Skip to main content

Integrated Rock Magnetic and Geochemical Quantification of Redoxomorphic Iron Mineral Diagenesis in Late Quaternary Sediments from the Equatorial Atlantic

  • Chapter
The South Atlantic in the Late Quaternary

Abstract

Rock magnetic and geochemical data logged by fast, non-destructive X-ray fluorescence and susceptibility half core scanning techniques have been combined to create high-resolution records of redoxomorphic iron mineral diagenesis in suboxic marine sediments. The great potential of this approach and advantage to standard single sample methods is demonstrated on two Late Quaternary sequences from the central Equatorial Atlantic (GeoB 2908–7 and 4317–2). Reducti ve dissolution of ferric minerals, most prominently magnetite (Fe3O4) and hematite (Fe2O43), induced by organic carbon degradation is shown to represent a gradual, mineral- and grain-size selective process. Proportionality of Fe, Ti and magnetite concentrations in the unaltered sections lead us to define proxy parameters for magnetite depletion (Fe/κnd) below and precipitation (κnd/Ti) above the modem and numerous fossil redox boundaries, while iron relocation was detected on basis of the Fe/Ti ratio. By calibrating all three ratios internally, we reconstruct and quantify primary deposition and secondary change of both, magnetite and total Fe profiles. Fine-scaled Corg variations (0.1 to 0.6%) and susceptibility losses (up to 200 · 10−6 SI) show high signal resemblance and appear to be equivalent signatures of cyclic productivity pulses in the study area. Some minor suboxic events are still expressed in the rock magnetic proxy signal, but are not accompanied by residual Corg enrichments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Banerjee SK (1971) Decay of marine magnetic anomalies by ferrous ion diffusion. Nature: Physical Science 229: 181–183

    Google Scholar 

  • Bazylinski DA, Frankel RB, Jannasch HW (1988) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334: 518–519

    Article  Google Scholar 

  • Bickert T, Wefer G (1996) Late Quaternary deep water circulation in the South Atlantic: Reconstruction from carbonate dissolution and benthic stable isotopes: In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer, Berlin, pp 599–620

    Chapter  Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190: 377–379.

    Article  Google Scholar 

  • Bloemendal J, Lamb B, King J (1988) Paleoenvironmental implications of rock — magnetic properties of Late Quaternary sediment cores from the eastern Equa-torial Atantic. Paleoceanography 3: 61–87

    Article  Google Scholar 

  • Bloernendal J, King JW, Hall FR, Doh S-J (1992) Rock magnetism of late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology. J Geophys Res 97: 4361–4375

    Article  Google Scholar 

  • Brown ET, Le Callonnec L, German CR (2000) Geochemical cycling of redox-sensitive metals in sediments from Lake Malawi:A diagnostic paleotracer for episodic changes in mixing depth. Geochim Cosmochim Acta 64: 3515–3523

    Article  Google Scholar 

  • Burdige DJ (1993) The biochemistry of manganese and iron reduction in marine sediments. Earth Sci Rev 35: 249–284

    Article  Google Scholar 

  • Butler RF, Banerjee SK (1975) Theoretical single-domain grain size range in magnetite and titanomagnetite. J Geophys Res 80: 4049–4058

    Article  Google Scholar 

  • Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Mar Geol 113: 67–88

    Article  Google Scholar 

  • Canfield DE, Raiswell R, Bottrell S (1992) The reactivity of sedimentary iron minerals toward sulfide. Am J Sci 292: 659–683

    Article  Google Scholar 

  • Canfield DE (1997) The geochemistry of river particles from the continental USA: Major elements. Geochim Cosmochim Acta 61: 3349–3365

    Article  Google Scholar 

  • Dapples EC (1962) Stages of diagenesis in the development Of sandstones. Bull Geol Soc Am 73: 913–934

    Article  Google Scholar 

  • Day R, Fuller M, Schmidt VA (1977) Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Phys Earth Planet Int 13: 260–267

    Article  Google Scholar 

  • Dearing JA, Dann RJL, Hay K, Lees JA, Loveland PJ, Maher BA, O’Grady K (1996) Frequency dependent susceptibility measurements of environmental materials. Geophys J Int 124: 228–240

    Article  Google Scholar 

  • Dekkers MJ, Langereis CG, Vriend SP, van Santvoort PJM, de Lange GJ (1994) Fuzzy c-means cluster analysis of early diagenetic effects on natural remanent magnetisation acquisition in a 1.1 Myr piston core from the Central Mediterranean. Phys Earth Planet Int 85: 155–171

    Article  Google Scholar 

  • deMenocal PB, Ruddiman WF, Pokras EM (1993) Influences of high-and low-latitude processes on African terrestrial climate: Pleistocene eolian records from equatorial Atlantic ocean drilling program Site 663. Paleoceanography 8: 209–242

    Article  Google Scholar 

  • Fischer G and cruise participants (1998) Report and preliminary results of Meteor cruise M38/1. Ber Fachber Geowiss, Univ Bremen 94, 178 p

    Google Scholar 

  • Frederichs T, Bleil D, Däumler K, von Dobeneck T, Schmidt A (1999) The magnetic view on the marine paleoenvironment: Parameters, techniques, and potentials of rock magnetic studies as a key to paleoclimatic and paleoceanographic changes. In: Fischer G and Wefer G (eds) Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer, Berlin, pp 575–599

    Chapter  Google Scholar 

  • Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, Dauphin P, Hammond D, Hartman B, Maynard V (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim Cosmochim Acta 43: 1075–1090

    Article  Google Scholar 

  • Gladney ES, Roelandts I (1988) 1987 compilation of elemental concentration data for USGS BHVO-1, MAG-1, QLO-1, RGM-1, SCO-1, SDC-1, SGR-1 and STM-1. Geostandards Newsletters 12: 253–362

    Article  Google Scholar 

  • Haese RR (2000)The reactivity of iron. In: Schulz HD and Zabel M (eds) Marine Geochemistry. Springer, Berlin, pp 233–262

    Google Scholar 

  • Heider F, Zitzelsberger A, Fabian F (1996) Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 μm to 6 mm. Phys Earth Planet Int 93: 239–256

    Article  Google Scholar 

  • Jansen JHF, Vander Gaast SJ, Koster AJ (1998) CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Mar Geol 151: 143–153

    Article  Google Scholar 

  • Karlin R (1990a) Magnetic mineral diagenesis in suboxic sediments at Bettis Site W-N, NE Pacific Ocean. J Geophys Res 95: 4421–4436

    Article  Google Scholar 

  • Karlin R (1990b) Magnetite diagenesis in marine sediments from the Oregon continental margin. J Geophys Res 95: 4405–4419

    Article  Google Scholar 

  • Karlin R, Levi S (1983) Diagenesis of magnetic minerals in recent haemipelagic sediments. Nature 303: 327–330

    Article  Google Scholar 

  • Karlin R, Lyle M, Heath GR (1987) Authigenic magnetic formation in suboxic marine sediments. Nature 326: 490–493

    Article  Google Scholar 

  • Kidd RB, Cita MB, Ryan WBF (1978) Stratigraphy of eastern Mediterranean sapropel sequences recovered during DSDP Leg 42A and their paleoenvironmental significance. In: Hsü KJ and Montadert L et al. (eds) Initial Reports of the Deep-Sea Drilling Project 42A. US Government Printing Office, Washington, pp 421–443

    Google Scholar 

  • Kruiver PP, Passier HF (2001) Coercivity analysis of Magnetic phases in sapropel S1 related to variations in redox conditions, including an investigation of the S ratio. Geochem Geophys Geosyst 14 December: 1–21

    Google Scholar 

  • König I, Drodt M, Suess E, Trautwein AX (1997) Iron Reduction through the tan-green color transition in deep-sea sediments. Geochim Cosmochim Acta 61: 1679–1683

    Article  Google Scholar 

  • Langereis CG, Dekkers MJ (1999) Magnetic cyclostratigraphy: High resolution dating in and beyond the Quaternary and analysis of periodic changes in diagenesis and sedimentary magnetism. In: Maher B and Thompson R (eds) Quaternary Climates, Environments and Magnetism. Cambridge University Press, pp 352–382

    Chapter  Google Scholar 

  • Lecoanet H, Lévêque F, Segura S (1999) Magnetic susceptibility in environmental applications: Comparison of field probes. Phys Earth Planet Int 115: 191–204

    Article  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL Jr, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330: 252–254

    Article  Google Scholar 

  • Lyle M (1983) The brown-green color transition in marine sediments: Amarker of the Fe(III)-Fe(II) redox boundary. Limnol Oceanogr 28: 1026–1033

    Article  Google Scholar 

  • Lyle M (1988) Climatically forced organic carbon burial in equatorial Atlantic and Pacific Oceans. Nature 335: 529–532

    Article  Google Scholar 

  • Maher BA (1988) Magnetic properties of some synthetic submicron magnetites. Geophys J 94: 83–96

    Article  Google Scholar 

  • Mudroch A, Azcue JM (1995) Manual of aquatic Sediment sampling. Lewis Publishers, Boca Raton, 219 p

    Google Scholar 

  • Nowaczyk NR, Antonow M (1997) High-resolution magnetostratigraphy of four sediment cores from the Greenland Sea I. Identification of the Mono Lake excursion, Laschamp and Biwa I / Jamaica geomagnetic polarity events. Geophys J Int 131: 310–324

    Article  Google Scholar 

  • Passier HF, Dekkers MJ, de Lange GJ (1998) Sediment chemistry and magnetic properties in an anomalously reducing core from the eastern Mediterranean Sea. Chem Geol 152: 287–306

    Article  Google Scholar 

  • Petermann H, Bleil U (1993) Detection of live magnetotactic bacteria in South Atlantic deep-sea sediments. Earth Planet Sci Lett 117: 223–228

    Article  Google Scholar 

  • Robinson SG, SahotaI TS, Oldfield F (2000) Early diagenesis in North Atlantic abyssal plain sediments characterized by rock magnetic and geochemical indices. Mar Geol 163: 77–107

    Article  Google Scholar 

  • Röhl U, Abrams LJ (2000) High-resolution downhole and nondestructive core measurements from Sites 999 and 1001 in the Caribbean Sea: Application to the Late Paleocene thermal maximum. In: Leckie RM, Sigurdsson H, Acton GD, Draper G (eds) Proc ODP Sci Results 165. College Station, TX, pp 191–203

    Google Scholar 

  • Rosenbaum JG, Reynolds RL, Adam DP, Drexler J, Sarna-Wojcicki AM, Whitney GC (1996) Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon-evidence from sediment magnetism, trace-element geochemistry, and pollen. Bull Geol Soc Am 108: 1328–1341

    Article  Google Scholar 

  • Ruddiman WF, Janecek TR (1989) Pliocene-Pleistocene biogenic and terrigenous fluxes at equatorial Atlantic Sites 662, 663, and 664. In: Ruddiman W and Sarnthein M (eds) Proc ODP Sci Results 108. College Station, TX, pp 211–240

    Chapter  Google Scholar 

  • Schmieder F, von Dobeneck T, Bleil U (2000) The Mid Pleistocene climate transition as documented in the deep South Atlantic Ocean: Initiation, interim state and terminal event. Earth Planet Sci Lett 179: 539–549

    Article  Google Scholar 

  • Smirnov AV, Tarduno JA (2000) Low-temperature magnetic properties of pelagic sediments (Ocean Drilling Program Site 805C): Tracers of maghemitization and magnetic mineral reduction. J Geophys Res 105: 16,457-16,471

    Google Scholar 

  • Snowball IF (1993) Geochemical control of magnetite dissolution in subarctic lake sediments and the impli-cations for environmental magnetism. J Quat Sci 8: 339–346

    Article  Google Scholar 

  • Tarduno JA (1994) Temporal trends of magnetic dissolution in the pelagic realm: Gauging paleoproductivity? Earth Planet Sci Lett 123: 39–48

    Article  Google Scholar 

  • Tarduno JA, Tian W, Wilkison S (1998) Biogeochemical remanent magnetization in pelagic sediments of the western equatorial Pacific Ocean. Geophys Res Lett 25: 3987–3990

    Article  Google Scholar 

  • Tarduno JA, Wilkison SL (1996) Non-steady state magnetic mineral reduction, chemical lock-in, and delayed remanence acquisition in pelagic sediments. Earth Planet Sci Lett 144: 315–326

    Article  Google Scholar 

  • Thompson R, Oldfield F (1986) Environmental Magnetism. Allen & Unwin, London, UK, 227 p

    Book  Google Scholar 

  • Thomson J, Jarvis I, Green DRH, Green D (1998) Oxidation fronts in Madeira abyssal plain turbidites: Persistence of early diagenetic trace-element enrichments during burial, Site 950. In: Weaver PPE, Schmincke H-U, Firth JV, Duffield W (eds) Proc ODP Sci Results 157. College Station, TX, pp 559–571

    Google Scholar 

  • Thomson J, Mercone D, de Lange GJ, van Santvoort PJM (1999) Review of recent advances in the interpre-tation of eastern Mediterranean sapropel S1 from geochemical evidence. Mar Geol 153: 77–89

    Article  Google Scholar 

  • Verardo DJ, McIntyre A (1994) Production and destruction: Control ofbiogenous sedimentation in the tropical Atlantic 0–300,000 years BP. Paleoceanography 9: 63–86

    Article  Google Scholar 

  • Vigliotti L, Capotondi L, Torii M (1999) Magnetic properties of sediments deposited in suboxic-anoxic environments: Relationships with biological and geochemical proxies. In: Tarling DH and Turner P (eds) Paleomagnetism and Diagenesis in Sediments. Geol Soc Spec Publ London, 151, pp 71–83

    Google Scholar 

  • von Dobeneck T (1996) A sytematic analysis of natural magnetic mineral assemblages based on modelling hysteresis loops with coercivity-related hyberbolic basis functions. Geophys J Int 124: 675–694

    Article  Google Scholar 

  • Walden J, White K (1997) Investigation of the con-trols on dune colour in the Namib Sand Sea using mineral magnetic analyses. Earth Planet Sci Lett 152: 187–201

    Article  Google Scholar 

  • Worm H-U, Jackson M (1999) The superparamagnetism of Yucca Mountain Tuff. J Geophys Res B: Solid Earth 104: 25,415–25,425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Funk, J.A., von Dobeneck, T., Reitz, A. (2003). Integrated Rock Magnetic and Geochemical Quantification of Redoxomorphic Iron Mineral Diagenesis in Late Quaternary Sediments from the Equatorial Atlantic. In: Wefer, G., Mulitza, S., Ratmeyer, V. (eds) The South Atlantic in the Late Quaternary. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18917-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18917-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62354-7

  • Online ISBN: 978-3-642-18917-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics