemia. Settim Med 52: 127–139

    Google Scholar 

  • Simons DG (1975) Muscle pain syndromes. Part I. Am J Physical Med 54: 289–311

    CAS  Google Scholar 

  • Simons DG (1976) Muscle pain syndromes. Part II. Am J Physical Med 55: 15–42

    CAS  Google Scholar 

  • Simons DG, Travell J (1981) Myofascial trigger points, a possible explanation. Pain 10: 106–109

    PubMed  CAS  Google Scholar 

  • Sjölund B, Terenius L, Eriksson M (1977) Increased cerebrospinal fluid levels of endorphins after electro-acupuncture. Acta Physiol Scand 100: 382–384

    PubMed  Google Scholar 

  • Skoglund S (1956) Anatomical and physiological studies of knee joint innervation in the cat. Acta Physiol Scand [Suppl 124] 36: 1–101

    CAS  Google Scholar 

  • Skoglund S (1973) Joint receptors and kinaesthesis. In: Iggo A (ed) Somatosensory system. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol 2)

    Google Scholar 

  • Smith CL (1983) The development and postnatal organization of primary afferent projections to the rat thoracic spinal cord. J Comp Neurol 220:29 – 43

    Google Scholar 

  • Snyder RL (1982) Light and electron microscopic autoradiographic study of the dorsal root projections to the cat dorsal horn. Neuroscience 7:1417 – 1437

    Google Scholar 

  • Sprague JM, Ha H (1964) The terminal fields of dorsal root fibers in the lumbosacral spinal cord of the cat, and the dendritic organization of the motor nuclei. Prog Brain Res 11: 120–154

    PubMed  CAS  Google Scholar 

  • Stacey MJ (1969) Free nerve endings in skeletal muscle of the cat. J Anat 105: 231–254

    PubMed  CAS  Google Scholar 

  • Staton WM (1951) New approach to muscle soreness. Athletic J (Chicago) 31: 24–61

    Google Scholar 

  • Stauffer EK, Watt DGD, Taylor A, Reinking RM, Stuart DG (1976) Analysis of muscle receptor connections by spike-triggered averaging. 2. Spindle Group II afferents. J Neurophysiol 39:1393 –1402

    Google Scholar 

  • Staunton HP, Taylor SH, Donald KW (1964) The effect of vascular occlusion on the pressor response to static muscular work. Clin Sci 27:283 – 291

    Google Scholar 

  • Steffen RP, McKenzie JE, Haddy FJ (1982) The possible role of acetate in exercise hyperemia in dog skeletal muscle. Pfltigers Arch 392: 315–321

    CAS  Google Scholar 

  • Stegemann J (1963) Zum Mechanismus der Pulsfrequenzeinstellung durch den Stoffwechsel. I–IV. Pfltigers Arch 276: 481–524

    CAS  Google Scholar 

  • Stegemann J, Kenner T (1971) A theory on heart rate control by muscular metabolic receptors. Arch Kreislaufforsch 64: 185–214

    PubMed  CAS  Google Scholar 

  • Stilwell DL (1957a) The innervation of tendons and aponeuroses. Am J Anat 100: 289–317

    PubMed  Google Scholar 

  • Stilwell DL (1957b) The innervation of deep structures of the foot. Am J Anat 101: 59–74

    PubMed  Google Scholar 

  • Stilwell DL (1957c) The innervation of deep structures of the hand. Am J Anat 101: 75–100

    PubMed  Google Scholar 

  • Taira N, Nakayama K, Hashimoto K (1968) Vocalization response of puppies to intraarterial administration of bradykinin and other algesic agents, and mode of actions of blocking agents. Tohoku J Exp Med 96: 365–377

    PubMed  CAS  Google Scholar 

  • Tallarida G, Baldoni F, Peruzzi G, Brindisi F, Raimondi G, Sangiorgi M (1979) Cardiovascular and respiratory chemoreflexes from the hindlimb sensory receptors evoked by intra-arterial injection of bradykinin and other chemical agents in the rabbit. J Pharmacol Exp Ther 208: 319–329

    PubMed  CAS  Google Scholar 

  • Tallarida G, Baldoni F, Peruzzi G, Raimondi G, Massaro M, Abate A, Sangiorgi M (1983) Different patterns of respiratory reflexes originating in exercising muscle. J Appl Physiol 55: 84–91

    PubMed  CAS  Google Scholar 

  • Tan Ü (1983) Excitatory and inhibitory effects of repetitive stimulation of group I and II extensor afferents on homonymous motoneurones. Arch Ital Biol 121: 167–186

    Google Scholar 

  • Thompson FJ, Barnes CD (1969) Evidence for thermosensitive receptors in the femoral vein. Fed Proc 28 /1: 722

    Google Scholar 

  • Thompson FJ, Barnes CD, Wald JR (1982) Interactions between femoral venous afferents and lumbar spinal reflex pathways. J Auton Nerv Syst 6: 113–126

    PubMed  CAS  Google Scholar 

  • Tibes U (1977) Reflex inputs to the cardiovascular and respiratory centers from dynamically working canine muscles: some evidence for involvement of group III or IV nerve fibers. Circ Res 41: 332–341

    PubMed  CAS  Google Scholar 

  • Tiegs OW (1953) Innervation of voluntary muscle. Physiol Rev 33: 90–144

    PubMed  CAS  Google Scholar 

  • Tominaga S, Curnish RR, Belardinelli L, Rubio R, Berne RM (1980) Adenosine release during early and sustained exercise of canine skeletal muscle. Am J Physiol 238: HI 56–HI 63

    Google Scholar 

  • Torebjörk HE, Ochoa JL, Schady W (1984a) Referred pain from intraneural stimulation of muscle fascicles in the median nerve. Pain 18: 145–156

    PubMed  Google Scholar 

  • Torebjork HE, Schady W, Ochoa J (1984b) Sensory correlates of somatic afferent fiber activation. Hum Neurobiol 3: 15–20

    PubMed  CAS  Google Scholar 

  • Tracey DJ (1979) Characteristics of wrist joint receptors in the cat. Exp Brain Res 34: 165–176

    PubMed  CAS  Google Scholar 

  • Travell JG, Simons DG (1983) Myofascial pain and dysfunction. The trigger point manual. Williams and Wilkins, Baltimore

    Google Scholar 

  • Trevino DL, Maunz RA, Bryan RN, Willis WD (1972) Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Exp Neurol 34:64 – 77

    Google Scholar 

  • Turner DF, Marfurt CF (1983) Electron microscopic demonstration of horseradish peroxidase- tetramethylbenzidine reaction product as a method for identifying sensory nerve fibers in the rat tooth pulp. Neurosci Lett 41: 213–218

    PubMed  CAS  Google Scholar 

  • Wagman IH, Price DD (1969) Responses of dorsal horn cells of M. mulatta to cutaneous and sural nerve A and C fiber stimuli. J Neurophysiol 32:803–817

    Google Scholar 

  • Wallin G, Torebjork E, Hallin R (1976) Preliminary observations on the pathophysiology of hyperalgesia in the causalgie pain syndrome. In: Zotterman Y (ed) Sensory functions of the skin in primates. Pergamon, Oxford, pp 489–502

    Google Scholar 

  • Webb-Peploe MM, Brender D, Shepherd JT (1972) Vascular responses to stimulation of receptors in muscle by capsaicin. Am J Physiol 222: 189–195

    PubMed  CAS  Google Scholar 

  • Webster ME, Skinner NS, Powell WJ (1967) Role of the kinins in vasodilatation of skeletal muscle of the dog. Am J Physiol 212:553 – 558

    Google Scholar 

  • Weiner IH, Weiner HL (1980) Nocturnal leg muscle cramps. JAMA 244: 2332–2333

    Google Scholar 

  • Westrum LE, Canfield RC, Black RG (1976) Transganglionic degeneration in the spinal trigeminal nucleus following removal of tooth pulps in adult cats. Brain Res 101: 137–140

    PubMed  CAS  Google Scholar 

  • Whipp BJ (1983) Ventilatory control during exercise in humans. Ann Rev Physiol 45: 393–413

    CAS  Google Scholar 

  • Wiesenfeld-Hallin Z, Hallin RG (1984) The influence of the sympathetic system on mechanoreception and nociception. A review. Hum Neurobiol 3: 41–46

    Google Scholar 

  • Wietoska B, Boning D (1979) Was ist eigentlich Muskelkater? - Gesichertes und Ungesichertes in der medizinischen Literatur. Dtsch Z Sportmed 30:395 – 401

    Google Scholar 

  • Wildenthal K, Mierzwiak DS, Skinner NS, Mitchell JH (1968) Potassium–induced cardiovascular and ventilatory reflexes from the dog hindlimb. Am J Physiol 215: 542–548

    PubMed  CAS  Google Scholar 

  • Willis WD, Trevino DL, Coulter JD, Maunz RA (1974) Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J Neurophysiol 37:358 – 372

    Google Scholar 

  • Willis WD, Leonard RB, Kenshalo DR (1978) Spinothalamic tract neurons in the substantia gelatinosa. Science 202:986 – 988

    Google Scholar 

  • Willis WD, Kenshalo DR, Leonard RB (1979) The cells of origin of the primate spinothalamic tract. J Comp Neurol 188: 543–574

    PubMed  CAS  Google Scholar 

  • Woodworth RS, Sherrington CS (1904) A pseudaffective reflex and its spinal path. J Physiol (Lond) 31: 234–243

    CAS  Google Scholar 

  • Woollard HH, Roberts JEH, Carmichael EA (1932) An inquiry into referred pain. Lancet 2: 337–338

    Google Scholar 

  • Yao T, Andersson S, Thoren P (1982) Long-lasting cardiovascular depressor response following sciatic stimulation in spontaneously hypertensive rats. Evidence for the involvement of central endorphin and serotonin systems. Brain Res 244: 295–303

    Google Scholar 

  • Young EW, Sparks HY (1980) Prostaglandins and exercise hyperemia of dog skeletal muscle. Am J Physiol 238: H191–195

    PubMed  CAS  Google Scholar 

  • Zotterman Y (1936) Specific action potentials in the lingual nerve of cat. Skand Arch Physiol 75: 105–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mense, S. (1986). Slowly Conducting Afferent Fibers from Deep Tissues: Neurobiological Properties and Central Nervous Actions. In: Autrum, H., Ottoson, D., Perl, E.R., Schmidt, R.F., Shimazu, H., Willis, W.D. (eds) Progress in Sensory Physiology 6. Progress in Sensory Physiology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70411-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70411-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70413-0

  • Online ISBN: 978-3-642-70411-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics