Skip to main content

Abstract

One of the main goals in enzyme research is industrial application. Nowadays, we are surrounded by enzymes as well as chemicals produced by enzymes in our daily life. Since papain (EC 3.4.22.2) was used, probably as the first exogenous enzyme, to prevent the formation of chill hazes in beer,1 many enzymes isolated from various species have been developed for industrial use. These enzymes are used as biological catalysts in various industries such as detergent, food, chemical, textile, pharmaceutical, and paper industries. For instance, proteolytic enzymes are used for detergents; pharmaceutical agents; leather bating; enzymatic conversion of peptidyl substances; and food processing such as cheese production, meat tenderizing, dough conditioning in baking, and protein recovery from waste food materials.2 Most of the industrial enzymes have been isolated from mesophiles and thermophiles, since innumerable kinds of mesophiles are easily obtained from environmental sources, and enzymes obtained from thermophiles are suitable for industrial processes due to their thermostability. Heat-stable enzymes isolated from thermophiles also have an advantage in terms of storage stability, because they can be transported and stored at the ambient temperature. On the other hand, although many enzymes have also been isolated from cold-adapted microorganisms,3 psychrophiles and psychrotrophs, there have been few reports on the industrial use of such enzymes. It is reasonable to expect that cold-adapted microorganisms produce enzymes that are active even at a low temperature, i.e., “cold-active enzymes.” They would not only be more active at a low temperature than enzymes isolated from mesophiles and thermophiles but would also presumably have distinct characteristics.

Corresponding author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lea AGH. Enzymes in the production of beverages and fruit juices. In: Tucker GA, Woods LFJ, eds. Enzymes in Food Processing, 2nd ed. Bishopbriggs: Blackie Academic & Professional, 1995:223–249.

    Chapter  Google Scholar 

  2. Poldermans B. Proteolytic enzymes. In: Gerhartz W, ed. Enzymes in Industry. Weinheim: VCH Verlagsgesellschaft mbH, 1990:108–118.

    Google Scholar 

  3. Fairbairn DJ, Law BA. Proteinases of psychrophilic bacteria: their production, properties, effects and control. J Dairy Res 1986; 53:139–177.

    Article  CAS  Google Scholar 

  4. Vazquez SC, Rios Merino LN, MacCormack WP. Protease-producing psychrotrophic bacteria isolated from Antarctica. Polar Biol 1995; 15:131–135.

    Article  Google Scholar 

  5. Schinner F, Margesin R, Pümpel T. Extracellular protease-producing psychrotrophic bacteria from high alpine habitats. Arctic Alpine Res 1992; 24:88–92.

    Article  Google Scholar 

  6. Margesin R, Palma N, Knauseder F, Schinner F. Proteases of psychrotrophic bacteria isolated from glaciers. J Basic Microbiol 1991; 31:377–383.

    Article  CAS  Google Scholar 

  7. Hamamoto T, Horikoshi K. Psychrophilic microorganisms and their enzymes. Novo Nordisk Enzyme Symp 1993:2–7.

    Google Scholar 

  8. Morita RY. Psychrophilic bacteria. Bacteriol Rev 1975; 39:144–167.

    CAS  Google Scholar 

  9. Araki T. Ecology, Isolation and cultivation of cold-adapted microorganisms. In: Ohshima Y, ed. Handbook of Extremophiles. Tokyo: Science forum, 1991:149–162 (in Japanese).

    Google Scholar 

  10. Pennisi E. In industry, extremophiles begin to make their mark. Science 1997; 276:705–706.

    Article  CAS  Google Scholar 

  11. Novo Nordisk A/S World Wide Web page 1998: URL http://www.novo.dk.

    Google Scholar 

  12. Kawada T, ed. Industrial Enzymes Nikkei Biotechnology Annual Report 1998. Tokyo:Nikkei BP, 1997:611–626 (in Japanese).

    Google Scholar 

  13. Margesin R, Schinner F. Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 1994; 33:1–14.

    Article  CAS  Google Scholar 

  14. Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C. Enzymes from psychrophilic organisms. FEMS Microbiol Rev 1996; 18:189–202.

    Article  CAS  Google Scholar 

  15. Uwajima T. and use of industrial enzymes. In: Sangyo-you kouso (Industrial Enzymes). Tokyo: Maruzen, 1995:15–58 (in Japanese).

    Google Scholar 

  16. Maase FWJL, Van Tilburg R. The benefit of detergent enzymes under changing washing conditions. J Am Oil Chem Soc 1983; 60:1672–1675.

    Article  CAS  Google Scholar 

  17. Onouchi T. A new protease for low temperature washing. Fragrance J 1985; 73:79–81 (in Japanese).

    Google Scholar 

  18. Okamoto I, Minagawa M. Removal of proteins from fabrics by protease: the effect of Bacillus alkaline protease in low temperature washing. Jpn Res Assn Text End-Uses 1987; 28:167–172.

    CAS  Google Scholar 

  19. Sakaguchi H. Detergents containing enzymes have been popularized with more than 80% of consumers: noteworthy alkaline cold-active lipases. Yushi (Oils and Fats) 1988; 41:56–63 (in Japanese).

    Google Scholar 

  20. Murakami K, Miyake Y. Protease added detergent. Kokai Tokkyo Koho 1988:S63–221199 (in Japanese).

    Google Scholar 

  21. Yamada K, Murakami K, Tachibana H, Watanabe Y, Miyake Y, Omura H. Stimulation by 2-mercaptoethanol and alcohols of protease in Antarctic krill, Euphausia superba, at a low temperature. Agric Biol Chem 1987; 51:3363–3368.

    Article  CAS  Google Scholar 

  22. Kawai S, Okoshi H, Ozaki K, Shikata S, Ara K, Ito S. Neutrophilic Bacillus strain, KSM-522, that produces an alkaline carboxymethyl cellulose. Agric Biol Chem 1988; 52:1425–1431.

    Article  CAS  Google Scholar 

  23. Ito S, Shikata S, Ozaki K, Kawai S, Okamoto K, Inoue S, Takei A, Ohta Y, Satoh T. Alkaline cellulase for laundry detergents: production by Bacillus sp. KSM=635 and enzymatic properties. Agric Biol Chem 1989; 53:1275–1281.

    Article  CAS  Google Scholar 

  24. Ito S, Ozaki K. Development of alkaline cellulases for laundry detergents. Gendai-kagaku Zoukan 1995; 28:176–186 (in Japanese).

    Google Scholar 

  25. Woods LFJ, Swinton SJ. Enzymes in the starch and sugar industries. In: Tucker GA, Woods LFJ, eds. Enzymes in Food Processing, 2nd ed. Bishopbriggs: Mackie Academic & Professional, 1995:250–267.

    Chapter  Google Scholar 

  26. Goldstein WE. Enzymes in starch processing and baking. In: Gerhartz W, ed. Enzymes in Industry. Weinheim: VCH Verlagsgesellschaft mbH, 1990:92–102.

    Google Scholar 

  27. Hagen HA, Pedersen S. Glucose isomerization. In: Gerhartz W, ed. Enzymes in Industry. Weinheim: VCH Verlagsgesellschaft mbH, 1990:102–108.

    Google Scholar 

  28. Suzuki K, Nakajima Y. Characterization and utilization of palatinose. Shokuhin-Kogyo 1983; 4:34–39 (in Japanese).

    Google Scholar 

  29. Rendleman JA Jr. Enzymic conversion of malto-oligosaccharides and maltodextrin into cyclodextrin at low temperature. Biotech Appl Biochem 1996; 24:129–137.

    CAS  Google Scholar 

  30. Mozaffar Z, Nakanishi K, Matsuno R. Formation of oligosaccharides during hydrolysis of lactose in milk using (3-galactosidase. J Food Sci 1985; 50:1602–1606.

    Article  CAS  Google Scholar 

  31. Mozaffar Z, Nakanishi K, Matsuno R. Continuous production of galactooligosaccharides from lactose using immobilized 3-galactosidase from Bacillus circulans. Appl Microbiol Biotechnol 1986; 25:224–228.

    CAS  Google Scholar 

  32. Rahim KAA, Lee BH. Specificity, inhibitory studies, and oligosaccharide formation by BBB-galactosidase from psychrotropic Bacillus subtilis KL88. J Dairy Sci 1991; 74:1773–1778.

    Article  CAS  Google Scholar 

  33. Kobayashi T, Fukumoto H. Market of each enzyme. In: Market Prospect of Industrial Enzymes in Japan. Tokyo: CMC, 1995:55–137 (in Japanese).

    Google Scholar 

  34. Law BA, Goodenough PW. Enzymes in milk and cheese production. In: Tucker GA, Woods LFJ, eds. Enzymes in Food processing, 2nd ed. Bishopbriggs: Blackie Academic & Professional, 1995:114–143.

    Chapter  Google Scholar 

  35. Loveland J, Gutshall K, Kasmir J, Prema P, Brenchley JE. Characterization of psychrotrophic microorganisms producing (3-galactosidase activities. Appl Environ Microbiol 1994; 60:12–18.

    CAS  Google Scholar 

  36. Trimbur DE, Gutshall KR, Prema P, Brenchley JE. Characterization of a psychrophilic Arthrobacter gene and its cold-active (3-galactosidase. Appl Environ Microbiol 1994; 60:4544–4552.

    CAS  Google Scholar 

  37. Amarita F, Alkorta F, Lescan du Plessix M, Cantabrana T, Rodriguez-Fernandez C. Isolation and properties of free and immobilized 13-galactosidase from the psychrotropic enterobacterium Buttiauxella agrestis (strain NC4). J Appl Bacteriol 1995; 78:630–635.

    Article  CAS  Google Scholar 

  38. Lea AGH. Enzymes in the production of beverages and fruit juices. In: Tucker GA, Woods LFJ, eds. Enzymes in Food Processing, 2nd ed. Bishopbriggs: Blackie Academic & Professional, 1995:223–249.

    Chapter  Google Scholar 

  39. Takasawa T, Sagisaka K, Yagi K, Uchiyama K, Aoki A, Takaoka K, Yamamoto K. Polygalacturonase isolated from the culture of the psychrophilic fungus Sclerotinia borealis. Can J Microbiol 1997; 43:417–424.

    Article  CAS  Google Scholar 

  40. Reimerdes EH. Dairy products. In: Tucker GA, Woods LFJ, eds. Enzymes in Food Processing. 2nd ed. Bishopbriggs: Blackie Academic & Professional, 1995:119–126.

    Google Scholar 

  41. Uwajima T. Production of enzymes by genetic engineering. In: Sangyo-you-kouso (Industrial Enzymes). Tokyo: Maruzen, 1995:101–120 (in Japanese).

    Google Scholar 

  42. Kawaguchi Y, Shimizu N, Nishimori K, Uozumi T, Beppu T. Renaturation and activation of calf prochymosin produced in an insoluble form in Escherichia coli. J Biotechnol 1984; 1:307–316.

    Article  CAS  Google Scholar 

  43. Kindstedt PS, Guo MR. Recent developments in the science and technology of pizza cheese. Aust J Dairy Tech 1997; 52:41–43.

    Google Scholar 

  44. Yamashita T, Higashi S, Higashi T, Machida H, Iwasaki S, Nishiyama M, Beppu T. Mutation of a fungal aspartic proteinase, Mucor pusillus rennin, to decrease thermostability for use as a milk coagulant. J Biotechnol 1994; 32:17–28.

    Article  CAS  Google Scholar 

  45. Akuzawa R, Yokoyama K. Purification, crystallization and some properties of low-temperature active intracellular proteinase from Streptococcus lactis. Jpn J Zootech Sci 1982; 53:814–821.

    CAS  Google Scholar 

  46. Akuzawa R, Ito O, Yokoyama K. Degradation of casein by crystalline low-temperature active proteinase from Streptococcus lactis. Jpn J Zootech Sci 1985; 56:56–61.

    CAS  Google Scholar 

  47. Kamata Y, Chiba K, Yamauchi F, Yamada M. Selection of commercial enzymes for soymilkcurd production by limited proteolysis with immobilized enzyme reactor. Nippon Shokuhin Kogyo Gakkaishi 1992; 39:102–105 (in Japanese).

    Google Scholar 

  48. Vilhelmsson O. The state of enzyme biotechnology in the fish processing industry. Trends Food Sci Tech 1997; 8:266–270.

    Article  CAS  Google Scholar 

  49. Kobayashi T, Fukumoto H. Trends of enzyme manufacturers. In: Market Prospect of Industrial Enzymes in Japan. Tokyo: CMC, 1995:139–181 (in Japanese).

    Google Scholar 

  50. Tombs MP. Enzymes in the processing of fats and oils. In: Tucker GA, Woods LFJ, eds. Enzymes in Food Processing, 2nd ed. Bishopbriggs: Blackie Academic & Professional, 1995:268–291.

    Chapter  Google Scholar 

  51. An H, Peters MY, Seymour TA. Roles of endogenous enzymes in surimi gelation. Trends Food Sci Tech 1996; 7:321–327.

    Article  CAS  Google Scholar 

  52. Lee HG, Lanier TC, Hamann DD, Knopp JA. Transglutaminase effects on low temperature gelation of fish protein sols. J Food Sci 1997; 62:20–24.

    Article  CAS  Google Scholar 

  53. Sano K, Nakanishi K, Nakamura N, Motoki M,Yasueda H. Cloning and sequence analysis of a cDNA encoding salmon (Onchorhynchus keta) liver transglutaminase. Biosci Biotechnol Biochem 1996; 60:1790–1794.

    Article  CAS  Google Scholar 

  54. Yasueda H, Nakanishi K, Kumazawa Y, Nagase K, Motoki M, Matsui H. Tissue-type transglutaminase from red sea bream (Pagrus major). Sequence analysis of the cDNA and functional expression in Escherichia coli. Eur J Biochem 1995; 232:411–419.

    Article  CAS  Google Scholar 

  55. Uhlig H. Survey of industrial enzymes. In: Gerhartz W, ed. Enzymes in Industry. Weinheim: VCH Verlagsgesellschaft mbH, 1990:77–92.

    Google Scholar 

  56. Dondero M, Egana W, Tarky W, Cifuentes A, Torres JA. Glucose oxidase/catalase improves preservation of shrimp (Heterocarpus reedi). J Food Sci 1993; 58:774–779.

    Article  CAS  Google Scholar 

  57. Kojima Y, Shimizu A. A new lipase, production method and application. Kokai Tokkyo Koho 1996:H8–154674 (in Japanese).

    Google Scholar 

  58. Zuyi L, Ward OP. Lipase-catalyzed alcoholysis to concentrate the n-3 polyunsaturated fatty acid of cod liver oil. Enzyme Microbiol Technol 1993; 15: 601–606.

    Article  Google Scholar 

  59. Yamada H, Kobayashi M. Nitrile hydratase and its application to industrial production of acrylamide. Biosci Biotechnol Biochem 1996; 60:1391–1400.

    Article  CAS  Google Scholar 

  60. Kobayashi M, Nagasawa T, Yamada H. Enzymatic synthesis of acrylamide: a success story not yet over. Trends Biotechnol 1992; 10:402–408.

    Article  CAS  Google Scholar 

  61. Nakai K, Watanabe I, Sato Y, Enomoto K. Development of acrylamide manufacturing process using microorganisms. Nippon Nougeikagaku Kaishi 1988; 10:1443–1450 (in Japanese).

    Google Scholar 

  62. Watanabe I, Satoh Y, Enomoto K, Seki S, Sakashita K. Optimal conditions for cultivation of Rhodococcus sp.N-774 and for conversion of acrylonitrile to acrylamide by resting cells. Agric Biol Chem 1987; 51: 3201–3206.

    Article  CAS  Google Scholar 

  63. Ashina Y, Watanabe I. Dramatic development of enzymatic process for acrylamide production. Kagaku to Kogyo 1990; 43:1098–1101 (in Japanese).

    Google Scholar 

  64. Sonomoto K, Tanaka A. Application of lipase in organic solvents for the preparation of optically active terpene alcohol esters. Ann N Y Acad Sci 1988; 542:235–239.

    Article  CAS  Google Scholar 

  65. Hoshino T, Yamane T, Shimizu S Selective hydrolysis of fish oil by lipase to concentrate n-3 polyunsaturated fatty acids. Agric Biol Chem 1990; 54:1459–1467.

    Article  CAS  Google Scholar 

  66. Esaki, N. Psychrophilic enzymes from psychrophiles. In: Abstract book, Biological Molecular Response under Extreme Environments. 1996 (in Japanese).

    Google Scholar 

  67. Suzuki T, Akitoh M, Kurihara T, Esaki N, Sayuda K. Characterization of lipase produced by psychrophilic Acinetobacter sp. Nippon Nogeikagaku Kaishi 1996; 70:308 (in Japanese).

    Google Scholar 

  68. Itabashi Y, Ota T. Lipase activity in scallop hepatopancreas. Fish Sci 1994; 60:347.

    Article  CAS  Google Scholar 

  69. Itabashi Y, Nishihara H, Ohta T, Suzuki T. Effects of temperature and pH on stereoselectivity of the lipase from scallop hepatopancrease. Proc Jpn Conference Biochem Lipids 1994; 36:354–357 (in Japanese).

    Google Scholar 

  70. FAO report on the meeting of experts on the use of H2O2 and other preservatives in milk, 1957; FAO/57/11/8655.

    Google Scholar 

  71. Tarhan L. Use of immobilised catalase to remove H2O2 used in the sterilisation of milk. Process Biochem 1995; 30:623–628.

    Google Scholar 

  72. Boismenu D, Lépine F, Gagnon M, Dugas H. Heat inactivation of catalase from cod muscle and from some psychrophilic bacteria. J Food Sci 1990; 55:581–582.

    Article  CAS  Google Scholar 

  73. Yumoto I, Yamazaki K, Kawasaki K, Ichise N, Morita N, Hoshino T, Okuyama H. Isolation of Vibrio sp. S-1 exhibiting extraordinarily high catalase activity. J Ferment Bioeng 1998; 85:113–116.

    Article  CAS  Google Scholar 

  74. Hayashi K., Nimura Y, Miyaji T, Ohara N, Uchimura T, Suzuki H, Komagata K, Kozaki M. Purification and properties of a low-temperature-active enzyme degrading both cellulose and xylan from Acremonium alcalophilum JCM 7366. Seibutsukogaku Kaishi 1997; 75:9–14 (in Japanese).

    Google Scholar 

  75. Kobori H, Sullivan CW, Shizuya H. Heat-labile alkaline phosphatase from Antarctic bacteria: rapid 5’-end-labeling of nucleic acids. Proc Natl Acad Sci USA 1984; 81:6691–6695.

    Article  CAS  Google Scholar 

  76. De Prada P, Loveland-Curtze J, Brenchley JE. Production of two extracellular alkaline phosphatases by a psychrophilic Arthrobacter strain. Appl Environ Microbiol 1996; 62:3732–3738.

    Google Scholar 

  77. Asgeirsson B, Hartemink R, Chlebowski JE Alkaline phosphatase from Atlantic cod (Gadusmorhua). Kinetic and structural properties which indicate adaptation to low temperatures. Comp Biochem Physiol 1995; 110B:315–329.

    CAS  Google Scholar 

  78. Longo MC, Berninger MS, Hartley JL. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 1990; 93:125–128.

    Article  CAS  Google Scholar 

  79. Sobek H, Schmidt M, Frey B, Kaluza K. Heat-labile uracil-DNA glycosylase: purification and characterization. FEBS Lett 1996; 388:1–4.

    Article  CAS  Google Scholar 

  80. Kimura T, Horikoshi K. Isolation of bacteria which can grow at both high pH and low temperature. Appl Environ Microbiol 1988; 54:1066–1067.

    CAS  Google Scholar 

  81. Kimura T, Horikoshi K. Characterization of pullulan-hydrolysing enzyme from an alkalo psychrotrophic Micrococcus sp. Appl Microbiol Biotechnol 1990; 34:52–56.

    Article  CAS  Google Scholar 

  82. Kimura T, Horikoshi K. Purification and characterization of a-amylases of an alkalopsychrotrophic Micrococcus sp. Starch 1990; 42:403–407.

    Article  CAS  Google Scholar 

  83. Hamamoto T, Horikoshi K. Characterization of an amylase from a psychrotrophic Vibrio isolated from a deep-sea mud sample. FEMS Microbiol Lett 1991; 84:79–84.

    Article  CAS  Google Scholar 

  84. Ohkuma M, Ohtoko K, Takada N, Hamamoto T, Usami R, Kudo T, Horikoshi K. Characterization of malate dehydrogenase from deep-sea psychrophilic Vibrio sp. strain 5710 and cloning of its gene. FEMS Microbiol Lett 1996; 137:247–252.

    Article  CAS  Google Scholar 

  85. Welch TJ, Bartlett DH. Cloning, sequencing and overexpression of the gene encoding malate dehydrogenase from the deep-sea bacterium Photobacterium species strain SS9. Biochim Biophys Acta 1997; 1350:41–46.

    Article  CAS  Google Scholar 

  86. Hoshino T, Sakamoto T, Ohgiya S, Shimanuki T, Ishizaki K. Low-temperature-active lipase of Typhula ishikariensis. In: Abstract book, Beijerinck Centennial. Microbial Physiology and Gene Regulation: Emerging Principles and Application 1995:183–184.

    Google Scholar 

  87. Morita Y, Nakamura T, Hasan Q, Murakami Y, Yokoyama K, Tamiya E. Cold-active enzymes from cold-adapted bacteria. J Am Oil Chem Soc 1997; 74:441–444.

    Article  CAS  Google Scholar 

  88. Raae AJ. Effect of low and high temperatures on chymotrypsin from Atlantic cod (Gadus morhua L.); comparison with bovine a-chymotrypsin. Comp Biochem Physiol 1990; 97B:145–149.

    CAS  Google Scholar 

  89. Yamamura A, Murakami Y, Sakaguchi T, Yokoyama K, Tamiya E. Biosensor using new cold-active L-glutamate dehydrogenese. In: Abstract book, Annual Meeting of Japan Biotechnology Society 1996; 176 (in Japanese).

    Google Scholar 

  90. Feller G, Lonhienne T, Deroanne C, Libioulle C, Beeumen JV, Gerday C. Purification, characterization, and nucleotide sequence of the thermolabile a-amylase from the antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem 1992; 267:5217–5221.

    CAS  Google Scholar 

  91. Davail S, Feller G, Narinx, E, Gerday C. Cold adaption of proteins. J Biol Chem 1994; 269:17448–17453.

    CAS  Google Scholar 

  92. Rentier-Delrue F, Mande SC, Moyens S, Terpstra P, Mainfroid V, Goraj K, Lion M, Hol WGJ, Martial JA. Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. J Mol Biol 1993; 229:85–93.

    Article  CAS  Google Scholar 

  93. Low PS, Bada JL, Somero GN. Temperature adaptation of enzymes: role of the free energy, the enthalpy, and the entropy of activation. Proc Natl Acad Sci USA 1973; 70:430–432.

    Article  CAS  Google Scholar 

  94. Gerday C, Aittaleb M, Arpigny JL, Baise E, Chessa J-P, Garsoux G, Petrescu I, Feller G. Psychrophilic enzymes: a thermodynamic challenge. Biochim Biophys Acta 1997; 1342:119–131.

    Article  CAS  Google Scholar 

  95. Feller G, Gerday C. Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 1997; 53:830–841.

    Article  CAS  Google Scholar 

  96. Jaenicke R, Zâvodszky P. Proteins under extreme physical conditions. FEBS Lett 1990; 268:344–349.

    Article  CAS  Google Scholar 

  97. Jaenicke R. Protein structure anclfunction at low temperatures. Philos Trans R Soc Lond B Biol Sci 1990; 326:535–551.

    Article  CAS  Google Scholar 

  98. Zuber H. Temperature adaptation of lactate dehydrogenase. Structural, functional and genetic aspects. Biophys Chem 1988; 29:171–179.

    Article  CAS  Google Scholar 

  99. Tange T, Taguchi S, Kojima S, Miura K, Momose H. Improvement of a useful enzyme (subtilisin BPN’) by an experimental evolution system. Appl Microbiol Biotechnol 1994; 41:239–244.

    Article  CAS  Google Scholar 

  100. Kano H, Taguchi S, Momose H. Cold adaptation of a mesophilic serine protease, subtilisin, by in vitro random mutagenesis. Appl Microbiol Biotechnol 1997; 47:46–51.

    Article  CAS  Google Scholar 

  101. Jones PG, Inouye M. The cold-shock response — a hot topic. Mol Microbiol 1994; 11:811–818.

    Article  CAS  Google Scholar 

  102. Jones PG, Van Bogelen RA, Neidhardt, FC. Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 1987; 169:2092–2095.

    CAS  Google Scholar 

  103. Vasina, JA, Baneyx F. Recombinant protein expression at a low temperatures under the transcriptional control of the major Escherichia coli cold shock promoter cspA. Appl Environ Microbiol 1996; 62:1444–1447.

    CAS  Google Scholar 

  104. Qoronfleh MW, Debouck C, Keller J. Identification and characterization of novel low-temperature-inducible promoters of Escherichia coli. J Bacteriol 1992; 174:7902–7909.

    CAS  Google Scholar 

  105. Schein CH, Noteborn MHM. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technol 1988; 6:291–294.

    Article  CAS  Google Scholar 

  106. Vasina JA, Baneyx E Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr Purif 1997; 9:211–218.

    Article  CAS  Google Scholar 

  107. Kolenc RJ, Inniss WE, Glick BR, Robinson CW, Mayfield CI. Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrophilic bacterium. Appl Environ Microbiol 1988; 54:638–641.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohgiya, S., Hoshino, T., Okuyama, H., Tanaka, S., Ishizaki, K. (1999). Biotechnology of enzymes from cold-adapted microorganisms. In: Margesin, R., Schinner, F. (eds) Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58607-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58607-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63663-9

  • Online ISBN: 978-3-642-58607-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics