Skip to main content

The Role of Troponin in the Ca2+-Regulation of Skeletal Muscle Contraction

  • Chapter
Molecular Interactions of Actin

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 36))

Abstract

Vertebrate skeletal muscle contraction is activated by the binding of Ca2+ to the low affinity Ca2+-pecific (regulatory) sites of troponin C (TnC), the Ca2+-binding subunit of troponin, which together with troponin I (TnI), troponin T (TnT) and tropomyosin (Tm) form the regulatory system of the contractile apparatus (Zot and Potter 1987; Moss 1992; Gergely 1998). TnC is necessary for force development in skinned muscle fibers and its selective extraction from muscle fibers results in a permanent relaxation at all Ca2+ concentrations. This process is fully reversible and reconstitution of the TnC-depleted fibers with exogenous TnC restores Ca2+-dependent contraction (Zot and Potter 1982; Szczesna et al. 1996). The structure of TnC has been solved to atomic resolution by X-ray crystallography (Herzberg and James 1985, 1988; Houdusse et al. 1997). TnC consists of two globular domains corresponding to the NH2-and COOH-termini and each domain contains two EF-hand divalent cation-binding sites. The low affinity sites of TnC, called the Ca2+-specific sites (I and II) (Potter and Gergely 1975), are located in the NH2-terminal domain of TnC and are separated from the COOH-terminal domain of TnC by a single nineturn α-helix comprising helices D and E (Herzberg and James 1985, 1988). The COOH-terminal region of TnC contains two high affinity Ca2+-binding sites designated as sites III and IV and referred to as the Ca2+-Mg2+ sites (Potter and Gergely 1975). Sites I and II bind Ca2+ specifically with KCa2+ ≅ 3 × 105M−1, whereas sites III and IV bind Ca2+ with KCa2+ ≅ 2 × 107M−1 and Mg2+ with KMg2+ ≅ 2 × 103M−1 (Potter and Gergely 1975; Grabarek et al. 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abe H, Komiya T, Obinata T (1986) Expression of multiple troponin T variants in neonatal chicken breast muscle. Dev Biol 118: 42 - 51

    Article  PubMed  CAS  Google Scholar 

  • Babu A, Rao VG, Su H, Gulati J (1993) Critical minimum length of the central helix in troponin C for the Cat+ switch in muscular contraction. J Biol Chem 268: 19232 - 19238

    PubMed  CAS  Google Scholar 

  • Bing W, Fraser ID, Marston SB (1997) Troponin I and troponin T interact with troponin C to produce different Ca2tdependent effects on actin-tropomyosin filament motility. Biochem J 327: 335 - 340

    PubMed  CAS  Google Scholar 

  • Breitbart RE, Nguyen HT, Medford RM, Destree AT, Mandavi V, Nadal-Ginard B (1985) Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell 41: 67 - 82

    Article  PubMed  CAS  Google Scholar 

  • Briggs MM, Schachat F (1989) N-terminal amino acid sequences of three functionally different troponin T isoforms from rabbit fast skeletal muscle. J Mol Biol 206: 245 - 249

    Article  PubMed  CAS  Google Scholar 

  • Briggs MM, Maready M, Schmidt JM, Schachat F (1994) Identification of a fetal exon in the human fast troponin T gene. FEBS Lett 350: 37 - 40

    Article  PubMed  CAS  Google Scholar 

  • Brisson JR (1986) Interaction of tropomyosin and troponin T: a proton nuclear magnetic resonance study. Biochemistry 25: 4548 - 4555

    Article  PubMed  CAS  Google Scholar 

  • Campbell AP, Sykes BD (1991) Interaction of troponin I and troponin C. Use of the two-dimensional nuclear magnetic resonance transferred nuclear Overhauser effect to determine the structure of the inhibitory troponin I peptide when bound to skeletal troponin C. J Mol Biol 222: 405-421

    Google Scholar 

  • Chandra M, da Silva EF, Sorenson MM, Ferro JA, Pearlstone JR, Nash BE, Borgford T, Kay CM, Smillie LB (1994) The effects of N helix deletion and mutant F29W on the Ca2+ binding and functional properties of chicken skeletal muscle troponin C. J Biol Chem 269: 14988 - 14994

    CAS  Google Scholar 

  • Chandra M, McCubbin WD, Oikawa K, Kay CM, Smillie LB (1994) Ca2+, Mg', and troponin I inhibitory peptide binding to a Phe-154 to Trp mutant of chicken skeletal muscle troponin C. Biochemistry 33: 2961 - 2969

    Article  PubMed  CAS  Google Scholar 

  • Cooper TA, Ordahl CP (1985) A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. J Biol Chem 260: 11140 - 11148

    PubMed  CAS  Google Scholar 

  • Dalgarno D, Grand RJA, Levine BA, Moir AJG, Scott GMM, Perry SV (1982) Interaction between troponin I and troponin C. Definition of the topography by proton magnetic resonance spectroscopy. FEBS Lett 150: 54-58

    Google Scholar 

  • Dobrowolski Z, Xu G-Q, Hitchcock-DeGregori SE (1991) Modified calcium-dependent regulatory function of troponin C central helix mutants. J Biol Chem 266: 5703 - 5710

    PubMed  CAS  Google Scholar 

  • Farah CS, Miyamoto CA, Ramos CHI, da Silva ACR, Quaggio RB, Fujimori K, Smillie LB, Reinach FC (1994) Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem 269: 5230 - 5240

    PubMed  CAS  Google Scholar 

  • Flicker PF, Phillips GN Jr, Cohen C (1982) Troponin and its interactions with tropomyosin. An electron microscope study. J Mol Biol 162: 485-501

    Google Scholar 

  • Francois JM, Sheng Z, Szczesna D, Potter JD (1995) The functional role of the domains of troponin-C investigated with thrombin fragments of troponin-C reconstituted into skinned muscle fibers. J Biol Chem 270: 19287 - 19293

    Article  PubMed  CAS  Google Scholar 

  • Gagne SM, Tsuda S, Li MX, Chandra M, Smillie LB, Sykes BD (1994) Qualification of the calcium-induced secondary structural changes in the regulatory domain of troponin-C. Protein Sci 3: 1961 - 1974

    Article  PubMed  CAS  Google Scholar 

  • Gagne SM, Tsuda S, Li MX, Smillie LB, Sykes BD (1995) Structures of troponin C regulatory domains in the apo and calcium-saturated states. Nature Struct Biol 2: 784 - 789

    Article  PubMed  CAS  Google Scholar 

  • Gagne SM, Li MX, Sykes BD (1997) Mechanism of direct coupling between binding and induced structural change in regulatory calcium binding proteins. Biochemistry 36: 4386 - 4392

    Article  PubMed  CAS  Google Scholar 

  • Gagne SM, Tsuda S, Spyracopoulos L, Kay LE, Sykes BD (1998) Backbone and methyl dynamics of the regulatory domain of troponin C: anisotropic rotational diffusion and contribution of conformational entropy to calcium affinity. J Mol Biol 278: 667 - 686

    Article  PubMed  CAS  Google Scholar 

  • Geeves MA, Conibear PB (1995) The role of three-state docking of myosin Si with actin in force generation. Biophys J 68: 194s - 201s

    PubMed  CAS  Google Scholar 

  • Gergely J (1998) Molecular switches in troponin. Adv Exp Med Biol 453: 169 - 176

    Article  PubMed  CAS  Google Scholar 

  • Grabarek Z, Leavis PC, Gergely J (1986) Calcium binding to the low affinity sites in troponin C induces conformational changes in the high affinity domain: a possible route of information transfer in activation of muscle contraction. J Biol Chem 261: 608 - 613

    PubMed  CAS  Google Scholar 

  • Grabarek Z, Tao T, Gergely J (1992) Molecular mechanism of troponin-C function. J Muscle Res Cell Motil 13: 383 - 393

    Article  PubMed  CAS  Google Scholar 

  • Greaser ML, Gergely J (1971) Reconstitution of troponin activity from three protein components. J Biol Chem 246: 4226 - 4233

    PubMed  CAS  Google Scholar 

  • Gulati J, Babu A, Su H, Zhang Y-F (1993) Identification of the regions conferring calmodulin-like properties to troponin C. J Biol Chem 268: 11685 - 11690

    PubMed  CAS  Google Scholar 

  • Haselgrove JC (1972) X-ray evidence for a conformational change in actin-containing filaments of vertebrate striated muscle. Cold Spring Harbor Symp Quant Biol 37: 341 - 352

    Article  Google Scholar 

  • Hatakenaka M, Ohtsuki I (1992) Effect of removal and reconstitution of troponins C and I on the Ca2+-activated tension development of single glycerinated rabbit skeletal muscle fiber. Eur J Biochem 205: 985 - 993

    Article  PubMed  CAS  Google Scholar 

  • Heeley DH, Golosinska K, Smillie LB (1987) The effects of troponin T fragments T1 and T2 on the binding of nonpolymerizable tropomyosin F-actin in the presence and absence of troponin I and troponin C. J Biol Chem 262: 9971 - 9978

    PubMed  CAS  Google Scholar 

  • Hernandez G, Blumenthal DK, Kennedy MA, Unkefer CI, Trewhella J (1999) Troponin I inhibitory peptide (96-115) has an extended conformation when bound to skeletal muscle troponin C. Biochemistry 38: 6911 - 6917

    Article  PubMed  CAS  Google Scholar 

  • Herzberg O, James MNG (1985) Structure of the calcium regulatory muscle protein-troponin C at 2.8 t1 resolution. Nature 313: 653 - 659

    Article  PubMed  CAS  Google Scholar 

  • Herzberg O, James MNG (1988) Refined crystal structure of troponin C from turkey skeletal muscle at 2.0-A resolution. J Mol Biol 203: 761 - 769

    Article  PubMed  CAS  Google Scholar 

  • Herzberg O, Moult J, James MNG (1986) A model for the Ca2+-induced conformational transitions of troponin C. J Biol Chem 261: 2638 - 2644

    PubMed  CAS  Google Scholar 

  • Houdusse A, Love ML, Dominguez R, Grabarek Z, Cohen C (1997) Structures of four Ca2+-bound troponin C at 2.0-Â resolution: further insights into Ca2+-switch in the calmodulin superfamily. Structure 5: 1695 - 1711

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE (1972) Structural changes in the actin-and myosin-containing filaments during contraction. Cold Spring Harbor Symp Quant Biol 37: 361 - 376

    Article  Google Scholar 

  • Ishii Y, Lehrer SS (1991) Two-site attachment of troponin to pyrene-labeled tropomyosin. J Biol Chem 266: 6894 - 6903

    PubMed  CAS  Google Scholar 

  • Jha PK, Sarkar S (1998) A recombinant monocysteine mutant (Ser to Cys-155) of fast skeletal troponin T: identification by cross-linking of a domain involved in a physiologically relevant interaction with troponins C and I. Biochemistry 37: 12253 - 12260

    Article  PubMed  CAS  Google Scholar 

  • Jha PK, Leavis PC, Sarkar S (1996) Interaction of deletion mutants of troponins I and T: COOHterminal truncation of troponin T abolishes troponin I binding and reduces Ca2+ sensitivity of the reconstituted regulatory system. Biochemistry 35: 16573 - 16580

    Article  PubMed  CAS  Google Scholar 

  • Johnson JD, Collins JH, Potter JD (1978) Dansylaziridine-labeled troponin C: a fluorescent probe of Ca2+-specific regulatory sites. J Biol Chem 253: 3775 - 3777

    PubMed  CAS  Google Scholar 

  • Kerrick WGL, Secrist D, Coby R, Lucas S (1976) Development of difference between red and white muscles in sensitivity to Ca" in the rabbit from embryo to adult. Nature 260: 440 - 441

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T Grabarek Z, Gergely J, Collins JH (1995) Extensive interactions between troponins C and I. Zero-length cross-linking of troponin I and acetylated troponin C. Biochemistry 34: 10946-10952

    Google Scholar 

  • Kress M, Huxley HE, Faruqi AR, Hendrix J (1986) Structural changes during activation of frog muscle studies by time-resolved X-ray diffraction. J Mol Biol 188: 325 - 342

    Article  PubMed  CAS  Google Scholar 

  • Lehrer SS, Geeves M (1998) The muscle thin filament as a classical cooperative/allosteric regulatory system. J Mol Biol 277: 1081 - 1089

    Article  PubMed  CAS  Google Scholar 

  • Leszyk J, Collins JH, Leavis PC, Tao T (1987) Cross-linking of rabbit skeletal muscle troponin with the photoactive reagent 4-maleimidobenzophenone: identification of residues in troponin I that are close to cysteine-98 of troponin C. Biochemistry 26: 7042 - 7047

    Article  PubMed  CAS  Google Scholar 

  • Leszyk J, Grabarek Z, Gergely J, Collins J (1990) Characterization of zero-length cross-links between rabbit skeletal muscle troponin C and troponin I: evidence for a direct interaction between the inhibitory region of troponin I and the NH2-terminal, regulatory domains of troponin C. Biochemistry 29: 299 - 304

    Article  PubMed  CAS  Google Scholar 

  • Leszyk J, Tao T, Nuwaysir L, Gergely 1 (1998) Identification of the photo-cross-linking sites in troponin I with 4-maleidobenzophenone labelled mutant troponin-Cs having single cysteines at positions 158 and 21. J Muscle Res Cell Motil 19: 479 - 490

    CAS  Google Scholar 

  • Liu W, Dotson DG, Lin X, Mullen III JJ, Gonzalez-Gray ML, Lu Q, Putkey JA (1994) The presence but not the sequence of the N-terminal peptide in cardiac TnC is important for function. FEBS Lett 347: 152 - 156

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Leszyk J, Qian Y, Gergely J, Tao T (1999) Residues 48 and 82 at the N-terminal hydrophobic pocket of rabbit skeletal muscle troponin-C photo-cross-link to Met121 of troponin-I. Biochemistry 38: 6678 - 6688

    Article  PubMed  CAS  Google Scholar 

  • Malnic B, Farah CS, Reinach FC (1998) Regulatory properties of the NH,- and COOH-terminal domains of troponin T. J Biol Chem 273: 10594 - 10601

    Article  PubMed  CAS  Google Scholar 

  • Maytum R, Lehrer SS, Geeves MA (1999) Cooperativity and switching within the three-state model of muscle regulation. Biochemistry 38: 1102 - 1110

    Article  PubMed  CAS  Google Scholar 

  • McKay RT, Tripet BP, Hodges RS, Sykes BD (1997) Interaction of the second binding region of troponin I with the regulatory domain of skeletal muscle troponin C as determined by NMR spectroscopy. J Biol Chem 272: 28494 - 28500

    Article  PubMed  CAS  Google Scholar 

  • McKay RT, Pearlstone JR, Corson DC, Gagne SM, Smillie LB, Sykes BD (1998) Structure and interaction site of the regulatory domain of troponin C when complexed with 96-148 region of troponin-I. Biochemistry 37: 12419 - 12430

    Article  PubMed  CAS  Google Scholar 

  • Medford RM, Nguyen HT, Destree AT, Summers E, Nadal-Ginard B (1984) A novel mechanism of alternative RNA splicing for the developmentally regulated generation of troponin T isoforms from a single gene. Cell 38: 409 - 421

    Article  PubMed  CAS  Google Scholar 

  • Moncrieffe M, Eaton S, Bajzer Z, Haydock C, Potter JD, Laue TM, Prendergast FG (1999a) Rotational and translational motion of troponin C. J Biol Chem 274: 17464 - 17470

    Article  PubMed  CAS  Google Scholar 

  • Moncrieffe M, Venyaminov SY, Miller T, Guzman G, Potter JD, Prendergast FG (1999b) Optical spectroscopic characterization of single tryptophan mutants of chicken skeletal troponin C: evidence for inter-domain interaction. Biochemistry 38: 11973 - 11983

    Article  PubMed  CAS  Google Scholar 

  • Morris EP, Lehrer SS (1984) Troponin-tropomyosin interactions. Fluorescence studies of the binding of troponin, troponin T, and chymotryptic troponin T fragments to specifically labeled tropomyosin. Biochemistry 23: 2214-2220

    Google Scholar 

  • Moss RL (1992) Ca2+ regulation of mechanical properties of striated muscle. Mechanistic studies using extraction and replacement of regulatory proteins. Circ Res 70: 865 - 884

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki I (1979) Molecular arrangement of troponin-T in the thin filament. J Biochem 86: 491 - 497

    PubMed  CAS  Google Scholar 

  • Ohtsuki I (1999) Calcium ion regulation of muscle contraction: the regulatory role of troponin T. Mol Cell Biochem 190: 33 - 38

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki I, Maruyama K, Ebashi S (1986) Regulatory and cytoskeletal proteins of vertebrate skeletal muscle. Adv Protein Chem 38: 1 - 67

    Article  PubMed  CAS  Google Scholar 

  • Olah GA, Rokop SE, Wang C-LA, Blechner SL, Trewhella J (1994) Troponin I encompasses an extended troponin C in the Ca"-bound complex: a small-angle X-ray and neutron scattering study. Biochemistry 33: 8233 - 8239

    Article  PubMed  CAS  Google Scholar 

  • Pan B-S, Potter JD (1992) Two genetically expressed troponin T fragments representing the a and ß isoforms exhibit functional differences. J Biol Chem 267: 23052 - 23056

    PubMed  CAS  Google Scholar 

  • Pan B-S, Gordon AM, Potter JD (1991) Deletion of the first 45 NH2-terminal residues of rabbit skeletal troponin T strengthens binding of troponin to immobilized tropomyosin. J Biol Chem 266: 12432 - 12438

    PubMed  CAS  Google Scholar 

  • Panavelil T, Guzman G, Jones M, Pan, B-S, Szczesna D, Potter JD (1997) Structural elements of the COOH-terminal region of troponin-T involved in the regulation of skeletal muscle contraction. Biophys J 72: A60

    Google Scholar 

  • Parry DAD, Squire JM (1973) Structural role of tropomyosin in muscle regulation: analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol 75: 33 - 55

    Article  PubMed  CAS  Google Scholar 

  • Pearlstone JR, Smillie LB (1978) Troponin T fragments: physical properties and binding to troponin C. Can J Biochem 56: 521 - 527

    Article  PubMed  CAS  Google Scholar 

  • Pearlstone JR, Smillie LB (1981) Identification of a second binding region on rabbit skeletal troponin-T for alpha-tropomyosin. FEBS Lett 128: 119 - 122

    Article  PubMed  CAS  Google Scholar 

  • Pearlstone JR, Smillie LB (1985) The interaction of rabbit skeletal muscle troponin-T fragments with troponin-I. Can J Biochem Cell Biol 63: 212 - 218

    Article  PubMed  CAS  Google Scholar 

  • Pearlstone JR, Sykes BD, Smillie LB (1997) Interactions of structural C and regulatory N domains of troponin C with repeated sequence motifs in troponin I. Biochemistry 36: 7601 - 7606

    CAS  Google Scholar 

  • Perry SV (1998) Troponin T: genetics, properties and function. J Muscle Res Cell Motil 19: 575 - 602

    Article  PubMed  CAS  Google Scholar 

  • Poole KJV, Lorenz M, Evans G, Rosenbaum G, Holmes KC (1994) The effect of calcium on the regulated thin filament structure. Biophys J 66: A347

    Google Scholar 

  • Potter JD, Gergely J (1975) The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar ATPase. J Biol Chem 250: 4628 - 4633

    PubMed  CAS  Google Scholar 

  • Potter JD, Sheng Z, Pan B-S, Zhao J (1995) A direct regulatory role for troponin T and a dual role for troponin C in the Ca" regulation of muscle contraction. J Biol Chem 270: 2557 - 2562

    Article  PubMed  CAS  Google Scholar 

  • Potter JD, Panavelil T, Guzman G, Jones M, Zhao J, Szczesna D (1998) The role of troponin T in the regulation of contraction. Biophys J 74: A143

    Google Scholar 

  • Ramakrishnan S, Hitchcock-DeGregori SE (1995) Investigation of the structural requirements of the troponin C central helix for function. Biochemistry 34: 16789 - 16796

    Article  PubMed  CAS  Google Scholar 

  • Ramos CH (1999) Mapping subdomains in the C-terminal region of troponin I involved in its binding to troponin C and to thin filament. J Biol Chem 274: 18189 - 18195

    Article  PubMed  CAS  Google Scholar 

  • Robertson SP, Johnson JD, Potter JD (1981) The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin and myosin in response to transient increases in Ca2+. Biophys J 34: 559 - 569

    Article  PubMed  CAS  Google Scholar 

  • Schaertl S, Lehrer SS, Geeves MA (1995) Separation and characterization of the two functional regions of troponin involved in muscle thin filament regulation. Biochemistry 34: 15890 - 15894

    Article  PubMed  CAS  Google Scholar 

  • She M, Xing J, Dong WJ, Umeda PK, Cheung HC (1998) Calcium binding to the regulatory domain of skeletal muscle troponin C induces a highly constrained open conformation. J Mol Biol 281: 445 - 452

    Article  PubMed  CAS  Google Scholar 

  • Sheng Z, Strauss W, Francois JM, Potter JD (1990) Evidence that both Ca2+ specific sites of skeletal muscle TnC are required for full activity. J Biol Chem 265: 21554 - 21559

    PubMed  CAS  Google Scholar 

  • Sheng Z, Francois JM, Hitchcock-DeGregori SE, Potter JD (1991) Effects of mutations in the central helix of troponin Con its biological activity. J Biol Chem 266: 5711 - 5715

    PubMed  CAS  Google Scholar 

  • Sheng Z, Pan B-S, Miller T, Potter JD (1992) Isolation expression and mutation of a rabbit skeletal muscle cDNA clone for troponin I. The role of the NH2-terminus of fast skeletal muscle TnI in its biological activity. J Biol Chem 267: 25407 - 25413

    PubMed  CAS  Google Scholar 

  • Shiraishi F, Yamamoto K (1994) The effect of partial removal of troponin I and C on the Ca2+-sensitive ATPase activity of rabbit skeletal myofibrils. J Biochem 115: 171 - 173

    PubMed  CAS  Google Scholar 

  • Smillie LB, Golosinska K, Reinach FC (1988) Sequences of complete cDNAs encoding four variants of chicken skeletal muscle troponin T. J Biol Chem 263: 18816 - 18820

    PubMed  CAS  Google Scholar 

  • Smith L, Greenfield NJ, Hitchcock-DeGregori SE (1994) The effects of deletion of the aminoterminal helix on troponin C function and stability. J Biol Chem 269: 9857 - 9863

    PubMed  CAS  Google Scholar 

  • Smith L, Greenfield NJ, Hitchcock-DeGregori SE (1999) Mutations in the N- and D-helices of the N-domain of troponin C affect the C-domain and regulatory function. Biophys J 76: 400 - 408

    Article  PubMed  CAS  Google Scholar 

  • Squire JM, Morris EP (1998) A new look at thin filament regulation in vertebrate skeletal muscle. FASEB J 12: 761 - 771

    PubMed  CAS  Google Scholar 

  • Stefancsik R, Jha PK, Sarkar S (1998) Identification and mutagenesis of a highly conserved domain in troponin T responsible for troponin I binding: potential role for coiled coil interaction. Proc Natl Acad Sci USA 95: 957 - 962

    Article  PubMed  CAS  Google Scholar 

  • Stone DB, Timmins PA, Schneider DK, Krylova I, Ramos CHI, Reinach FC, Mendelson RA (1998) The effect of regulatory Ca2+ on the in situ structures of troponin C and troponin I: a neutron scattering study. J Mol Biol 281: 689 - 704

    Article  PubMed  CAS  Google Scholar 

  • Strynadka NC, Chernaia M, Sielecki AR, Li MX, Smillie LB, James MNG (1997) Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75-A resolution. J Mol Biol 273: 238 - 255

    Article  PubMed  CAS  Google Scholar 

  • Syska H, Wilkinson JM, Grand RJA, Perry SV (1976) The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. Biochem J 153: 375 - 387

    PubMed  CAS  Google Scholar 

  • Szczesna D, Guzman G, Miller T, Zhao J, Farokhi, K, Ellemberger H, Potter JD (1996) The role of the four Ca2+ binding sites of troponin C in the regulation of skeletal muscle contraction. J Biol Chem 271: 8381 - 8836

    Article  PubMed  CAS  Google Scholar 

  • Szczesna D, Zhang R, Zhao J, Jones M, Potter JD (1999) The role of the N- and C-terminal domains of the inhibitory region of TnI in the regulation of contraction. J Biol Chem 274: 29536 - 29542

    Article  PubMed  CAS  Google Scholar 

  • Talbot JA, Hodges RS (1979) Synthesis and biological activity of an icosapeptide analog of the actomyosin ATPase inhibitory region of troponin I. J Biol Chem 254: 3720 - 3723

    PubMed  CAS  Google Scholar 

  • Tripet B, Van Eyk JE, Hodges RS (1997) Mapping of a second actin-tropomyosin and second troponin C binding site within the C terminus of troponin I, and their importance in the Caz+-dependent regulation of muscle contraction. J Mol Biol 271: 728 - 750

    Article  PubMed  CAS  Google Scholar 

  • Van Eyk JE, Kay CM, Hodges RS (1991) A comparative study of the interactions of synthetic peptides of the skeletal and cardiac troponin I inhibitory region with skeletal and cardiac troponin C. Biochemistry 30: 9974 - 9981

    Article  PubMed  Google Scholar 

  • Van Eyk JE, Thomas LT, Tripet B, Wiesner RJ, Pearlstone JR, Farah CS, Reinach FC, Hodges RS (1997) Distinct regions of troponin I regulate Ca2+-dependent activation and Ca2+ sensitivity of the acto-S1-Tm ATPase activity of the thin filament. J Biol Chem 272: 10529 - 10537

    Article  PubMed  Google Scholar 

  • Vassylyev DG, Takeda S, Wakatsuki S, Maeda K, Maeda Y (1998) Crystal structure of troponin C in complex with troponin I fragment at 2.3-A resolution. Proc Natl Acad Sci USA 95: 4847 - 4852

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Jin J-P (1998) Conformational modulation of troponin T by configuration of the NH2-terminal variable region and functional effects. Biochemistry 37: 14519 - 14528

    Article  PubMed  CAS  Google Scholar 

  • Wang CK, Liao R, Cheung HC (1993) Rotational dynamics of skeletal muscle troponin C. J Biol Chem 268: 14671 - 14677

    PubMed  CAS  Google Scholar 

  • White SP, Cohen C, Phillips JN Jr (1987) Structure of co-crystals of tropomyosin and troponin. Nature 325: 826 - 828

    Article  PubMed  CAS  Google Scholar 

  • Zot HG, Potter JD (1982) A structural role for the Ca2+-Mg' sites of Troponin C (TnC) in the regulation of muscle contraction: preparation and properties of TnC-depleted myofibrils. J Biol Chem 257: 7678 - 7683

    PubMed  CAS  Google Scholar 

  • Zot AS, Potter JD (1987) Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Chem 16: 535 - 559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szczesna, D., Potter, J.D. (2002). The Role of Troponin in the Ca2+-Regulation of Skeletal Muscle Contraction. In: Thomas, D.D., Dos Remedios, C.G. (eds) Molecular Interactions of Actin. Results and Problems in Cell Differentiation, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46558-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46558-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08641-0

  • Online ISBN: 978-3-540-46558-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics