Skip to main content

Titanium in Cardiac and Cardiovascular Applications

  • Chapter
Titanium in Medicine

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Due to its unique properties, titanium and its alloys have found many applications in cardiovascular medicine. One of the earliest applications was in prosthetic heart valves and in protective cases of pacemakers. Later, titanium was used in artificial hearts and circulatory assist devices. Recently, the use of shape memory titanium-nickel (Nitinol) alloy in intravascular devices such as stents and occlusion coils has received considerable attention. An advantage of titanium in cardiovascular applications is that it is strong, inert and non-magnetic. It will produce few artifacts when studied with magnetic resonance (MR), a diagnostic modality that is getting increasingly common. A disadvantage is that it is not sufficiently radio-opaque in finer structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davey TB, Smeloff EA (1977) Development of a cardiac valve substitute: the Smeloff-Cutter prosthesis. Med Instrum 11(2):95–97

    CAS  Google Scholar 

  2. Wada J, Komatsu S, Kamata K (1972) Cardiac valve replacement with Wada-Cutter prosthesis. Ann Thorac Surg 14(l):38–46

    Article  CAS  Google Scholar 

  3. Kaster RL, Tanaka S, Carlson RG, Lillehei CW (1970) Initial laboratory development and evaluation of the cageless free-floating pivoting-disc prosthetic heart valve. Adv Biomed Eng Med Phys 3:261–371

    CAS  Google Scholar 

  4. DeWall RA, Caffarena Raggio JM, Dittrich H, Guilmet D, Morea M, Thevenet A (1989) The Omni design: evolution of a valve. J Thorac Cardiovasc Surg (5 Pt 2):999–1006; discussion 1006–1007

    Google Scholar 

  5. Hall KV (1992) The Medtronic-Hall valve: a design in 1977 to improve the results of valve replacement. Eur J Cardiothorac Surg 6 Suppl l:S64–67

    Article  Google Scholar 

  6. Akins CW (1996) Medtronic-Hall prosthetic aortic valve. Semin Thorac Cardiovasc Surg 8(3):242–248

    CAS  Google Scholar 

  7. Arm P, Rinaldi S, Stacchino C, Vallana F (1996) Wear assessment in bileaflet heart valves. J Heart Valve Dis 5 Suppl l:S133–43; discussion 144–148

    Google Scholar 

  8. Carpentier A, Deloche A, Dauptain J, et al (1971) A new reconstructive operation for correction of mitral and tricuspid insufficiency. J Thorac Cardiovasc Surg 61:1

    CAS  Google Scholar 

  9. Covalesky VA, McAllister M, Chandrasekaran K, McCormick DJ, Mintz GS, Kutalek SP (1993) Visualization of implantable defibrillator patches by two-dimensional echocardiography. J Clin Ultrasound 21(5):313–316

    Article  CAS  Google Scholar 

  10. Schaldach M, Hubmann M, Weikl A, Hardt R (1990) Sputter-deposited TiN electrode coatings for superior sensing and pacing performance. Pacing Clin Electrophysiol 13(12 Pt 2): 1891–1895

    Article  CAS  Google Scholar 

  11. Rintoul TC, Butler KC, Thomas DC, Carriker JW, Maher TR, Kiraly RJ, Massiello A, Himley SC, Chen JF, Fukamachi K, et al (1993) Continuing development of the Cleveland Clinic-Nimbus total artificial heart. ASAIO J 39(3):M168–171

    Article  CAS  Google Scholar 

  12. Frazier OH (1994) First use of an untethered, vented electric left ventricular assist device for long-term support. Circulation 89(6):2908–2914

    Article  CAS  Google Scholar 

  13. Capek P, Kadipasaoglu KA, Radovancevic B, Furusho N, Clubb FJ Jr, Myers TJ, Duncan JM, McAllister HA Jr, Frazier OH (1992) Human intraperitoneal response to a left ventricular assist device with a Ti-6Al-4V alloy surface. ASAIO J 38(3):M543–549

    Article  CAS  Google Scholar 

  14. Yamazaki K, Kormos RL, Litwak P, Tagusari O, Mori T, Antaki JF, Kameneva M, Watach M, Gordon L, Mukuo H, Umezu M, Tomioka J, Outa E, Griffith BP, Koyanagai H (1997) Long-term animal experiments with an intraventricular axial flow blood pump. ASAIO J 43(5):M696–700

    Article  CAS  Google Scholar 

  15. Kaufman GM, Ash SR (1984) Intravenous transcutaneous vascular access device. Trans Am Soc Artif Intern Organs 30:458–462

    CAS  Google Scholar 

  16. Biffi R, de Braud F, Orsi F, Pozzi S, Mauri S, Goldhirsch A, Nole F, Andreoni B (1998) Totally implantable central venous access ports for long-term chemotherapy. A prospective study analyzing complications and costs of 333 devices with a minimum follow-up of 180 days. Ann Oncol 9(7):767–773

    Article  CAS  Google Scholar 

  17. Blackshear PJ, Rohde TD, Prosl F, Buchwald H (1979) The implantable infusion pump: a new concept in drug delivery. Med Prog Technol 30;6(4):149–161

    Google Scholar 

  18. Oku T, Sutton C, Kambic HE, Harasaki H, Nose Y (1988) A titanium-nickel alloy intravascular endoprosthesis. In vitro studies. ASAIO Trans 34(3):399–403

    CAS  Google Scholar 

  19. Rickers C, Hamm C, Stern H, Hofmann T, Franzen O, Schrader R, Sievert H, Schranz D, Michel-Behnke I, Vogt J, Kececioglu D, Sebening W, Eicken A, Meyer H, Matthies W, Kleber F, Hug J, Weil J (1998) Percutaneous closure of secundum atrial septal defect with a new self centering device (“angel wings”). Heart 80(5):517–521

    CAS  Google Scholar 

  20. Thanopoulos BD, Tsaousis GS, Konstadopoulou GN, Zarayelyan AG (1999) Transcatheter closure of muscular ventricular septal defects with the amplatzer ventricular septal defect occluder: initial clinical applications in children. J Am Coll Cardiol 33(5):1395–1399

    Article  CAS  Google Scholar 

  21. Lim MC, Tan HC, Choo MH (1994) The new titanium Greenfield vena cava filter: initial experience and review. Singapore Med J 35(6):622–625

    CAS  Google Scholar 

  22. Grabitz RG, Neuss MB, Coe JY, Handt S, Redel DA, von Bernuth G (1996) A small interventional device to occlude persistently patent ductus arteriosus in neonates: evaluation in piglets. J Am Coll Cardiol 28(4):1024–1030

    Article  CAS  Google Scholar 

  23. Leppaniemi A, Wherry D, Pikoulis E, Hufnagel H, Waasdorp C, Fishback N, Rich N (1997) Arterial and venous repair with vascular clips: comparison with suture closure. J Vasc Surg 26(l):24–28

    Article  CAS  Google Scholar 

  24. Pikoulis E, Burris D, Rhee P, Nishibe T, Leppaniemi A, Wherry D, Rich N (1988) Rapid arterial anastomosis with titanium clips. Am J Surg 175(6):494–496

    Article  Google Scholar 

  25. Nataf P, Hinchliffe P, Manzo S, Simpson J, Kirsch WM, Zhu YH, Anton T (1998) Facilitated vascular anastomoses: the one-shot device. Ann Thorac Surg 66(3):1041–1044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Olin, C. (2001). Titanium in Cardiac and Cardiovascular Applications. In: Titanium in Medicine. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56486-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56486-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63119-1

  • Online ISBN: 978-3-642-56486-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics