Skip to main content

Microporous and Mesoporous Materials from Natural and Inexpensive Sources

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

This chapter will attempt to describe microporous and mesoporous materials, such as zeolites, and ordered mesoporous materials, which are versatile solids that are used for the environmental remediation and energetic efficiency and the applications in wastewater treatment and nuclear waste, purification and separation, medicine and catalysis. These materials are constructed from tetrahedral units, TO4 (where T is silicon and aluminum, usually), which are usually obtained from commercial sources. Furthermore, strategies and green approaches are described to contribute to the reduction of the cost production using cheaper and renewable raw materials such as rice husk, diatoms, coal ash, and clay minerals, which are potential and attractive sources of silicon and aluminum for the synthesis of zeolite and ordered mesoporous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu PS, Chen GF (2014) General introduction to porous materials. In: Liu P, Chen GF (eds) Porous materials, 1st edn. Butterworth-Heinemann, Boston, pp 1–20. https://doi.org/10.1016/B978-0-12-407788-1.00001-0

    Google Scholar 

  2. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KWS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  3. Cronstedt AF (1756) Kong Vet Acad Handlingar 17:120

    Google Scholar 

  4. Payra P, Dutta PK (2003) Zeolites: a primer. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of zeolite science and technology, vol 2. Marcel Dekker, New York, pp 1–19

    Google Scholar 

  5. IZA – International Zeolite Association. http://www.iza-structure.org. Accessed 22 July 2017

  6. Weitkamp J (2000) Zeolites and catalysis. Solid State Ionics 131:175–188. https://doi.org/10.1016/S0167-2738(00)00632-9

    Article  Google Scholar 

  7. Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82:1–78. https://doi.org/10.1016/j.micromeso.2005.02.016

    Article  Google Scholar 

  8. Yun Y, Hernandez M, Wan W, Zou X, Jorda JL, Cantin A, Rey F, Corma A (2015) The first zeolite with a tri-directional extra-large 14-ring pore system derived using a phosphonium-based organic molecule. Chem Commun 51:7602–7605. https://doi.org/10.1039/C4CC10317C

    Article  Google Scholar 

  9. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712

    Article  Google Scholar 

  10. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843. https://doi.org/10.1021/ja00053a020

    Article  Google Scholar 

  11. Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Microporous Mesoporous Mater 125:170–223. https://doi.org/10.1016/j.micromeso.2009.03.046

    Article  Google Scholar 

  12. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552. https://doi.org/10.1126/science.279.5350.548

    Article  Google Scholar 

  13. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036. https://doi.org/10.1021/ja974025i

    Article  Google Scholar 

  14. Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267:865–867. https://doi.org/10.1126/science.267.5199.865

    Article  Google Scholar 

  15. Kleitz F, Hei Choi S, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun 2136–2137. https://doi.org/10.1039/B306504A

  16. Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242–1244. https://doi.org/10.1126/science.269.5228.1242

    Article  Google Scholar 

  17. Monnier A, Schüth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF (1993) Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261:1299–1303. https://doi.org/10.1126/science.261.5126.1299

    Article  Google Scholar 

  18. Firouzi A, Kumar D, Bull L, Besier T, Sieger P, Huo Q, Walker S, Zasadzinski J, Glinka C, Nicol J et al (1995) Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267:1138–1143. https://doi.org/10.1126/science.7855591

    Article  Google Scholar 

  19. Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF (1994) Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater 6:1176–1191. https://doi.org/10.1021/cm00044a016

    Article  Google Scholar 

  20. Lai T-L, Shu Y-Y, Lin Y-C, Chen W-N, Wang C-B (2009) Rapid removal of organic template from SBA-15 with microwave assisted extraction. Mater Lett 63:1693–1695. https://doi.org/10.1016/j.matlet.2009.05.014

    Article  Google Scholar 

  21. Bagshaw SA, Bruce IJ (2008) Rapid calcination of high quality mesostructured MCM-41, MSU-X, and SBA-15 silicate materials: a step towards continuous processing? Microporous Mesoporous Mater 109:199–209. https://doi.org/10.1016/j.micromeso.2007.04.042

    Article  Google Scholar 

  22. Cooney EL, Booker NA, Shallcross DC, Stevens GW (1999) Ammonia removal from wastewaters using natural Australian zeolite. I. Characterization of the zeolite. Sep Sci Technol 34:2307–2327. https://doi.org/10.1081/SS-100100774

    Article  Google Scholar 

  23. Álvarez-Ayuso E, Garcıa-Sánchez A, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37:4855–4862. https://doi.org/10.1016/j.watres.2003.08.009

    Article  Google Scholar 

  24. Payne KB, Abdel-Fattah TM (2004) Adsorption of divalent lead ions by zeolites and activated carbon: effects of pH, temperature, and ionic strength. J Environ Sci Health A 39:2275–2291. https://doi.org/10.1081/ESE-200026265

    Article  Google Scholar 

  25. Mercier L, Pinnavaia TJ (1998) Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg(II) uptake. Environ Sci Technol 32:2749–2754. https://doi.org/10.1021/es970622t

    Article  Google Scholar 

  26. Kim BC, Lee J, Um W, Kim J, Joo J, Lee JH, Kwak JH, Kim JH, Lee C, Lee H, Addleman RS, Hyeon T, MB G, Kim J (2011) Magnetic mesoporous materials for removal of environmental wastes. J Hazard Mater 192:1140–1147. https://doi.org/10.1016/j.jhazmat.2011.06.022

    Article  Google Scholar 

  27. Díaz-Nava C, Olguín MT, Solache-Ríos M (2002) Water defluoridation by mexican heulandite–clinoptilolite. Sep Sci Technol 37:3109–3128. https://doi.org/10.1081/SS-120005662

    Article  Google Scholar 

  28. Ghiaci M, Kia R, Abbaspur A, Seyedeyn-Azad F (2004) Adsorption of chromate by surfactant-modified zeolites and MCM-41 molecular sieve. Sep Purif Technol 4:285–295. https://doi.org/10.1016/j.seppur.2004.03.009

    Article  Google Scholar 

  29. Yoshitake H, Yokoi T, Tatsumi T (2002) Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1. Chem Mater 14:4603–4610. https://doi.org/10.1021/cm0202355

    Article  Google Scholar 

  30. Armaǧan B, Özdemir O, Turan M, Çelik MS (2003) The removal of reactive azo dyes by natural and modified zeolites. J Chem Technol Biotechnol 78:725–732. https://doi.org/10.1002/jctb.844

    Article  Google Scholar 

  31. Wang S, Zhu ZH (2006) Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution. J Hazard Mater 136:946–952. https://doi.org/10.1016/j.jhazmat.2006.01.038

    Article  Google Scholar 

  32. Lee C-K, Liu S-S, Juang L-C, Wang C-C, Lin K-S, Lyu M-D (2007) Application of MCM-41 for dyes removal from wastewater. J Hazard Mater 147:997–1005. https://doi.org/10.1016/j.jhazmat.2007.01.130

    Article  Google Scholar 

  33. Boukoussa B, Hamacha R, Morsli A, Bengueddach A (2017) Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arab J Chem 10:2160–2169. https://doi.org/10.1016/j.arabjc.2013.07.049

    Article  Google Scholar 

  34. Shenber MA, Johanson KJ (1992) Influence of zeolite on the availability of radiocaesium in soil to plants. Sci Total Environ 113:287–295. https://doi.org/10.1016/0048-9697(92)90007-F

    Article  Google Scholar 

  35. Forberg S, Jones B, Westermark T (1989) Can zeolites decrease the uptake and accelerate the excretion of radio-caesium in ruminants? Sci Total Environ 79:37–41. https://doi.org/10.1016/0048-9697(89)90051-X

    Article  Google Scholar 

  36. Yamagishi I, Nagaishi R, Kato C, Morita K, Terada A, Kamiji Y, Hino R, Sato H, Nishihara K, Tsubata Y, Tashiro S, Saito R, Satoh T, Nakano J, Ji W, Fukushima H, Sato S, Denton M (2014) Characterization and storage of radioactive zeolite waste. J Nucl Sci Technol 51:1044–1053. https://doi.org/10.1080/00223131.2014.924446

    Article  Google Scholar 

  37. Hofstetter KJ, Hitz CG (1983) The use of the submerged demineralizer system at three mile island. Sep Sci Technol 18:1747–1764. https://doi.org/10.1080/01496398308056125

    Article  Google Scholar 

  38. Guo K, Han F, Arslan Z, McComb J, Mao X, Zhang R, Sudarson S, Yu H (2015) Adsorption of Cs from water on surface-modified MCM-41 mesosilicate. Water Air Soil Pollut 226:288. https://doi.org/10.1007/s11270-015-2565-5

    Article  Google Scholar 

  39. Wernert V, Schäf O, Ghobarkar H, Denoyel R (2005) Adsorption properties of zeolites for artificial kidney applications. Microporous Mesoporous Mater 83:101–113. https://doi.org/10.1016/j.micromeso.2005.03.018

    Article  Google Scholar 

  40. QuickClot (2016) http://www.quikclot.com. Accessed 22 July 2017

  41. Li J, Cao W, Lv X-X, Jiang L, Li Y-J, Li W-Z, Chen S-Z, Li X-Y (2013) Zeolite-based hemostat QuikClot releases calcium into blood and promotes blood coagulation in vitro. Acta Pharmacol Sin 34:367–372. https://doi.org/10.1038/aps.2012.159

    Article  Google Scholar 

  42. Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311. https://doi.org/10.1021/cm0011559

    Article  Google Scholar 

  43. Qu F, Zhu G, Huang S, Li S, Qiu S (2006) Effective controlled release of captopril by silylation of mesoporous MCM-41. ChemPhysChem 7:400–406. https://doi.org/10.1002/cphc.200500294

    Article  Google Scholar 

  44. Bahrami Z, Badiei A, Atyabi F (2014) Surface functionalization of SBA-15 nanorods for anticancer drug delivery. Chem Eng Res Des 92:1296–1303. https://doi.org/10.1016/j.cherd.2013.11.007

    Article  Google Scholar 

  45. Coe CG, Gaffney TR, Srinivasan RS (1990) Chabazite for gas separation. EP Patent 0409135 B1

    Google Scholar 

  46. Frankiewicz TC, Donnelly RG (1983) Methane/nitrogen gas separation over the zeolite clinoptilolite by the selective adsorption of nitrogen. In: Industrial gas separations. ACS symposium series, vol 223. American Chemical Society, Washington, DC, pp 213–233. https://doi.org/10.1021/bk-1983-0223.ch011

  47. Knaebel KS, Kandybin A (1993) Pressure swing adsorption system to purify oxygen. US Patent US5226933 A

    Google Scholar 

  48. Shen J-H, Wang Y-S, Lin J-P, Wu S-H, Horng J-J (2014) Improving the indoor air quality of respiratory type of medical facility by zeolite filtering. J Air Waste Manage Assoc 64:13–18. https://doi.org/10.1080/10962247.2013.831798

    Article  Google Scholar 

  49. Litch JA, Bishop RA (2000) Oxygen concentrators for the delivery of supplemental oxygen in remote high-altitude areas. Wilderness Environ Med 11:189–191. https://doi.org/10.1580/1080-6032(2000)011[0189:OCFTDO]2.3.CO;2

    Article  Google Scholar 

  50. Belmabkhout Y, Serna-Guerrero R, Sayari A (2010) Adsorption of CO2-containing gas mixtures over amine-bearing pore-expanded MCM-41 silica: application for gas purification. Ind Eng Chem Res 49:359–365. https://doi.org/10.1021/ie900837t

    Article  Google Scholar 

  51. Hung C, Bai H, Karthik M (2009) Ordered mesoporous silica particles and Si-MCM-41 for the adsorption of acetone: a comparative study. Sep Purif Technol 64:265–272. https://doi.org/10.1016/j.seppur.2008.10.020

    Article  Google Scholar 

  52. Yahiro H, Iwamoto M (2001) Copper ion-exchanged zeolite catalysts in deNOx reaction. Appl Catal A Gen 222:163–181. https://doi.org/10.1016/S0926-860X(01)00823-7

    Article  Google Scholar 

  53. Yang RT, Hernández-Maldonado AJ, Yang FH (2003) Desulfurization of transportation fuels with zeolites under ambient conditions. Science 301:79–81. https://doi.org/10.1126/science.1085088

    Article  Google Scholar 

  54. Rinaldi R, Schuth F (2009) Design of solid catalysts for the conversion of biomass. Energy Environ Sci 2(6):610–626. https://doi.org/10.1039/B902668A

    Article  Google Scholar 

  55. Roth WJ, Vartuli JC (2005) Synthesis of mesoporous molecular sieves. In: Ĉejka J, Bekkum HV (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 91–110. https://doi.org/10.1016/S0167-2991(05)80007-2

    Google Scholar 

  56. Climent MJ, Corma A, Iborra S, Navarro MC, Primo J (1996) Use of mesoporous MCM-41 aluminosilicates as catalysts in the production of fine chemicals: preparation of dimethylacetals. J Catal 161:783–789. https://doi.org/10.1006/jcat.1996.0241

    Article  Google Scholar 

  57. Antonakou E, Lappas A, Nilsen MH, Bouzga A, Stöcker M (2006) Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals. Fuel 85(14):2202–2212. https://doi.org/10.1016/j.fuel.2006.03.021

    Article  Google Scholar 

  58. da Silva AGM, Fajardo HV, Balzer R, Probst LFD, Lovón ASP, Lovón-Quintana JJ, Valença GP, Schreine WH, Robles-Dutenhefner PA (2015) Versatile and efficient catalysts for energy and environmental processes: mesoporous silica containing Au, Pd and Au-Pd. J Power Sources 285:460–468. https://doi.org/10.1016/j.jpowsour.2015.03.066

    Article  Google Scholar 

  59. Ng E-P, Zou X, Mintova S (2013) Chapter 12 – Environmental synthesis concerns of zeolites. In: Suib S (ed) New and future developments in catalysis. Elsevier, Amsterdam, pp 289–310. https://doi.org/10.1016/B978-0-444-53876-5.00013-1

    Chapter  Google Scholar 

  60. Food and Agriculture Organization of the United Nations (2017) Rice Mark Monit XX(1)

    Google Scholar 

  61. James J, Rao MS (1986) Silica from rice husk through thermal decomposition. Thermochim Acta 97:329–336. https://doi.org/10.1016/0040-6031(86)87035-6

    Article  Google Scholar 

  62. Conradt R, Pimkhaokham P, Leela-Adisorn U (1992) Nano-structured silica from rice husk. J Non-Cryst Solids 145:75–79. https://doi.org/10.1016/S0022-3093(05)80433-8

    Article  Google Scholar 

  63. Petkowicz DI, Rigo RT, Radtke C, Pergher SB, dos Santos JHZ (2008) Zeolite NaA from Brazilian chrysotile and rice husk. Microporous Mesoporous Mater 116:548–554. https://doi.org/10.1016/j.micromeso.2008.05.014

    Article  Google Scholar 

  64. Prasetyoko D, Ramli Z, Endud S, Hamdan H, Sulikowski B (2006) Conversion of rice husk ash to zeolite beta. Waste Manag 26(10):1173–1179. https://doi.org/10.1016/j.wasman.2005.09.009

    Article  Google Scholar 

  65. Dalai AK, Rao MS, Gokhale KVGK (1985) Synthesis of NaX zeolite using silica from rice husk ash. Ind Eng Chem Prod Res Dev 24:465–468. https://doi.org/10.1021/i300019a026

    Article  Google Scholar 

  66. Wittayakun J, Khemthong P, Prayoonpokarach S (2008) Synthesis and characterization of zeolite NaY from rice husk silica. Korean J Chem Eng 25:861–864. https://doi.org/10.1007/s11814-008-0142-y

    Article  Google Scholar 

  67. Wang HP, Lin KS, Huang YJ, Li MC, Tsaur LK (1998) Synthesis of zeolite ZSM-48 from rice husk ash. J Hazard Mater 58:147–152. https://doi.org/10.1016/S0304-3894(97)00127-1

    Article  Google Scholar 

  68. Cheng Y, Lu M, Li J, Su X, Pan S, Jiao C, Feng M (2012) Synthesis of MCM-22 zeolite using rice husk as a silica source under varying-temperature conditions. J Colloid Interface Sci 369:388–394. https://doi.org/10.1016/j.jcis.2011.12.024

    Article  Google Scholar 

  69. Schwanke AJ, Melo DMA, Silva AO, Pergher SBC (2013) Use of rice husk ash as only source of silica in the formation of mesoporous materials. Cerâmica 59:181–185. https://doi.org/10.1590/S0366-69132013000100022

    Article  Google Scholar 

  70. Jang HT, Park Y, Ko YS, Lee JY, Margandan B (2009) Highly siliceous MCM-48 from rice husk ash for CO2 adsorption. Int J Greenhouse Gas Control 3:545–549. https://doi.org/10.1016/j.ijggc.2009.02.008

    Article  Google Scholar 

  71. Bhagiyalakshmi M, Yun LJ, Anuradha R, Jang HT (2010) Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO2 chemisorption. J Porous Mater 17:475–484. https://doi.org/10.1007/s10934-009-9310-7

    Article  Google Scholar 

  72. Ho S-T, Dinh Q-K, Tran T-H, Nguyen H-P, Nguyen T-D (2013) One-step synthesis of ordered Sn-substituted SBA-16 mesoporous materials using prepared silica source of rice husk and their selectively catalytic activity. Can J Chem Eng 91:34–46. https://doi.org/10.1002/cjce.20693

    Article  Google Scholar 

  73. Nascimento CR, Sobrinho EMO, Assis RB, Fagundes RF, Bieseki L, Pergher SBC (2014) Síntese da zeólita A utilizando diatomita como fonte de sílicio e alumínio. Cerâmica 60:63–68. https://doi.org/10.1590/S0366-69132014000100009

    Article  Google Scholar 

  74. Hernandez-Ramirez O, Hill PI, Doocey DJ, Holmes SM (2007) Removal and immobilisation of cobalt ions by a novel, hierarchically structured, diatomite/zeolite Y composite. J Mater Chem 17:1804–1808. https://doi.org/10.1039/B700048K

    Article  Google Scholar 

  75. Sanhueza V, Kelm U, Cid R (2003) Synthesis of mordenite from diatomite: a case of zeolite synthesis from natural material. J Chem Technol Biotechnol 78:485–488. https://doi.org/10.1002/jctb.801

    Article  Google Scholar 

  76. Ahmad Alyosef H, Roggendorf H, Schneider D, Inayat A, Welscher J, Schwieger W, Münster T, Kloess G, Ibrahim S, Enke D (2016) MFI-type zeolites from natural materials: a comparative study of MFI-type zeolites generated from different diatomite species (part I). J Porous Mater 23:1609–1618. https://doi.org/10.1007/s10934-016-0222-z

    Article  Google Scholar 

  77. Jin J, Ouyang J, Yang H (2014) One-step synthesis of highly ordered Pt/MCM-41 from natural diatomite and the superior capacity in hydrogen storage. Appl Clay Sci 99:246–253. https://doi.org/10.1016/j.clay.2014.07.001

    Article  Google Scholar 

  78. Abdmeziem-Hamoudi K, Siffert B (1989) Synthesis of molecular sieve zeolites from a smectite-type clay material. Appl Clay Sci 4:1–9. https://doi.org/10.1016/0169-1317(89)90010-0

    Article  Google Scholar 

  79. Ríos CA, Williams CD, Fullen MA (2009) Nucleation and growth history of zeolite LTA synthesized from kaolinite by two different methods. Appl Clay Sci 42:446–454. https://doi.org/10.1016/j.clay.2008.05.006

    Article  Google Scholar 

  80. Akolekar D, Chaffee A, Howe RF (1997) The transformation of kaolin to low-silica X zeolite. Zeolites 19:359–365. https://doi.org/10.1016/S0144-2449(97)00132-2

    Article  Google Scholar 

  81. Hildebrando EA, Andrade CGB, Rocha Junior CAFd, Angélica RS, Valenzuela-Diaz FR, Neves RdF (2014) Synthesis and characterization of zeolite NaP using kaolin waste as a source of silicon and aluminum. Mater Res 17:174–179

    Google Scholar 

  82. Kovo AS, Hernandez O, Holmes SM (2009) Synthesis and characterization of zeolite Y and ZSM-5 from Nigerian Ahoko Kaolin using a novel, lower temperature, metakaolinization technique. J Mater Chem 19(34):6207–6212. https://doi.org/10.1039/B907554B

    Article  Google Scholar 

  83. Mignoni M, Petkowicz DI, Machado NRCF, Pergher SBC (2008) Synthesis of mordenite using kaolin as Si and Al source. Appl Clay Sci 41:99–104

    Article  Google Scholar 

  84. Ali-dahmane T, Adjdir M, Hamacha R, Villieras F, Bengueddach A, Weidler PG (2014) The synthesis of MCM-41 nanomaterial from Algerian bentonite: the effect of the mineral phase contents of clay on the structure properties of MCM-41. C R Chim 17:1–6. https://doi.org/10.1016/j.crci.2012.12.017

    Article  Google Scholar 

  85. Wang G, Wang Y, Liu Y, Liu Z, Guo Y, Liu G, Yang Z, Xu M, Wang L (2009) Synthesis of highly regular mesoporous Al-MCM-41 from metakaolin. Appl Clay Sci 44:185–188. https://doi.org/10.1016/j.clay.2008.12.002

    Article  Google Scholar 

  86. Yang H, Tang A, Ouyang J, Li M, Mann S (2010) From natural attapulgite to mesoporous materials: methodology, characterization and structural evolution. J Phys Chem B 114:2390–2398. https://doi.org/10.1021/jp911516b

    Article  Google Scholar 

  87. Xie Y, Zhang Y, Ouyang J, Yang H (2014) Mesoporous material Al-MCM-41 from natural halloysite. Phys Chem Miner 41:497–503. https://doi.org/10.1007/s00269-014-0660-6

    Article  Google Scholar 

  88. Schwanke AJ, Wittee C, Pergher SBC (2013) Synthesis of mesoporous material from chrysotile-derived silica. Mater Sci Appl 4:68–72. https://doi.org/10.4236/msa.2013.48A009

    Google Scholar 

  89. Li X-Y, Jiang Y, Liu X-Q, Shi L-Y, Zhang D-Y, Sun L-B (2017) Direct synthesis of zeolites from a natural clay, attapulgite. ACS Sustain Chem Eng 5:6124–6130. https://doi.org/10.1021/acssuschemeng.7b01001

    Article  Google Scholar 

  90. Hollman GG, Steenbruggen G, Janssen-Jurkovičová M (1999) A two-step process for the synthesis of zeolites from coal fly ash. Fuel 78:1225–1230. https://doi.org/10.1016/S0016-2361(99)00030-7

    Article  Google Scholar 

  91. Kumar P, Mal N, Oumi Y, Yamana K, Sano T (2001) Mesoporous materials prepared using coal fly ash as the silicon and aluminium source. J Mater Chem 11:3285–3290. https://doi.org/10.1039/B104810B

    Article  Google Scholar 

  92. Yan F, Jiang J, Tian S, Liu Z, Shi J, Li K, Chen X, Xu Y (2016) A green and facile synthesis of ordered mesoporous nanosilica using coal fly ash. ACS Sustain Chem Eng 4:4654–4661. https://doi.org/10.1021/acssuschemeng.6b00793

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson Joel Schwanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Schwanke, A.J., Balzer, R., Pergher, S. (2017). Microporous and Mesoporous Materials from Natural and Inexpensive Sources. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics