1 Introduction

A first-order theory T is undecidable if there is no algorithm for deciding if \(T\vdash \phi \). If every consistent extension of an undecidable theory T also is undecidable, then T is essentially undecidable.

We introduce two first-order theories, \(\mathsf {WT}\) and \(\mathsf {T}\), over the language \( \mathcal {L}_{ \mathsf {T} } = \lbrace \bot , \langle \cdot ,\,\cdot \rangle , \sqsubseteq \rbrace \) where \(\bot \) is a constant symbol, \(\langle \cdot ,\,\cdot \rangle \) is a binary function symbol and \(\sqsubseteq \) is a binary relation symbol. The intended model for these theories is a term model: The universe is the set of all variable-free \( \mathcal {L}_{ \mathsf {T} } \)-terms. Each term is interpreted as itself, and \(\sqsubseteq \) is interpreted as the subterm relation (s is a subterm of t iff \( s = t \) or \( t = \langle t_1,\,t_2 \rangle \) and s is a subterm of \(t_1 \) or \(t_2\)).

The non-logical axioms of \(\mathsf {WT}\) are given by the two axiom schemes:

\((\mathsf {WT_1}) \qquad \qquad \qquad \qquad \qquad \qquad s\ne t\)

where s and t are distinct variable-free terms.

\((\mathsf {WT_2}) \qquad \qquad \qquad \qquad \forall x [ \ x \sqsubseteq t \;\; \leftrightarrow \;\; \mathop {\bigvee }\limits _{ s\in \mathcal{S}(t) } x = s \ ]\)

where t is a variable-free term and \(\mathcal{S}(t)\) is the set of all subterms of t. There are no other non-logical axioms except those given by these two simple schemes, and at a first glance \(\mathsf {WT}\) seems to be a very weak theory. Still it turns out that Robinson’s essentially undecidable theory \(\mathsf {R}\) is interpretable in \(\mathsf {WT}\), and thus it follows that also \(\mathsf {WT}\) is essentially undecidable. The theory T is given by the four axioms:

It is not difficult to see that \( \mathsf {T} \) is a consistent extension of \( \mathsf {WT} \). Thus, since \(\mathsf {WT}\) is essentially undecidable, we can conclude right away that also \( \mathsf {T} \) is essentially undecidable. Furthermore, since every model of the finitely axiomatizable theory \( \mathsf {T} \) is infinite, \( \mathsf {T} \) cannot be interpretable in \( \mathsf {WT} \), and the obvious conjecture would be that \( \mathsf {T} \) is mutually interpretable with Robinson’s \( \mathsf {Q} \).

Fig. 1.
figure 1

The axioms of \(\mathsf {R}\) are given by axiom schemes where \(n,m\in \mathbb N\) and \(\overline{n}\) denotes the \(n^{\text{ th }}\) numeral, that is, \(\overline{0}\equiv 0\) and \(\overline{n+1} \equiv S\overline{n} \).

The seminal theories \(\mathsf {R}\) and \(\mathsf {Q}\) are theories of arithmetic. The theory \(\mathsf {R}\) is given by axiom schemes, and \(\mathsf {Q}\) is a finitely axiomatizable extension of \(\mathsf {R}\), see Fig. 1 (\(\mathsf {Q}\) is also known as Robinson arithmetic and is more or less Peano arithmetic without the induction scheme). It was proved in Tarski et al. [9] that \(\mathsf {R}\) and \(\mathsf {Q}\) are essentially undecidable. Another seminal essentially undecidable first-order theory is Grzegorcyk’s \(\mathsf {TC}\). This is a theory of concatenation. The language is \(\{*, \alpha , \beta \}\) where \(\alpha \) and \(\beta \) are constant symbols and \(*\) is a binary function symbol. The standard \(\mathsf {TC}\) model is the structure where the universe is \(\{ a, b \}^+\) (all finite nonempty strings over the alphabet \(\{ a, b \}\)), \(*\) is concatenation, \(\alpha \) is the string a and \(\beta \) is the string b. It was proved in Grzegorzyk and Zdanowski [3] that \(\mathsf {TC}\) is essentially undecidable. It was later proved that \(\mathsf {TC}\) is mutually interpretable with \(\mathsf {Q}\), see Visser [10] for further references. The theory \(\mathsf {WTC^{-\epsilon }}\) is a weaker variant of \(\mathsf {TC}\) that has been shown to be mutually interpretable with \(\mathsf {R}\), see Higuchi and Horihata [4] for more details and further references. The axioms of \(\mathsf {TC}\) and \(\mathsf {WTC^{-\epsilon }}\) can be found in Fig. 2.

Fig. 2.
figure 2

\(\mathsf {WTC^{-\epsilon }_1}\) and \(\mathsf {WTC^{-\epsilon }_2}\) are axiom schemes where \(t\in \{ a, b \}^+\) and \(\underline{t}\) is a term inductively defined by: \(\underline{a}\equiv \alpha \), \(\underline{b}\equiv \beta \), \(\underline{au}\equiv \alpha *\underline{u}\) and \(\underline{bu}\equiv \beta *\underline{u}\).

The overall picture shows three finitely axiomatizable and essentially undecidable first-order theories of different character and nature: \(\mathsf {Q}\) is a theory of arithmetic, \(\mathsf {TC}\) is a theory of concatenation, and \(\mathsf {T}\) is a theory of terms (it may also be viewed as a theory of binary trees). All three theories are mutually interpretable with each other, and each of them come with a weaker variant given by axiom schemes. These weaker variants are also essentially undecidable and mutually interpretable with each other.

The theory \(\mathsf {T}\) has, in contrast to \(\mathsf {Q}\) and \(\mathsf {TC}\), a purely universal axiomatization, that is, there are no occurrences of existential quantifiers in the axioms. Moreover, its weaker variant \(\mathsf {WT}\) has a neat and very compact axiomatization compared to \(\mathsf {R}\) and \(\mathsf {WTC^{-\epsilon }}\).

Another interesting theory which is known to be mutually interpretable with \(\mathsf {Q}\), and thus also with \(\mathsf {TC}\) and \(\mathsf {T}\), is the adjunctive set theory \(\mathsf {AST}\). More on \(\mathsf {AST}\) and adjunctive set theory can found in Damnjanovic [2]. For recent results related to the work in the present paper, we refer the reader to Jerabek [5], Cheng [1] and Kristiansen and Murwanashyaka [7].

The rest of this paper is fairly technical, and we will assume that the reader is familiar with first-order theories and the interpretation techniques introduced in Tarski et al. [9]. In Sect. 2 we prove that \(\mathsf {R}\) and \(\mathsf {WT}\) are mutually interpretable. In Sect. 3 we prove that \( \mathsf {Q} \) is interpretable in \(\mathsf {T}\). We expect that \(\mathsf {T}\) can be interpreted in \( \mathsf {Q} \) by standard techniques available in the literature.

2 \(\mathsf {R}\) and \(\mathsf {WT}\) Are Mutually Interpretable

The theory \(\mathsf {R^-}\) over the language of Robinson arithmetic is given by the axiom schemes

$$\begin{array}{l} \mathsf {R^{-}_1}\;\; \overline{n} + \overline{ m } = \overline{ n + m }\;\mathsf {;}\;\;\;\;\;\; \;\;\; \mathsf {R^{-}_2}\;\; \overline{n} \times \overline{ m } = \overline{ n m }\;\mathsf {;}\;\;\;\;\;\; \; \mathsf {R^{-}_3}\;\; \overline{n } \ne \overline{ m} \;\;\; \text{ for } n\ne m\;\mathsf {;}\\ \mathsf {R^{-}_4}\;\; \forall x[ \ x \le \overline{n} \, \leftrightarrow \, x= 0 \, \vee \, \ldots \, \vee \, x=\overline{n} \ ] \end{array}$$

where \(n,m\in \mathbb N\). Recall that \(\overline{n}\) denotes the \(n^{\text{ th }}\) numeral, that is, \(\overline{0}\equiv 0\) and \(\overline{n+1} \equiv S\overline{n}\).

We now proceed to interpret \(\mathsf {R^-}\) in \( \mathsf {WT} \). We choose the domain \( I(x) \equiv \ x=x \) (thus we can just ignore the domain). Furthermore, we translate the successor function S(x) as the function given by \(\lambda x . \langle x,\,\bot \rangle \), and we translate the constant 0 as \(\langle \bot ,\,\bot \rangle \). Let \(\overline{n}^\star \) denote the translation of the numeral \(\overline{n}\). Then we have \(\overline{n+1}^\star \equiv \langle \overline{n}^\star ,\, \bot \rangle \). It follows from \( \mathsf {WT_1} \) that the translation of each instance of \( \mathsf {R^{-}_3}\) is a theorem of \( \mathsf {WT} \) since \(\overline{m}^\star \) and \( \overline{n}^\star \) are different terms whenever \( m \ne n \).

We translate \(x \le y\) as \(x \sqsubseteq y \wedge x\ne \bot \). It is easy to see that

$$\begin{aligned} \mathsf {WT} \vdash \forall x [ \ x \sqsubseteq \overline{n}^\star \wedge x\ne \bot \;\; \leftrightarrow \;\; \bigvee _{ s\in \mathcal{T}(n) } x = s \ ] \end{aligned}$$
(1)

where \(\mathcal{T}(n) = \mathcal{S}(\overline{n}^\star ) \setminus \{ \bot \} \) and \(\mathcal{S}(\overline{n}^\star )\) denotes the set of all subterms of \(\overline{n}^\star \). We observe that \(\mathcal{T}(n) = \{ \overline{k}^\star \mid k\le n\}\) and that (1) indeed is the translation of the axiom scheme \( \mathsf {R^{-}_4}\). Hence we conclude that the translation of each instance of \( \mathsf {R^{-}_4}\) is a theorem of \( \mathsf {WT} \).

Next we discuss the translation of \(+\). The idea is to obtain \(n+i\) through a formation sequence of length i. Such a sequence will be represented by a term of the form

$$\begin{aligned} \langle \ldots \langle \langle \langle \overline{n}^\star ,\,\overline{0}^\star \rangle ,\,\langle \overline{n+1}^\star ,\,\overline{1}^\star \rangle \rangle ,\,\langle \overline{n+2}^\star ,\,\overline{2}^\star \rangle \rangle \ldots ,\, \langle \overline{n+i}^\star ,\,\overline{i}^\star \rangle \rangle . \end{aligned}$$
(2)

Accordingly we translate \(x+y=z\) by the predicate add(xyz) given by the formula

$$\begin{aligned} ( \ y = \overline{0}^\star \wedge z = x \ ) \; \vee \; \Big \{ \ y \ne \overline{0}^\star \; \wedge \; \exists W \big [ \ \langle x,\, \overline{0}^\star \rangle \sqsubseteq W \; \wedge \; \qquad \qquad \qquad \qquad \qquad \\ \forall X \ \forall Y \sqsubseteq y \big [ \ \langle X,\,Y \rangle \sqsubseteq W \; \wedge \; Y \ne y \; \wedge \; Y\ne \bot \;\;\;\; \rightarrow \;\;\;\; \qquad \qquad \qquad \\ \big ( \ \langle \langle X,\,\bot \rangle ,\,\langle Y,\,\bot \rangle \rangle \sqsubseteq W \; \wedge \; ( \ \langle Y,\,\bot \rangle = y \rightarrow \langle X,\,\bot \rangle = z \ ) \ \big ) \ \big ] \ \big ] \ \Big \} \;.\quad \,\,\, \end{aligned}$$

Lemma 1

For any \(m,n\in \mathbb N\), we have

$$\begin{aligned}\mathsf {WT} \vdash \forall z \big [ \ {\text {\textit{add}}}( \overline{n}^\star , \overline{m}^\star , z ) \leftrightarrow z = \overline{n+m}^\star \ \big ] \;. \end{aligned}$$

Proof

First we prove that \(\mathsf {WT} \vdash \) add\(( \overline{n}^\star , \overline{m}^\star , \overline{n+m}^\star )\). This is obvious if \(m=0\). Assume \(m> 0\). Let

$$ S^n_0 \equiv \langle \overline{n}^\star ,\,\overline{0}^\star \rangle \;\;\;\;\; \text{ and } \;\;\;\;\; S^n_{i+1} \equiv \langle S^n_i,\,\langle \overline{n + i + 1 }^\star ,\,\overline{i+1}^\star \rangle \rangle $$

and observe that \(S^n_i\) is of the form (2). We will argue that we can choose the W in the definition of add(xyz) to be the term \(S^n_m\).

So let \(W= S^n_m\). By the axioms of \( \mathsf {WT} \), we have \(\langle \overline{n}^\star ,\, \overline{0}^\star \rangle \sqsubseteq W \). Assume

$$ \langle X,\,Y \rangle \sqsubseteq W \text{ and } Y \ne y=\overline{m}^\star \text{ and } Y \sqsubseteq y = \overline{m}^\star \text{ and } Y\ne \bot . $$

By the axioms of \( \mathsf {WT}\), we have that \(Y \sqsubseteq \overline{m}^\star \), \(Y \ne \overline{m}^\star \) and \(Y\ne \bot \) imply \( Y = \overline{k}^\star \) for some \(k < m\). Since \( \langle X,\,Y \rangle \sqsubseteq W \), we know by \( \mathsf {WT_2}\) that \(\langle X,\,Y \rangle \) is one of the subterms of W. By \( \mathsf {WT_1} \) and the form of \(S^n_m\), we conclude that \(X = \overline{ n+k}^\star \). Furthermore, the form of \(S^n_m\) and \( \mathsf {WT_2} \) then ensures that \(\langle \langle X,\,\bot \rangle ,\, \langle Y,\,\bot \rangle \rangle \sqsubseteq W = S^n_m \). Moreover, if \( \langle Y,\,\bot \rangle = \overline{m}^\star \), then by \( \mathsf {WT_1}\), we must have \(k = m-1\), and thus, \( \langle X,\,\bot \rangle = \langle \overline{ n+ (m-1)}^\star ,\, \bot \rangle = \overline{ n+ m }^\star \). This proves that we can deduce add\(( \overline{n}^\star , \overline{m}^\star , \overline{n+m}^\star )\) from the axioms of \(\mathsf {WT}\), and thus we also have

$$\begin{aligned}\mathsf {WT} \vdash \forall z \big [ \ z = \overline{n+m}^\star \rightarrow \ {\text {\textit{add}}}( \overline{n}^\star , \overline{m}^\star , z ) \big ] . \end{aligned}$$

Next we prove that the converse implication add\(( \overline{n}^\star , \overline{m}^\star , z ) \rightarrow z = \overline{n+m}^\star \) follows from the axioms of \(\mathsf {WT}\) (and thus the lemma follows). This is obvious when \(m=0\). Assume \(m\ne 0\) and add\(( \overline{n}^\star , \overline{m}^\star , z )\). Then we have W such that \(\langle \overline{n}^\star ,\, \overline{0}^\star \rangle \sqsubseteq W\) and

$$\begin{aligned} \forall X \ \forall Y \sqsubseteq \overline{m}^\star \big [ \ \langle X,\,Y \rangle \sqsubseteq W \; \wedge \; Y \ne \overline{m}^\star \; \wedge \; Y\ne \bot \;\;\;\; \rightarrow \;\;\;\; \nonumber \qquad \qquad \qquad \,\, \\ \big ( \ \langle \langle X,\,\bot \rangle ,\,\langle Y,\,\bot \rangle \rangle \sqsubseteq W \; \wedge \; ( \ \langle Y,\,\bot \rangle = \overline{m}^\star \rightarrow \langle X,\,\bot \rangle = z \ ) \ \big ) \ \big ]. \end{aligned}$$
(3)

Since \(\langle n,\, \overline{0}^\star \rangle \sqsubseteq W\) and (3) hold, we have \(\langle \overline{n+k+1}^\star ,\, \overline{k+1}^\star \rangle \sqsubseteq W\) for any \(k<m\). It also follows from (3) that \(z=\overline{n+k+1}^\star \) when \(m=k+1\).    \(\square \)

It follows from the preceding lemma that there for any \(n,m\in \mathbb N\) exists a unique \(k\in \mathbb N\) such that \(\mathsf {WT} \vdash \) add\((\overline{n}^\star ,\overline{m}^\star ,\overline{k}^\star )\). We translate \(x+y=z\) by the predicate \(\phi _{+}\) where \(\phi _{ + } (x, y, z )\) is the formula

$$\begin{aligned} \big ( \ \exists ! u [ {\text {\textit{add}}} (x, y, u) ] \ \wedge \ {\text {\textit{add}}} (x, y, z) \ \big ) \; \vee \; \big ( \ \lnot \exists ! u [ {\text {\textit{add}}} (x, y, u) ] \ \wedge \ z=\bot \ \big ).\end{aligned}$$
(4)

The second disjunct of (4) ensures the functionality of our translation, that is, it ensures that \(\mathsf {WT} \vdash \forall xy\exists !x\phi _{+}(x,y,z)\) (the same technique is used in [6]). By Lemma 1, we have \(\mathsf {WT} \vdash \phi _{+}(\overline{n}^\star ,\overline{m}^\star ,\overline{n+m}^\star )\). This shows that the translation of any instance of the axiom scheme \(\mathsf {R^{-}_1} \) can be deduced from the axioms of \(\mathsf {WT}\).

We can also achieve a translation of \(x \times y = z\) such that the translation of each instance of \(\mathsf {R^{-}_2}\) can be deduced from the axioms of \(\mathsf {WT}\). Such a translation claims the existence of a term \(S^n_m\) where

$$\begin{aligned} S^n_1 \equiv \langle \overline{n}^\star ,\,\overline{1}^\star \rangle \;\;\;\;\; \text{ and } \;\;\;\;\; S^n_{i+1} \equiv \langle S^n_i,\,\langle \overline{ (i + 1)n }^\star ,\,\overline{i+1}^\star \rangle \rangle \end{aligned}$$

and will more or less be based on the same ideas as our translation of \(x + y = z\). We omit the details.

Theorem 2

\( \mathsf {R}\) and \( \mathsf {WT} \) are mutually interpretable.

Proof

We have seen how to interpret \( \mathsf {R^{-} } \) in \( \mathsf {WT} \). It follows straightforwardly from results proved in Jones and Shepherdson [6] that \( \mathsf {R^{-} } \) and \( \mathsf {R} \) are mutually interpretable. Thus \( \mathsf {R } \) is interpretable in \( \mathsf {WT} \). A result of Visser [11] states that a theory is interpretable in \( \mathsf {R} \) if and only if it is locally finitely satisfiable, that is, each finite subset of the non-logical axioms has a finite model. Since \( \mathsf {WT} \) clearly is locally finitely satisfiable, \( \mathsf {WT} \) is interpretable in \( \mathsf {R} \).    \(\square \)

3 \( \mathsf {Q} \) is Interpretable in \( \mathsf {T} \)

The language of the arithmetical theory \(\mathsf {Q^-}\) is \(\{0, S, M, A \}\) where 0 is a constant symbol, S is a unary function symbol, and A and M are ternary predicate symbols. The non-logical axioms of the first-order theory \( \mathsf {Q^{-} } \) are the the following:

$$\begin{array}{l} \mathsf {A}\; \forall x y z_1 z_2 [ \ A(x,y, z_1 ) \wedge A(x,y, z_2 ) \rightarrow z_1=z_2 \ ] \;\mathsf {;}\\ \mathsf {M}\; \forall x y z_1 z_2 [ \ M(x,y, z_1 ) \wedge M(x,y, z_2 ) \rightarrow z_1=z_2 \ ] \;\mathsf {;}\\ \mathsf {Q_1}\; \forall x y [ \ x \ne y \rightarrow Sx \ne Sy \ ] \;\mathsf {;}\;\;\;\; \mathsf {Q_2}\; \forall x [ \ Sx \ne 0 \ ] \;\mathsf {;}\;\;\;\; \mathsf {Q_3}\; \forall x [ \ x = 0 \vee \exists y [ \ x= Sy \ ] \ ] \;\mathsf {;}\\ \mathsf {G_4}\; \forall x [ \ A (x, 0, x ) \ ] \;\mathsf {;}\;\;\;\; \mathsf {G_5}\; \forall x y u [ \ \exists z [ \ A (x, y, z ) \wedge u = Sz \ ] \rightarrow A (x, Sy, u ) \ ] \;\mathsf {;}\\ \mathsf {G_6}\; \forall x [ \ M (x, 0, 0 ) \ ] \;\mathsf {;}\;\;\;\; \mathsf {G_7}\; \forall x y u [ \ \exists z [ \ M (x, y, z ) \wedge A (z, x, u ) \ ] \rightarrow M (x, Sy, u ) \ ] \; . \end{array} $$

Svejdar [8] proved that \( \mathsf {Q^{-} } \) and \( \mathsf {Q} \) are mutually interpretable. We will prove that \( \mathsf {Q^{-} } \) is interpretable in \( \mathsf {T } \).

The first-order theory \(\mathsf {T^+}\) is \(\mathsf {T}\) extended by the two non-logical axioms

$$\begin{array}{l} \mathsf {T_5} \;\, \forall x [ \ x \sqsubseteq x \ ] \;\;\; \text{ and } \;\;\; \mathsf {T_6} \;\, \forall x y z [ \ x \sqsubseteq y \, \wedge \, y \sqsubseteq z \; \rightarrow \; x \sqsubseteq z \ ]. \end{array} $$

Lemma 3

\( \mathsf {T^+}\) is interpretable in \(\mathsf {T} \).

Proof

We simply relativize quantification to the domain

$$ I \;\; = \;\; \lbrace \ x \mid \ x \sqsubseteq x \; \wedge \; \forall u v [ \ u \sqsubseteq v \wedge v \sqsubseteq x \, \rightarrow \, u \sqsubseteq x \ ] \ \rbrace \ . $$

Suppose \( x_1 , x_2 \in I\). We show that \(\langle x_1,\, x_2 \rangle \in I \). Since \(\langle x_1,\, x_2 \rangle =\langle x_1,\, x_2 \rangle \), we have \( \langle x_1,\, x_2 \rangle \sqsubseteq \langle x_1,\, x_2 \rangle \) by \( \mathsf {T_4} \). Suppose now that \( u \sqsubseteq v \wedge v \sqsubseteq \langle x_1,\, x_2 \rangle \). We need to show that \( u \sqsubseteq \langle x_1,\, x_2 \rangle \). By \( \mathsf {T_4} \) and \( v \sqsubseteq \langle x_1,\, x_2 \rangle \), at least one of the following three cases holds: (a) \(v = \langle x_1,\, x_2 \rangle \), (b) \(v \sqsubseteq x_1\), (c) \(v \sqsubseteq x_2\). Case (a): Since \( u \sqsubseteq v\) and \(v = \langle x_1,\, x_2 \rangle \), we have \( u \sqsubseteq \langle x_1,\, x_2 \rangle \) by our logical axioms. Case (b): \( u \sqsubseteq v \wedge v \sqsubseteq x_1 \) implies \( u \sqsubseteq x_1 \) since \( x_1 \in I \). By \( \mathsf {T_4} \), we have \( u \sqsubseteq \langle x_1,\, x_2 \rangle \). Case (c): We have \( u \sqsubseteq \langle x_1,\, x_2 \rangle \) by an argument symmetric to the one used in Case (b). Hence, \( \forall u v [ \ u \sqsubseteq v \wedge v \sqsubseteq \langle x_1,\, x_2 \rangle \rightarrow u \sqsubseteq \langle x_1,\, x_2 \rangle \ ] \).

This proves that I is closed under \(\langle \cdot ,\,\cdot \rangle \). It follows from \( \mathsf {T_3} \) that \(\bot \in I \), and thus I satisfies the domain condition. Clearly, the translation of each non-logical axiom of \( \mathsf {T^+} \) is a theorem of \( \mathsf {T} \).    \(\square \)

We now proceed to interpret \( \mathsf {Q^{-} } \) in \( \mathsf {T^+} \). We choose the domain N given by

$$ N(x) \; \equiv \; x\ne \bot \; \wedge \; \forall y \sqsubseteq x [ \ y = \bot \, \vee \, \exists z [ \ y = \langle z,\,\bot \rangle \ ] \ ] \ . $$

Lemma 4

We have (i) \( \mathsf {T^+}\vdash N(\langle \bot ,\,\bot \rangle )\), (ii) \( \mathsf {T^+}\vdash \forall x[ N(x)\rightarrow N(\langle x,\,\bot \rangle )]\) and (iii) \(\mathsf {T^+}\vdash \forall y z [ \ N(y) \, \wedge \, z \sqsubseteq y \; \rightarrow \; ( \ z=\bot \, \vee \, N(z) \ ) \ ]\).

Proof

It follows from \( \mathsf {T_1}\), \( \mathsf {T_3} \) and \( \mathsf {T_4} \) that (i) holds. In order to see that (ii) holds, assume N(x) (we will argue that \(N(\langle x,\,\bot \rangle )\) holds). Suppose \( y \sqsubseteq \langle x,\,\bot \rangle \). Now, \(N(\langle x,\,\bot \rangle )\) follows from

$$\begin{aligned} y = \bot \; \vee \; \exists z [ \ y = \langle z,\,\bot \rangle \ ] . \end{aligned}$$
(5)

Thus it is sufficient to argue that (5) holds. By \( \mathsf {T_4} \), we know that \( y \sqsubseteq \langle x,\,\bot \rangle \) implies \( y = \langle x,\,\bot \rangle \vee y \sqsubseteq x \vee y\sqsubseteq \bot \). The case \( y = \langle x,\,\bot \rangle \): We obviously have \(\exists z [ \ y = \langle z,\,\bot \rangle \ ]\) and thus (5) holds. The case \( y \sqsubseteq x \): (5) holds since N(x) holds. The case \(y \sqsubseteq \bot \): We have \( y = \bot \) by \( \mathsf {T_3} \), and thus (5) holds. This proves (ii).

We turn to the proof of (iii). Suppose \(N(y) \wedge z \sqsubseteq y\) (we show \( z = \bot \vee N(z) \)). Assume \(w\sqsubseteq z\). By \( \mathsf {T_6} \), we have \( w \sqsubseteq y \), moreover, since N(y) holds, we have \( w = \bot \vee \exists u [ w = \langle u,\,\bot \rangle ] \). Thus, we conclude that

$$\begin{aligned} \forall w\sqsubseteq z [ \ w = \bot \, \vee \, \exists u [ \ w = \langle u,\,\bot \rangle \ ] \ ]. \end{aligned}$$
(6)

Now

$$ z=\bot \; \vee \; \underbrace{( \ z\ne \bot \; \wedge \; \forall w\sqsubseteq z [ \ w = \bot \, \vee \, \exists u [ \ w = \langle u,\,\bot \rangle \ ] \ ] \ )}_{N(z)} $$

follows tautologically from (6).    \(\square \)

We interpret 0 as \(\langle \bot ,\,\bot \rangle \). We interpret the successor function Sx as \(\lambda x . \langle x,\,\bot \rangle \). To improve the readability we will occasionally write \(\dot{\mathrm {0}}\) in place of \(\langle \bot ,\,\bot \rangle \), \(\dot{\mathrm {S}} t \) in place of \(\langle t,\,\bot \rangle \) and \(t\in N\) in place of N(t). We will also write \(\exists x\in N [ \ \eta \ ]\) and \(\forall x \in N [ \ \eta \ ]\) in place of, respectively, \(\exists x [ \ N(x) \wedge \eta \ ]\) and \(\forall x [ \ N(x) \rightarrow \eta \ ]\). Furthermore, \(\mathbf {Q}x_1, \ldots , x_n\in N\) is shorthand for \(\mathbf {Q}x_1\in N\ldots \mathbf {Q}x_n\in N\) where \(\mathbf {Q}\) is either \(\forall \) or \(\exists \).

Lemma 5

The translations of \( \mathsf {Q_1} \), \( \mathsf {Q_2} \) and \( \mathsf {Q_3} \) are theorems of \( \mathsf {T^+}\).

Proof

The translation of \( \mathsf {Q_1} \) is \(\forall x, y\in N [ \ x \ne y \rightarrow \dot{\mathrm {S}} x \ne \dot{\mathrm {S}} y \ ] \). By \(\mathsf {T_2}\), we have \( x \ne y \rightarrow \dot{\mathrm {S}} x \ne \dot{\mathrm {S}} y \) for any xy, and thus, the translation of \( \mathsf {Q_1} \) is a theorem of \( \mathsf {T^+}\).

The translation of \( \mathsf {Q_2}\) is \( \forall x\in N [ \ \dot{\mathrm {S}} x \ne \dot{\mathrm {0}}\ ]\). Assume \(x\in N\). Then we have \(x\ne \bot \), and by \(\mathsf {T_2}\), we have \(\dot{\mathrm {S}} n \equiv \langle x,\,\bot \rangle \ne \langle \bot ,\,\bot \rangle \equiv \dot{\mathrm {0}}\).

The translation of \( \mathsf {Q_3}\) is \( \forall x\in N [ \ x= \dot{\mathrm {0}}\vee \exists y\in N[ \ x= \dot{\mathrm {S}} y \ ] \ ]\). Assume \(x\in N\), that is, assume

$$\begin{aligned} x\ne \bot \; \wedge \; \forall y \sqsubseteq x [ \ y = \bot \, \vee \, \exists z [ \ y = \langle z,\,\bot \rangle \ ] \ ] \ . \end{aligned}$$
(7)

By \(\mathsf {T_5}\), we have \(x\sqsubseteq x\). By (7) and \(x\sqsubseteq x\), we have

$$\begin{aligned} x\ne \bot \; \wedge \; ( \ x = \bot \, \vee \, \exists z [ \ x = \langle z,\,\bot \rangle \ ] \ ) \end{aligned}$$

and then, by a tautological inference, we also have \(\exists z [ x = \langle z,\,\bot \rangle ]\). Thus, we have z such that \( \langle z,\,\bot \rangle \equiv \dot{\mathrm {S}} z = x \in N\). By Lemma 4 (iii), we have \(z=\bot \vee z\in N\). If \(z=\bot \), we have \( x = \langle \bot ,\,\bot \rangle \equiv \dot{\mathrm {0}}\). If \(z\in N\), we have \( z \in N\) such that \(x = \dot{\mathrm {S}} z \). Thus, \(\mathsf {T^+} \vdash \forall x\in N [ x= \dot{\mathrm {0}}\vee \exists y\in N[ x= \dot{\mathrm {S}} y ] ]\).    \(\square \)

Before we give the translation of A, we will provide some intuition. The predicate A(abc) holds in the standard model for \(\mathsf {Q^{-}}\) iff \(a+b=c\). Let \(\widetilde{0}\equiv \dot{\mathrm {0}}\) and \(\widetilde{n+1}\equiv \dot{\mathrm {S}} \widetilde{n} \), and observe that \(a+b=c\) iff there exists an \(\mathcal {L}_{\mathsf {T}}\)-term of the form

$$\begin{aligned} \langle \ldots \langle \langle \langle \bot ,\,\langle \widetilde{a},\,\widetilde{0} \rangle \rangle ,\, \langle \widetilde{a+1},\,\widetilde{1} \rangle \rangle ,\,\langle \widetilde{a+2},\,\widetilde{2} \rangle \rangle \ldots ,\,\langle \widetilde{a+b},\,\widetilde{b} \rangle \rangle \end{aligned}$$
(8)

where \(c=a+b\). We will give a predicate \(\phi _A\) such that \(\phi _A(\widetilde{a},\widetilde{b},w)\) holds in \(\mathsf {T^{+}}\) iff w is of the form (8). Thereafter we will use \(\phi _A\) to give the translation \(\varPsi _A\) of A.

Let \(\phi _{A} (x, y, w ) \equiv \)

$$\begin{aligned} ( \ y = \dot{\mathrm {0}}\rightarrow w= \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle \ ) \; \wedge \; \exists w^{ \prime } \exists z\in N [ \ w = \langle w^{ \prime },\,\langle z,\,y \rangle \rangle \ ] \; \wedge \; \qquad \qquad \quad \\ \forall u \forall Y, Z\in N [ \ \theta _{A} (u, w, Y, Z ) \ ] \end{aligned}$$

where \(\theta _{A} (u, w, Y, Z ) \equiv \)

figure a

The translation \(\varPsi _A\) of A is \(\varPsi _{A} (x, y, z ) \equiv \)

$$ \exists w \big [ \ \phi _{A} (x , y , w ) \; \wedge \; \exists w^{ \prime } [ \ w = \langle w^{ \prime },\, \langle z,\,y \rangle \rangle \ ]\; \wedge \; \forall u [ \ \phi _{A} (x , y , u ) \rightarrow u=w \ ] \ \big ] \ . $$

Lemma 6

$$\mathsf {T^{+}} \vdash \forall x\in N \forall w [ \ \phi _{A}(x, \dot{\mathrm {0}}, w) \; \leftrightarrow \; w = \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle \ ] \; . $$

Proof

We assume \(x\in N\) and prove the equivalence

$$\begin{aligned} \phi _{A}(x, \dot{\mathrm {0}}, w) \; \leftrightarrow \; w = \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle \end{aligned}$$
(9)

The left-right direction of (9) follows straightforwardly from the definition of \(\phi _A\). To prove the right-left implication of (9), we need to prove \( \phi _{A}(x, \dot{\mathrm {0}}, \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle )\). It is easy to see that \( \phi _{A}(x, \dot{\mathrm {0}}, \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle )\) holds if

$$\begin{aligned} \forall u \forall Y, Z\in N [ \ \theta _{A} (u, \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle , Y, Z ) \ ] \end{aligned}$$
(10)

holds, and to show (10), it suffices to show that

$$\begin{aligned} x,Y,Z\in N \; \text{ and } \; \langle u,\, \langle Z,\,Y \rangle \rangle \sqsubseteq \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle \; \text{ and } \; Y \ne \dot{\mathrm {0}}\end{aligned}$$
(11)

is a contradiction. (If (11) is a contradiction, then (10) will hold as the antecedent of \( \theta _{A}\) will be false for all \(x,Y,Z\in N \) and all u.)

By \( \mathsf {T_4} \) and \( \langle u,\, \langle Z,\,Y \rangle \rangle \sqsubseteq \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle \) we have to deal with the following three cases: (a) \( \langle u,\, \langle Z,\,Y \rangle \rangle = \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle \), (b) \( \langle u,\, \langle Z,\,Y \rangle \rangle \sqsubseteq \bot \) and (c) \( \langle u,\, \langle Z,\,Y \rangle \rangle \sqsubseteq \langle x,\,\dot{\mathrm {0}} \rangle \). Case: (a): We have \(Y=\dot{\mathrm {0}}\) by \( \mathsf {T_2} \), but we have \(Y \ne \dot{\mathrm {0}}\) in (11). Case (b): We have \( \langle u,\, \langle Z,\,Y \rangle \rangle = \bot \) by \( \mathsf {T_3} \), and this contradicts \( \mathsf {T_1} \). Case (c): By \( \mathsf {T_4} \), this case splits into the three subcases: (a’) \( \langle u,\, \langle Z,\,Y \rangle \rangle = \langle x,\,\dot{\mathrm {0}} \rangle \), (b’) \( \langle u,\, \langle Z,\,Y \rangle \rangle \sqsubseteq x \) and (c’) \( \langle u,\, \langle Z,\,Y \rangle \rangle \sqsubseteq \dot{\mathrm {0}}\). Case (a’): We have \( \langle u,\, \langle Z,\,Y \rangle \rangle = \langle x,\,\langle \bot ,\,\bot \rangle \rangle \) since \(\dot{\mathrm {0}}\) is shorthand for \(\langle \bot ,\,\bot \rangle \). Thus, by \( \mathsf {T_2} \), we have \(Z=\bot \) and \(Y=\bot \). This contradicts \(Y,Z\in N\). Case (b’): We have \( \langle u,\, \langle Z,\,Y \rangle \rangle \sqsubseteq x \) and \(x\in N\). By Lemma 4 (iii), we have \(\langle u,\, \langle Z,\,Y \rangle \rangle =\bot \) or \(\langle u,\, \langle Z,\,Y \rangle \rangle \in N\). Now, \(\langle u,\, \langle Z,\,Y \rangle \rangle =\bot \) contradicts \( \mathsf {T_1} \). Furthermore, by our definitions, \(\langle u,\, \langle Z,\,Y \rangle \rangle \in N\) implies that

$$ \forall y_0 \sqsubseteq \langle u,\, \langle Z,\,Y \rangle \rangle [ \ y_0 = \bot \, \vee \, \exists z_0 [ \ y_0 = \langle z_0,\,\bot \rangle \ ] \ ] . $$

By \( \mathsf {T_5} \), we have \( \langle u,\, \langle Z,\,Y \rangle \rangle = \bot \, \vee \, \exists z_0 [ \ \langle u,\, \langle Z,\,Y \rangle \rangle = \langle z_0,\,\bot \rangle \ ] \), and this yields a contradiction together with \( \mathsf {T_1} \) and \( \mathsf {T_2} \). Case (c’) is similar to Case (a’), but a bit simpler. This completes the proof of the lemma.    \(\square \)

Lemma 7

$$\begin{aligned} \mathsf {T^{+}} \vdash \forall x, y\in N \forall z w w^{ \prime } [ \ w = \langle w^{ \prime },\,\langle z,\,y \rangle \rangle \; \wedge \; \phi _{A}(x, y, w) \;\; \rightarrow \;\; \qquad \qquad \qquad \quad \\ \phi _{A}(x, \dot{\mathrm {S}} y , \langle w,\,\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle ) \ ] . \end{aligned}$$

Proof

We assume

$$\begin{aligned} x, y\in N \text{ and } w = \langle w^{ \prime },\,\langle z,\,y \rangle \rangle \text{ and } \phi _{A}(x, y, w)\; . \end{aligned}$$
(12)

We need to prove \(\phi _{A}(x, \dot{\mathrm {S}} y , \langle w,\,\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle ) \equiv \)

$$\begin{aligned} ( \ \dot{\mathrm {S}} y = \dot{\mathrm {0}}\rightarrow w= \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle \ ) \; \wedge \; \nonumber \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ \exists w_0 \exists z_0\in N [ \ \langle w,\,\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle = \langle w_0,\,\langle z_0,\,\dot{\mathrm {S}} y \rangle \rangle \ ] \; \wedge \; \nonumber \qquad \qquad \qquad \qquad \quad \\ \forall u \forall Y, Z\in N [ \ \theta _{A} (u, \langle w,\,\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle , Y, Z ) \ ] \qquad \qquad \quad \end{aligned}$$
(13)

First we prove

$$\begin{aligned} z\in N \;\; \text{ and } \;\; \dot{\mathrm {S}} z \in N \; \end{aligned}$$
(14)

Since \(\phi _{A}(x, y, w)\) holds by our assumptions (12), we have \(z_1 \in N\) and \(w_1\) such that \(w = \langle w_1,\,\langle z_1,\,y \rangle \rangle \). We have also assumed \( w = \langle w^{ \prime },\,\langle z,\,y \rangle \rangle \). By \( \mathsf {T_2} \), we have \(z=z_1\), and thus \(z\in N\). By Lemma 4 (ii), we have \(\dot{\mathrm {S}} z \in N\). This proves (14).

The second conjunct of (13) follows straightforwardly from (14). (simply let \(z_0\) be \(\dot{\mathrm {S}} z \) and let \(w_0\) be w). The first conjunct follows easily from \( \mathsf {T_2} \) and the assumption \(y\in N\). Thus, we are left to prove the third conjunct of (13), namely

$$\begin{aligned} \forall u \forall Y, Z\in N \big [ \ \langle u,\,\langle Z,\,Y \rangle \rangle \sqsubseteq \langle w,\,\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle \; \wedge \; Y \ne \dot{\mathrm {0}}\rightarrow \nonumber \qquad \qquad \qquad \qquad \qquad \\ \exists v \ \exists Y^{ \prime } Z^{ \prime }\in N \big [ \ Z = \dot{\mathrm {S}} Z^{ \prime } \; \wedge \; Y = \dot{\mathrm {S}} Y^{ \prime } \; \wedge \; u = \langle v,\,\langle Z^{ \prime },\,Y^{\prime } \rangle \rangle \; \wedge \; \nonumber \qquad \qquad \\ ( \ Y^{ \prime } = \dot{\mathrm {0}}\rightarrow ( \ Z^{ \prime } = x \, \wedge \, v=\bot \ ) \ ) \ \big ] \ \big ] \quad \quad \quad \end{aligned}$$
(15)

In order to do so, we assume

$$\begin{aligned} Y, Z\in N \text{ and } \langle u,\,\langle Z,\,Y \rangle \rangle \sqsubseteq \langle w,\,\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle \text{ and } Y \ne \dot{\mathrm {0}}\end{aligned}$$
(16)

and prove

$$\begin{aligned} \exists v \ \exists Y^{ \prime } Z^{ \prime }\in N \big [ \ Z = \dot{\mathrm {S}} Z^{ \prime } \; \wedge \; Y = \dot{\mathrm {S}} Y^{ \prime } \; \wedge \; u = \langle v,\,\langle Z^{ \prime },\,Y^{\prime } \rangle \rangle \; \wedge \; \nonumber \qquad \qquad \\ ( \ Y^{ \prime } = \dot{\mathrm {0}}\rightarrow ( \ Z^{ \prime } = x \, \wedge \, v=\bot \ ) \ ) \ \big ]. \end{aligned}$$
(17)

By our assumptions (16), we have \(\langle u,\,\langle Z,\,Y \rangle \rangle \sqsubseteq \langle w,\,\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle \), and then \( \mathsf {T_4} \) yields three cases: (a) \(\langle u,\,\langle Z,\,Y \rangle \rangle = \langle w,\,\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle \), (b) \(\langle u,\,\langle Z,\,Y \rangle \rangle \sqsubseteq w\) and (c) \(\langle u,\,\langle Z,\,Y \rangle \rangle \sqsubseteq \langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \). We prove that that (17) holds in each of these three cases.

Case (a): By \( \mathsf {T_2} \), we have \(u=w\), \(Z= \dot{\mathrm {S}} z \) and \(Y= \dot{\mathrm {S}} y \). By (14), we have \(z\in N\). By (12), we have \(y\in N\). Moreover, by (12), we also have \(u=w = \langle w^{ \prime },\,\langle z,\,y \rangle \rangle \). Thus there exist v and \( Y^{ \prime }, Z^{ \prime }\in N \) such that

$$ Z = \dot{\mathrm {S}} Z^{ \prime } \; \wedge \; Y = \dot{\mathrm {S}} Y^{ \prime } \; \wedge \; u = \langle v,\,\langle Z^{ \prime },\,Y^{\prime } \rangle \rangle \; .$$

If \(y = \dot{\mathrm {0}}\), we must have \( \langle v,\,\langle z,\,y \rangle \rangle = w = \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle \) since \( \phi _{A}(x, y, w) \) holds by our assumptions (12). By \( \mathsf {T_2} \), this implies \(z = x \) and \(v= \bot \). This proves that (17) holds in Case (a).

Case (b): By our assumptions (12), we have \(\phi _{A}(x, y, w)\), and thus we also have \(\theta _{A}(u, w, Y, Z)\equiv \)

$$\begin{aligned} \langle u,\,\langle Z,\,Y \rangle \rangle \sqsubseteq w \; \wedge \; Y \ne \dot{\mathrm {0}}\rightarrow \nonumber \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ \exists v \ \exists Y^{ \prime } Z^{ \prime }\in N \big [ \ Z = \dot{\mathrm {S}} Z^{ \prime } \; \wedge \; Y = \dot{\mathrm {S}} Y^{ \prime } \; \wedge \; u = \langle v,\,\langle Z^{ \prime },\,Y^{\prime } \rangle \rangle ) \; \wedge \; \nonumber \qquad \\ ( \ Y^{ \prime } = \dot{\mathrm {0}}\rightarrow ( \ Z^{ \prime } = x \, \wedge \, v=\bot \ ) \ ) \ \big ] \ \!. \quad \quad \end{aligned}$$
(18)

We are dealing with a case where the antecedent of (18) holds, and thus (17) holds.

Case (c): This case is not possible. By \( \mathsf {T_4} \), this case splits into the subcases: (a’) \(\langle u,\,\langle Z,\,Y \rangle \rangle = \langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \), (b’) \(\langle u,\,\langle Z,\,Y \rangle \rangle \sqsubseteq \dot{\mathrm {S}} z \) and (c’) \(\langle u,\,\langle Z,\,Y \rangle \rangle \sqsubseteq \dot{\mathrm {S}} y \). We prove that each of these subcases contradicts our axioms. Case (a’): Recall that \(\dot{\mathrm {S}} y \) is shorthand for \(\langle y,\,\bot \rangle \). Thus, by \( \mathsf {T_2} \), we have \(Y=\bot \). This contradicts the assumption (12) that \(Y\in N\). Case (b’): By Lemma 4 (iii), we have \( \langle u,\,\langle Z,\,Y \rangle \rangle =\bot \, \vee \, N(\langle u,\,\langle Z,\,Y \rangle \rangle )\). Now, \(\langle u,\,\langle Z,\,Y \rangle \rangle =\bot \) contradicts \(\mathsf {T_1}\). Furthermore, \(N(\langle u,\,\langle Z,\,Y \rangle \rangle )\) implies that there is \(z_0\) such that \(\langle u,\,\langle Z,\,Y \rangle \rangle = \langle z_0,\,\bot \rangle \). By \( \mathsf {T_2}\), we have \(\langle Z,\,Y \rangle =\bot \). This contradicts \( \mathsf {T_1}\). Case (c’) is similar to Case (b’). This proves that (17) holds, and thus we conclude that the lemma holds.    \(\square \)

Lemma 8

figure b

Proof

Let \(x,y\in N\) and assume \(\phi _{A} (x, \dot{\mathrm {S}} y , w )\). Thus, we have \(w'\) and \(z\in N\) such that

$$\begin{aligned} w = \langle w^{ \prime },\,\langle z,\,\dot{\mathrm {S}} y \rangle \rangle \;\; \text{ and } \;\; \forall u \forall Y, Z\in N [ \ \theta _{A} (u, w, Y, Z ) \ ] \end{aligned}$$
(19)

Use the assumptions (19) to prove that \(\phi _{A}(x, y, w^{ \prime } )\equiv \)

$$\begin{aligned} ( \ y = \dot{\mathrm {0}}\rightarrow w' = \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle \ ) \; \wedge \; \exists w^{ \prime \prime } \exists z\in N [ \ w' = \langle w^{ \prime \prime },\,\langle z,\,y \rangle \rangle \ ] \; \wedge \; \nonumber \qquad \qquad \\ \forall u \forall Y, Z\in N [ \ \theta _{A} (u, w', Y, Z ) \ ] \qquad \end{aligned}$$
(20)

holds. We omit the details.    \(\square \)

Lemma 9

The translations of \( \mathsf {A} \), \( \mathsf {G_4} \) and \( \mathsf {G_5} \) are theorems of \(\mathsf {T^+}\).

Proof

The translation of the axiom \( \mathsf {A} \) is

$$ \forall x,y,z_1,z_2\in N [ \ \varPsi _A(x,y,z_1) \wedge \varPsi _A(x,y,z_2) \; \rightarrow \; z_1 = z_2 \ ]\; . $$

Assume \(\varPsi _A(x,y,z_1)\) and \(\varPsi _A(x,y,z_2)\). Then it follows straightforwardly from the definition of \(\varPsi _A\) and \( \mathsf {T_2}\) that \( z_1 = z_2\). Hence the translation is a theorem of \( \mathsf {T^+} \).

The translation of \(\mathsf {G_4} \) is \(\forall x \in N [ \varPsi _A(x,\dot{\mathrm {0}}, x) ]\), that is

$$\begin{aligned} \forall x \in N \exists w \big [ \ \phi _{A} (x , \dot{\mathrm {0}}, w ) \; \wedge \; \exists w^{ \prime } [ \ w = \langle w^{ \prime },\, \langle x,\,\dot{\mathrm {0}} \rangle \rangle \ ] \; \wedge \; \nonumber \qquad \qquad \qquad \qquad \qquad \\ \forall u [ \ \phi _{A} (x , \dot{\mathrm {0}}, u ) \rightarrow u=w \ ] \ \big ] \ . \end{aligned}$$

We have

$$\mathsf {T^{+}} \vdash \phi _{A}(x, \dot{\mathrm {0}}, \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle ) \text{ and } \mathsf {T^{+}} \vdash \forall u [\phi _{A}(x, \dot{\mathrm {0}}, u) \rightarrow u= \langle \bot ,\,\langle x,\,\dot{\mathrm {0}} \rangle \rangle $$

by Lemma 6, and it easy to see that the translation of \( \mathsf {G_4} \) is a theorem of \( \mathsf {T^+} \).

The translation of \(\mathsf {G_5} \) is

$$\begin{aligned} \forall x, y, u \in N [ \ \exists z\in N [ \ \varPsi _A (x, y, z ) \wedge u = \dot{\mathrm {S}} z \ ] \rightarrow \varPsi _A (x, \dot{\mathrm {S}} y , u ) \ ] \; . \end{aligned}$$
(21)

In order to prove that (21) can be deduced from the axioms of \(\mathsf {T^+}\), we assume \(\varPsi _A (x, y, z ) \wedge u = \dot{\mathrm {S}} z \). Then we need to prove \(\varPsi _A (x, \dot{\mathrm {S}} y , \dot{\mathrm {S}} z ) \equiv \)

$$\begin{aligned} \exists w \big [ \ \phi _{A} (x , \dot{\mathrm {S}} y , w ) \; \wedge \; \exists w^{ \prime } [ \ w = \langle w^{ \prime },\, \langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle \ ] \; \wedge \; \nonumber \qquad \qquad \qquad \qquad \qquad \qquad \\ \forall u [ \ \phi _{A} (x , \dot{\mathrm {S}} y , u ) \rightarrow u=w \ ] \ \big ].\qquad \ . \end{aligned}$$
(22)

By our assumption \(\varPsi _A (x, y, z )\) there is a unique \(w_1\) such that \(\phi _A(x,y,w_1)\) and \(w_1=\langle w_0,\,\langle z,\,y \rangle \rangle \) for some \(w_0\). By Lemma 7, we have \(\phi _A(x,\dot{\mathrm {S}} y ,\langle w_1,\,\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle )\). Thus, we have \(w_2\) such that \(\phi _A(x,\dot{\mathrm {S}} y ,w_2)\) and \(w_2 =\langle w_1,\,\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle \). It is easy to see that (22) holds if \(w_2\) is unique. Thus we are left to prove the uniqueness of \(w_2\), more precisely, we need to prove that

$$\begin{aligned} \forall W_2 [ \ \phi _A (x, \dot{\mathrm {S}} y , W_2 ) \; \rightarrow \; W_2 = w_2 \ ] \; . \end{aligned}$$
(23)

In order to prove (23), we assume \(\phi _A (x, \dot{\mathrm {S}} y , W_2 )\) (we will prove \(W_2 = w_2 = \langle w_1,\,\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle \rangle \)). By our assumption \(\phi _A (x, \dot{\mathrm {S}} y , W_2 )\) and Lemma 8, we have \(u_0\in N\) and \(W_1\) such that \(W_2 = \langle W_1,\,\langle u_0,\,\dot{\mathrm {S}} y \rangle \rangle \) and \(\phi _A(x,y,W_1)\). We have argued that there is a unique \(w_1= \langle w_0,\,\langle z,\,y \rangle \rangle \) such that \(\phi _A(x,y,w_1)\) holds. By this uniqueness, we have \(W_1= w_1= \langle w_0,\,\langle z,\,y \rangle \rangle \). So far we have proved

$$ w_2 \; = \; \langle \, \overbrace{\langle w_0,\,\langle z,\,y \rangle \rangle }^{w_1} \, ,\, \, {\langle \dot{\mathrm {S}} z ,\,\dot{\mathrm {S}} y \rangle } \, \rangle \text{ and } W_2 \; = \; \langle \, \overbrace{\langle w_0,\,\langle z,\,y \rangle \rangle }^{W_1} \, ,\, \, {\langle u_0,\,\dot{\mathrm {S}} y \rangle } \, \rangle $$

and then we are left to prove that \(u_0= \dot{\mathrm {S}} z \). By our assumption \(\phi _A (x, \dot{\mathrm {S}} y , W_2 )\), we have v and \(Z',Y'\in N\) such that \(u_0 = \dot{\mathrm {S}} Z' \), \(\dot{\mathrm {S}} y = \dot{\mathrm {S}} Y' \) and \(W_1 = \langle v,\,\langle Z',\,Y' \rangle \rangle \). Thus, \( \langle v,\,\langle Z',\,Y' \rangle \rangle =\langle w_0,\,\langle z,\,y \rangle \rangle \). By \(\mathsf {T_2} \), we have \(z= Z'\), and thus, \(u_0= \dot{\mathrm {S}} Z' = \dot{\mathrm {S}} z \). This proves that (23) holds.    \(\square \)

We will now give the translation \(\varPsi _M\) of M. Let \(\phi _{M} (x, y, w ) \equiv \)

figure c

where \(\theta _{M} (u, w, Y, Z ) \equiv \)

figure d

We let \(\varPsi _{M} (x, y, z ) \equiv \)

$$ \exists w \big [ \ \phi _{M} (x , y , w ) \; \wedge \; \exists w^{ \prime } [ \ w = \langle w^{ \prime },\,\langle z,\,y \rangle \rangle \; \wedge \; \forall u [ \ \phi _{M} (x , y , u ) \rightarrow u=w \ ] \ \big ] \ . $$

The translations of \( \mathsf {M}\), \(\mathsf {G_6}\) and \( \mathsf {G_7}\) are

figure e

The proof of the next lemma follows the lines of the proof of Lemma 9. We omit the details.

Lemma 10

The translations of \( \mathsf {M} \), \( \mathsf {G_6} \) and \( \mathsf {G_7} \) are theorems of \( \mathsf {T^+}\).

Theorem 11

\( \mathsf {Q} \) is interpretable in \( \mathsf {T} \).

Proof

It is proved in Svejdar [8] that \( \mathsf {Q } \) is interpretable in \( \mathsf {Q^{-} } \). It follows from the lemmas above that \( \mathsf {Q^{-} } \) is interpretable in \( \mathsf {T^+} \) which again is interpretable in \( \mathsf {T} \). Hence the theorem holds.    \(\square \)