Skip to main content

Lung Recruitment During ARDS

  • Conference paper
Acute Lung Injury

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 30))

Abstract

Accomplishing the lung’s primary function of gas exchange requires close contact between gas and blood across the extensive alveolar surface. Because of non-uniform regional and local forces, certain lung units are naturally predisposed to closure, even in the healthy lung. Extensive airway or parenchymal disease greatly accentuates this tendency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hedenstierna G, McCarthy G, Bergstrom M (1976) Airway closure during mechanical ventilation. Anesthesiology 44: 114 – 123

    Article  PubMed  CAS  Google Scholar 

  2. Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18: 319 – 321

    Article  PubMed  CAS  Google Scholar 

  3. Dreyfuss D, Saumon G (1994) Should the lung be rested or recruited? The charybdis and scylla of ventilator management. Am J Respir Crit Care Med 149: 1066 – 1068

    PubMed  CAS  Google Scholar 

  4. Slutsky AS (1993) Barotrauma and alveolar recruitment (editorial). Intensive Care Med 19: 369 – 371

    Article  PubMed  CAS  Google Scholar 

  5. Tsuno K, Prato P, Kolobow T (1990) Acute lung injury from mechanical ventilation at moderately high airway pressures. J Appi Physiol 69: 956 – 961

    CAS  Google Scholar 

  6. Parker JC, Hernandex LA, Peeby KJ (1993) Mechanisms of ventilator–induced lung injury. Crit Care Med 21: 131 – 143

    Article  PubMed  CAS  Google Scholar 

  7. Dreyfuss D, Soler P, Basset G, et al (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high P–V, and positive end–expiratory pressure. Am Rev Respir Dis 137: 1159 – 1164

    PubMed  CAS  Google Scholar 

  8. Muscedere JG, Mullen JB, Gan K, et al (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327 – 1334

    PubMed  CAS  Google Scholar 

  9. Bryan AC, Froese AB (1991) Reflections on the HIFI trial. Pediatrics 87: 565 – 567

    PubMed  CAS  Google Scholar 

  10. Sugiura M, McCulloch PR, Wren S, Dawson RH, Froese AB (1994) Ventilator pattern influences neutrophil influx and activation in atelectasis–prone rabbit lung. J Appi Physiol 77: 1355 – 1365

    CAS  Google Scholar 

  11. Rouby J J, Lherm T, Martin de Lassale E (1993) Histologic aspects of pulmonary barotrauma in critically ill patients with acute respiratory failure. Intensive Care Med 19: 383 – 389

    Article  PubMed  CAS  Google Scholar 

  12. Bancalari E, Gerhardt T (1986) Bronchopulmonary dysplasia. Ped Clin N Amer 33: 1 – 23

    CAS  Google Scholar 

  13. Stamenovic D (1990) Micromechanical foundations of pulmonary elasticity. Physiol Rev 70: 1117 – 1134

    PubMed  CAS  Google Scholar 

  14. Lewis JF, Jobe AH (1993) Surfactant and the adult respiratory distress syndrome. Am Rev Respir Dis 147: 218 – 233

    PubMed  CAS  Google Scholar 

  15. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: A model of pulmonary elasticity. J Appi Physiol 28: 596 – 608

    CAS  Google Scholar 

  16. Terry PB, Traystman RJ, Newball HH, Batra G, Menkes HA (1978) Collateral ventilation in man. N Engl J Med 298: 10 – 15

    Article  PubMed  CAS  Google Scholar 

  17. Bendixen H H, Hedley–Whyte J, Laver M B (1963) Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation. N Engl J Med 269: 991 – 997

    CAS  Google Scholar 

  18. Lai–Fook SJ (1991) Stress distribution. In: Crystal RG, West JB, et al (eds) The Lung. Scientific Foundations. New York, pp 829 – 837

    Google Scholar 

  19. Stamenovic D, Wilson TA (1992) Parenchymal stability. J Appi Physiol 73: 596 – 602

    CAS  Google Scholar 

  20. Kolton M, Cattran CB, Kent G, et al (1982) Oxygenation during high–frequency ventilation compared with conventional mechanical ventilation in two models of lung injury. Anesth Analg 61: 323 – 332

    Article  PubMed  CAS  Google Scholar 

  21. Rimensberger P, Cox P, Bryan AC, et al (1995) Inverse ratio ventilation: Simply an alternative or something more? Crit Care Med 23: 1786 – 1789

    Article  PubMed  CAS  Google Scholar 

  22. Benito S, Lemaire F (1990) Pulmonary P–V relationship in acute respiratory distress syndrome in adults: Role of positive end–expiratory pressure. J Crit Care 5: 27 – 34

    Article  Google Scholar 

  23. Matamis D, Lemire F, Harf A, Brun–Buisson C, Ansquer JC, Atlan G (1984) Total respiratory pressure volume curves in the adult respiratory distress syndrome. Chest 86: 58 – 66

    CAS  Google Scholar 

  24. Valta P, Takala J, Eissa, NT, et al (1993) Does alveolar recruitment occur with positive end–expiratory pressure in adult respiratory distress syndrome patients? J Crit Care 8: 34 – 42

    Article  PubMed  CAS  Google Scholar 

  25. Yap DYK, Liebkemann WD, Solway J, et al (1994) Influences of parenchymal tethering on the reopening of closed pulmonary airways. J Appi Physiol 76: 2095 – 2105

    CAS  Google Scholar 

  26. Gaver DP, Samsel RW, Solway J (1990) Effects of surface tension and viscosity on airway opening. J Appi Physiol 69: 74 – 85

    Google Scholar 

  27. Naureckas ET, Dawson CA, Gerber BS, et al (1994) Airway reopening pressure in isolated rat lungs. J Appi Physiol 76: 1372 – 1377

    CAS  Google Scholar 

  28. Katz JA, Ozanne GM, Zinn SE, Fairley HB (1981) Time course and mechanisms of lung volume increase with PEEP in acute pulmonary failure. Anesthesiology 54: 9 – 16.

    Article  PubMed  CAS  Google Scholar 

  29. Cereda M, Foti G, Müsch G, Sparcino ME, Pesenti A (1996) PEEP prevents the loss of respiratory compliance during low P–V ventilation in acute lung injury patients. Chest 109: 480 – 485

    Article  PubMed  CAS  Google Scholar 

  30. Bond DM, McAllon J, Froese AB (1994) Sustained inflations improve respiratory compliance during high–frequency oscillatory ventilation but not during large P–V positive–pressure ventilation in rabbits. Crit Care Med 22: 1269 – 1277

    Article  PubMed  CAS  Google Scholar 

  31. Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L (1994) Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 149: 8 – 13

    PubMed  CAS  Google Scholar 

  32. Gattinoni L, D’Andrea L, Pelosi P, et al (1993) Regional effects and mechanism of positive end–expiratory pressure in early respiratory distress syndrome. JAMA 269: 2122 – 2127

    Article  PubMed  CAS  Google Scholar 

  33. Shim C, Chun KJ, Williams MH Jr, Blaufox MD (1986) Positional effects on distribution of ventilation in chronic obstructive pulmonary disease. Ann Internal Med 105: 346 – 350

    CAS  Google Scholar 

  34. Gattinoni L, Pesenti A, Bombino M (1988) Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology 69: 824 – 832

    Article  PubMed  CAS  Google Scholar 

  35. Lamm WJE, Graham MM, Albert RK (1994) Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 150: 184 – 193

    PubMed  CAS  Google Scholar 

  36. Froese AB, Bryan AC (1974) Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41: 242 – 255

    Article  PubMed  CAS  Google Scholar 

  37. Rehder K, Sessler AD, Rodarte JR (1977) Regional intrapulmonary gas distribution in awake and anesthetized paralyzed man. J Appi Physiol 42: 391 – 402

    CAS  Google Scholar 

  38. West JB, Mathieu–Costello O (1992) Stress failure of pulmonary capillaries: Role in lung and heart disease. Lancet 340: 762 – 767

    CAS  Google Scholar 

  39. Fu Z, Costello ML, Tsukimoto K, et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appi Physiol 73: 123 – 133

    CAS  Google Scholar 

  40. Mathieu–Costello O, Willford DC, Fu Z, et al (1995) Pulmonary capillaries are more resistant to stress failure in dogs than in rabbits. J Appi Physiol 79: 908 – 917

    Google Scholar 

  41. Namba Y, Kurdak S, Fu Z, et al (1995) Effect of reducing alveolar surface tension on stress failure in pulmonary capillaries. J Appi Physiol 79: 2114 – 2121

    CAS  Google Scholar 

  42. Ravenscraft SA, Shapiro RS, Adams AB, Marini JJ (1995) Dependent damage in ventilator–induced lung injury. Am J Respir Crit Care Med 151: A551 (Abst)

    Google Scholar 

  43. Broccard AF, Shapiro RS, Schmitz LL, Ravenscraft SA, Marini JJ (1997) Influence of prone position on the extent and distribution of lung injury in a high P–V oleic acid model of acute respiratory distress syndrome. Crit Care Med 25: 16 – 27

    Article  PubMed  CAS  Google Scholar 

  44. Broccard AF, Hotchkiss JR, Kuwayama N, Wangensteen OD, Marini JJ (1996) Effects of blood flow on lung injury induced by mechanical ventilation in an isolated perfused rabbit lung model. Am Rev Respir Dis 153: A378 (Abst)

    Google Scholar 

  45. Marini JJ (1996) PEEP, P–V, and barotrauma: An open and shut case? Chest 109: 302 – 304

    Article  PubMed  CAS  Google Scholar 

  46. Marini JJ (1996) Evolving concepts in the ventilatory management of ARDS. Clin Chest Med 17: 555 – 575

    Article  PubMed  CAS  Google Scholar 

  47. The HIFI Study Group (1989) High–frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. N Engl J Med 370: 88 – 95

    Google Scholar 

  48. Clark RH, Gerstman DR, Null DM, deLemos RA (1992) Prospective randomized trial of high frequency oscillatory and cnventional ventilation in respiratory distress syndrome. Pediatrics 89: 5 – 12.

    PubMed  CAS  Google Scholar 

  49. McCulloch PR, Forkert GEK, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant–deficient rabbits. Am Rev Respir Dis 137: 1185 – 1192

    PubMed  CAS  Google Scholar 

  50. Amato MB, Barbas CS, Medeiros DM, et al (1995) Beneficial effects of the open lung approach with low distending pressures in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 1835 – 1846

    PubMed  CAS  Google Scholar 

  51. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end–expiratory pressure. Am Rev Respir Dis 110: 556 – 565

    PubMed  CAS  Google Scholar 

  52. Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end–expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151: 1807 – 1814

    PubMed  CAS  Google Scholar 

  53. Beydon L, Lamaire F, Jonson B (1991) Lung mechanics in ARDS. In: Zapol WM, Lemaire F (eds) Adult Respiratory Distress Syndrome. Vol 50. Lung Biology in Health and Disease. Dekker, New York, pp 139 – 160

    Google Scholar 

  54. Ranieri VM, Mascia L, Fiore T, Bruno F, Brienza A, Giuliani R (1995) Cardiorespiratory effects of positive end–expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome Anesthesiology 83: 710 – 720

    CAS  Google Scholar 

  55. Sydow M, Burchardi H, Zinserling J, Ische H, Crozier TA, Weyland W (1991) Improved determination of static compliance by automated single volume steps in ventilated patients. Intensive Care Med 17: 108 – 114

    Article  PubMed  CAS  Google Scholar 

  56. Gattinoni L, Pesenti A, Avalli L, et al (1987) Pressure–volume curve of total respiratory system in acute respiratory failure. Am Rev Respir Dis 136: 730 – 736

    PubMed  CAS  Google Scholar 

  57. Pesenti A, Pelosi P, Gattinoni L (1990) Lung mechanics in ARDS. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer Verlag, Berlin, pp 231 – 238

    Google Scholar 

  58. Gattinoni L, Mascheroni D, Basilico E, et al (1987) Volume/pressure curve of total respiratory system in paralysed patients: Artifacts and correction factors. Intensive Care Med 13: 19 – 25

    Article  PubMed  CAS  Google Scholar 

  59. Levy P, Similowski T, Corbeil C, et al (1989) A method for studying volume–pressure curves of the respiratory system during mechanical ventilation. J Crit Care 4: 83 – 89

    Article  Google Scholar 

  60. Amato MBP, Barbas CSV, Meyer EC, et al (1995) Setting the “best PEEP” in ARDS: Limitations of choosing the PEEP according to the “best compliance”. Am J Resp Crit Care Med 151: A550 (Abst)

    Google Scholar 

  61. Suter P, Fairley HB, Isenberg MD (1978) Effect of tidal volume and positive end–expiratory pressure on compliance during mechanical ventilation. Chest 73: 158 – 162

    Article  PubMed  CAS  Google Scholar 

  62. Sydow M, Burchardi H (1993) Influence of time on alveolar recruitment in acute lung injury. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer Verlag, Berlin, pp 127 – 140

    Google Scholar 

  63. Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA (1994) Long term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume controlled inverse ratio ventilation. Am J Respir Crit Care Med 149: 1550 – 1556

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marini, J.J., Amato, M.B. (1998). Lung Recruitment During ARDS. In: Marini, J.J., Evans, T.W. (eds) Acute Lung Injury. Update in Intensive Care and Emergency Medicine, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60733-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60733-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64532-7

  • Online ISBN: 978-3-642-60733-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics