Skip to main content

The Impact of Network Connectivity on Collective Learning

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems (DARS 2021)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 22))

Included in the following conference series:

Abstract

In decentralised autonomous systems it is the interactions between individual agents which govern the collective behaviours of the system. These local-level interactions are themselves often governed by an underlying network structure. These networks are particularly important for collective learning and decision-making whereby agents must gather evidence from their environment and propagate this information to other agents in the system. Models for collective behaviours may often rely upon the assumption of total connectivity between agents to provide effective information sharing within the system, but this assumption may be ill-advised. In this paper we investigate the impact that the underlying network has on performance in the context of collective learning. Through simulations we study small-world networks with varying levels of connectivity and randomness and conclude that totally-connected networks result in higher average error when compared to networks with less connectivity. Furthermore, we show that networks of high regularity outperform networks with increasing levels of random connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balenzuela, P., Pinasco, J.P., Semeshenko, V.: The undecided have the key: interaction-driven opinion dynamics in a three state model. PLoS ONE 10(10), 1–21 (2015)

    Article  Google Scholar 

  2. Baronchelli, A.: The emergence of consenus: a primer. R. Soc. Open Sci. 5(2), 172,189 (2018)

    Google Scholar 

  3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  4. Crosscombe, M., Lawry, J.: A model of multi-agent consensus for vague and uncertain beliefs. Adapt. Behav. 24(4), 249–260 (2016)

    Article  Google Scholar 

  5. Crosscombe, M., Lawry, J., Hauert, S., Homer, M.: Robust distributed decision-making in robot swarms: exploiting a third truth state. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4326–4332 (2017)

    Google Scholar 

  6. Dabarera, R., Wickramarathne, T.L., Premaratne, K., Murthi, M.N.: Achieving consensus under bounded confidence in multi-agent distributed decision-making. In: 2019 22th International Conference on Information Fusion (FUSION), pp. 1–8 (2019)

    Google Scholar 

  7. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  Google Scholar 

  8. Douven, I.: Optimizing group learning: an evolutionary computing approach. Artif. Intell. 275, 235–251 (2019)

    Article  MathSciNet  Google Scholar 

  9. Douven, I., Kelp, C.: Truth approximation, social epistemology, and opinion dynamics. Erkenntnis 75(2), 271 (2011)

    Article  MathSciNet  Google Scholar 

  10. Erdös, P., Rényi, A.: On random graphs. Publ. Math. (Debrecen) 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  11. Franks, N., Pratt, S., Mallon, E., Britton, N., Sumpter, D.: Information flow, opinion-polling and collective intelligence in house-hunting social insects. Philos. Trans. B Biol. Sci. 357(1427), 1567–1583 (2002)

    Article  Google Scholar 

  12. Hamann, H.: Superlinear scalability in parallel computing and multi-robot systems: shared resources, collaboration, and network topology. In: Berekovic, M., Buchty, R., Hamann, H., Koch, D., Pionteck, T. (eds.) ARCS 2018. LNCS, vol. 10793, pp. 31–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77610-1_3

    Chapter  Google Scholar 

  13. Hegselmann, R., Krause, U.: Opinion dynamics driven by various ways of averaging. Comput. Econ. 25(4), 381–405 (2005)

    Article  Google Scholar 

  14. Hegselmann, R., Krause, U., et al.: Opinion dynamics and bounded confidence models, analysis, and simulation. J. Artif. Soc. Soc. Simul. 5(3) (2002)

    Google Scholar 

  15. Lawry, J., Crosscombe, M., Harvey, D.: Epistemic sets applied to best-of-n problems. In: Kern-Isberner, G., Ognjanović, Z. (eds.) ECSQARU 2019. LNCS (LNAI), vol. 11726, pp. 301–312. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29765-7_25

    Chapter  MATH  Google Scholar 

  16. Lee, C., Lawry, J., Winfield, A.: Negative updating combined with opinion pooling in the best-of-n problem in swarm robotics. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 97–108. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_8

    Chapter  Google Scholar 

  17. Masuda, N., Aihara, K.: Global and local synchrony of coupled neurons in small-world networks. Biol. Cybern. 90, 302–9 (2004)

    Article  Google Scholar 

  18. Newman, M.E.J., Watts, D.J., Strogatz, S.H.: Random graph models of social networks. Proc. Natl. Acad. Sci. 99(suppl 1), 2566–2572 (2002)

    Article  Google Scholar 

  19. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

    Article  Google Scholar 

  20. Parker, C.A.C., Zhang, H.: Cooperative decision-making in decentralized multiple-robot systems: the best-of-n problem. IEEE/ASME Trans. Mechatron. 14(2), 240–251 (2009)

    Article  Google Scholar 

  21. Parker, C.A.C., Zhang, H.: Biologically inspired collective comparisons by robotic swarms. Int. J. Robot. Res. 30(5), 524–535 (2011)

    Article  Google Scholar 

  22. Perron, E., Vasudevan, D., Vojnović, M.: Using three states for binary consensus on complete graphs. In: Proceedings - IEEE INFOCOM, pp. 2527–2535 (2009)

    Google Scholar 

  23. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3293–3298 (2012)

    Google Scholar 

  24. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors and current applications. Front. Robot. AI 7, 36 (2020)

    Article  Google Scholar 

  25. Stone, M.: The opinion pool. Ann. Math. Stat. 32(4), 1339–1342 (1961)

    Article  MathSciNet  Google Scholar 

  26. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017)

    Article  Google Scholar 

  27. Valentini, G., Hamann, H., Dorigo, M.: Efficient decision-making in a self-organizing robot swarm: on the speed versus accuracy trade-off. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015, pp. 1305–1314. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2015)

    Google Scholar 

  28. Watts, D.J.: Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton University Press, USA (2003)

    MATH  Google Scholar 

  29. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(June), 440–442 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded and delivered in partnership between Thales Group, University of Bristol and with the support of the UK Engineering and Physical Sciences Research Council, ref. EP/R004757/1 entitled “Thales-Bristol Partnership in Hybrid Autonomous Systems Engineering (T-B PHASE).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Crosscombe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Crosscombe, M., Lawry, J. (2022). The Impact of Network Connectivity on Collective Learning. In: Matsuno, F., Azuma, Si., Yamamoto, M. (eds) Distributed Autonomous Robotic Systems. DARS 2021. Springer Proceedings in Advanced Robotics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-92790-5_7

Download citation

Publish with us

Policies and ethics