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Preface

The conference Computability in Europe (CiE) is organized yearly under the auspices
of the Association CiE, a European association of mathematicians, logicians, computer
scientists, philosophers, physicists, biologists, historians, and others interested in new
developments in computability and their underlying significance for the real world. CiE
promotes the development of computability-related science, ranging over mathematics,
computer science, and applications in various natural and engineering sciences, such as
physics and biology, as well as related fields, such as philosophy and history of
computing. CiE 2020 had as its motto Beyond the Horizon of Computability, reflecting
the interest of CiE in research transgressing the traditional boundaries of computability
theory.

CiE 2020 was the 16th conference in the series, and the first one to take place
virtually. If not for the COVID-19 pandemic, CiE 2020 would have taken place in
Salerno, Italy. We are grateful to the Computer Science Department of the University
of Salerno for their willingness to host and support our conference. In the transition to a
virtual conference, the patience and adaptability of the community was invaluable. We
also would like to thank the trailblazers who shared their experience, in particular the
organizers of BCTCS 2020 and EDBT/ICDT 2020.

The 15 previous CiE conferences were held in Amsterdam (The Netherlands) in
2005, Swansea (UK) in 2006, Siena (Italy) in 2007, Athens (Greece) in 2008, Hei-
delberg (Germany) in 2009, Ponta Delgada (Portugal) in 2010, Sofia (Bulgaria) in
2011, Cambridge (UK) in 2012, Milan (Italy) in 2013, Budapest (Hungary) in 2014,
Bucharest (Romania) in 2015, Paris (France) in 2016, Turku (Finland) in 2017, Kiel
(Germany) in 2018, and Durham (UK) in 2019. CiE 2021 will be held in Ghent
(Belgium). Currently, the annual CiE conference is the largest international meeting
focused on computability-theoretic issues. The proceedings containing the best sub-
mitted papers, as well as extended abstracts of invited, tutorial, and special session
speakers, for all these meetings are published in the Springer series Lecture Notes in
Computer Science.

The CiE conference series is coordinated by the CiE conference series Steering
Committee consisting of Alessandra Carbone (Paris), Gianluca Della Vedova (Milan),
Liesbeth De Mol (Lille), Mathieu Hoyrup (Nancy), Nataša Jonoska (Tampa FL),



Benedikt Löwe (Amsterdam/Cambridge/Hamburg), Florin Manea (Göttingen, chair),
Klaus Meer (Cottbus), Russel Miller (New York), Mariya Soskova (Madison), and
ex-officio members Paola Bonizzoni (Milan, President of the Association CiE) and Dag
Normann (Oslo).

The Program Committee of CiE 2020 was chaired by Marcella Anselmo (University
of Salerno, Italy) and Arno Pauly (Swansea University, UK). The committee, con-
sisting of 27 members, selected the invited and tutorial speakers and the special session
organizers, and coordinated the reviewing process of all submitted contributions.

The S. Barry Cooper Prize

S. Barry Cooper (1943–2015) was the founding President of the Association Com-
putability in Europe; his vision on the fundamental concept of computability brought
together several different research communities. In memory of Barry’s visionary
engagement, the Association Computability in Europe established the S. Barry Cooper
Prize. The prize is awarded to a researcher who has contributed to a broad under-
standing and foundational study of computability by outstanding results, by seminal
and lasting theory building, by exceptional service to the research communities
involved, or by a combination of these.

The first S. Barry Cooper Prize was awarded as part of CiE 2020. Following
nomination by the community, the Prize Committee (Anuj Dawar (chair), Peter Van
Emde Boas, Yuri Gurevitch, Mariya Soskova, and Paola Bonizzoni) selected Bruno
Courcelle for his work on the definability of graph properties in Monadic Second Order
Logic, through a sequence of seminal papers and a book (joint with Joost Engelfriet).
This forms an outstanding example of theory building, bringing together logic, com-
putability, graph grammars, and various notions of graph width (tree-width,
clique-width, and rank-width) and opening new avenues in our understanding of graph
structure theory and the computability and complexity of graph algorithms. Besides its
foundational character, the work has had great impact on a number of areas of com-
puter science, including in parameterized algorithmics, verification and other areas, and
has influenced a generation of researchers in this field. It has straddled the divide
between the logical and algorithmic aspects of theoretical computer science.

Structure and Program of the Conference

The Program Committee invited six speakers to give plenary lectures at CiE 2020:
Paolo Boldi (Milano, Italy), Véronique Bruyère (Mons, Belgium), Ekaterina Fokina
(Vienna, Austria), Amoury Pouly (Oxford, UK), Antonio Restivo (Palermo, Italy), and
Damien Woods (Maynooth, Ireland). The conference also had two plenary tutorials,
presented by Virginia Vassilevska-Williams (MIT, USA) and Martin Ziegler (KAIST,
South Korea).
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In addition, the conference had six special sessions: Algorithmic Learning Theory,
Combinatorial String Matching, Computable Topology, HAPOC session on Fairness in
Algorithms, Large Scale Bioinformatics and Computational Sciences, and Modern
Aspects of Formal Languages. Speakers in these special sessions were selected by the
respective special session organizers and were invited to contribute a paper to this
volume.

Algorithmic Learning Theory
Organizers: Frank Stephan and Lorenzo Carlucci
Speakers:
Ziyuan Gao
Luca San Mauro
Amir Yehudayoff
Thomas Zeugmann

Combinatorial String Matching
Organizers: Travis Gagie and Marinella Sciortino
Speakers:
Inge Li Gørtz
Markus Lohrey
Cinzia Pizzi
Przemek Uznanski

Computable Topology
Organizers: Matthew de Brecht and Mathieu Hoyrup
Speakers:
Takayuki Kihara
Alexander Melnikov
Matthias Schr€der
Mariya Soskova

HAPOC session on Fairness in Algorithms
Organizers: Viola Schiaffonati and Teresa Scantamburlo
Speakers:
Krishna Gummadi
Christoph Heitz
Teresa Scantamburlo

Large Scale Bioinformatics and Computational Sciences
Organizers: Gianluca Della Vedova and Iman Hajirasouliha
Speakers:
Marco Aldinucci
Can Alkan
Valentina Boeva
Erik Garrison

Modern Aspects of Formal Languages
Organizers: Markus L. Schmid and Rosalba Zizza
Speakers:
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Joel D. Day
Stavros Konstantinidis
Maria Madonia
Wim Martens

The members of the Program Committee of CiE 2020 selected for publication in this
volume and for presentation at the conference 23 of the 49 non-invited submitted
papers. Each paper received at least three reviews by the Program Committee and their
subreviewers. In addition to the accepted contributed papers, this volume contains 21
invited papers. The production of the volume would have been impossible without the
diligent work of our expert referees, both Program Committee members and subre-
viewers. We would like to thank all of them for their excellent work.

All authors who have contributed to this conference are encouraged to submit
significantly extended versions of their papers, with additional unpublished research
content, to Computability. The Journal of the Association CiE.

The Steering Committee of the conference series CiE is concerned about the rep-
resentation of female researchers in the field of computability. In order to increase
female participation, the series started the Women in Computability (WiC) program in
2007. In 2016, after the new constitution of the Association, CiE allowed for the
possibility of creating special interest groups, a Special Interest Group named WiC was
established. Also since 2016, the WiC program is sponsored by ACM’s Women in
Computing. This program includes a workshop, the annual WiC dinner, the mentorship
program and a grant program for young female researchers. The WiC workshop
continued in 2020, coordinated by Mariya Soskova. The speakers were Ekaterina
Fokina, Marinella Sciortino, and Virginia Vassilevska-Williams.

The organizers of CiE 2020 would like to acknowledge and thank the following
entities for their financial support (in alphabetical order): the Association for Symbolic
Logic (ASL), the Commission for the History and Philosophy of Computing (HaPoC),
the Computer Science Department of the University of Salerno, the Gruppo Nazionale
per il Calcolo Scientifico (GNCS–INdAM), and Springer.

We gratefully thank all the members of the Organizing Committee of CiE 2020 for
their work towards making the conference a successful event. We thank Andrej Vor-
onkov for his EasyChair system which facilitated the work of the program Committee
and the editors considerably.

May 2020 Marcella Anselmo
Gianluca Della Vedova

Florin Manea
Arno Pauly
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Acceleration of Read Mapping Through
Hardware/Software Co-design

Can Alkan

Department of Computer Engineering, Bilkent University, Ankara, Turkey
calkan@cs.bilkent.edu.tr

Genome sequence analysis can enable significant advancements in areas such as per-
sonalized medicine, study of evolution, and forensics. However, effectively leveraging
genome sequencing for advanced scientific and medical breakthroughs requires very
high computational power. As prior works have shown, many of the core steps in
genome sequence analysis are bottle necked by the current capabilities of computer
systems, as these steps must process a large amount of data.

Read mapping process, which is identification of the most likely locations (under a
sequence distance metric) of hundreds of millions to billions of short DNA segments
within a long reference genome is a major computational bottleneck in genome analysis
as the flood of sequencing data continues to overwhelm the processing capacity of
existing algorithms and hardware. There is also an urgent need for rapidly incorpo-
rating clinical DNA sequencing and analysis into clinical practice for early diagnosis of
genetic disorders or bacterial and viral infections. This makes the development of
fundamentally new, fast, and efficient read mapper the utmost necessity.

This talk describes our ongoing journey in improving the performance of genome
read mapping through hardware/software co-design. I will first introduce using paral-
lelism in existing hardware such as single instruction multiple data (SIMD) instructions
in commodity CPUs, and then describe use of massively parallel GPGPUs. I will then
introduce our FPGA designs for the same purpose. Finally, I will discuss our latest
acceleration efforts to map both short and long reads using the emerging
processing-in-memory computation.



Centralities in Network Analysis

Paolo Boldi

Dipartimento di Informatica, Università degli Studi di Milano, via Celoria 18,
I-20133 Milan, Italy

Abstract. Graphs are one of the most basic representation tools employed in
many fields of pure and applied science; they are the natural way to model a
wide range of situations and phenomena. The emergence of social networking
and social media has given a new strong impetus to the field of “social network
analysis”; although the latter can be thought of as a special type of data mining,
and can take into account different data related to the network under consider-
ation, a particularly important type of study is what people usually call “link
analysis”. In a nutshell, link analysis tries to discover properties, hidden rela-
tions and typical patterns and trends from the study of the graph structure alone.
In other words, more formally, link analysis studies graph invariants: given a

family G of graphs under consideration, a V-valued graph invariant [7] is any
function p : G ! V that is invariant under graph isomorphisms (that is, G ffi H
implies p Gð Þ ¼ p Hð Þ, where ffi denotes isomorphism).
Binary invariants are those for which V ¼ true; falsef g: for instance, prop-

erties like “the graph is connected”, “the graph is planar” and so on are all
examples of binary graph invariants. Scalar invariants have values on a field
(e.g., V ¼ R): for instance “the number of connected components”, “the average
length of a shortest path”, “the maximum size of a connected component” are all
examples of scalar graph invariants. Distribution invariants take as value a
distribution: for instance “the degree distribution” or the “shortest-path–length
distribution” are all examples of distribution invariants.

It is convenient to extend the definition of graph invariants to the case where
the output is in fact a function assigning a value to each node. Formally, a V-
valued node-level graph invariant is a function p that maps every G 2 G to an
element of VNG (i.e., to a function from the set of nodes NG to V ), such that for
every graph isomorphism f : G ! H one has p Gð Þ xð Þ ¼ p Hð Þ f xð Þð Þ. Infor-
mally, p should have the same value on nodes that are exchanged by an iso-
morphism.
Introducing node-level graph invariants is crucial in order to be able to talk

about graph centralities [8]. A node-level real-valued graph invariant that aims at
estimating node importance is called a centrality (index or measure) [1]; given a
centrality index c : NG ! R, we interpret c xð Þ[ c yð Þ as a sign of the fact that x
is “more important” (more central) than y. Since the notion of being “important”
can be declined to have different meanings, in different contexts, a wide range of
indices were proposed in the literature.
The purpose of my talk is to present the idea of graph centrality in the context

of Information Retrieval, and then to give a taxonomic and historically-aware
description of the main centrality measures defined in the literature and com-
monly used in social-network analysis (see, e.g., [3–7]). I will then discuss how



centrality measures can be compared with one another, and focus on the axio-
matic approach [2], providing examples of how this approach can be used to
highlight the features that a certain centrality does (or does not) possess.
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A Game-Theoretic Approach
for the Automated Synthesis of Complex

Systems

Véronique Bruyère

UMONS - University of Mons, 20 Place du Parc, B-7000-Mons, Belgium
Veronique.Bruyere@umons.ac.be

Abstract. Game theory is a well-developed branch of mathematics that is
applied to various domains like economics, biology, computer science, etc. It is
the study of mathematical models of interaction and conflict between individuals
and the understanding of their decisions assuming that they are rational [11, 13].
The last decades have seen a lot of research on the automatic synthesis of

reliable and efficient systems by using the mathematical framework of game
theory. One important line of research is concerned with reactive systems that
must continuously react to the uncontrollable events produced by the environ-
ment in which they evolve. A controller of a reactive system indicates which
actions it has to perform to satisfy a certain objective against any behavior of the
environment. An example in air traffic management is the autopilot that controls
the trajectory of the plane to guarantee a safe landing without any control on the
weather conditions. Such a situation can be modeled by a two-player game
played on a finite directed graph: the system and the environment are the two
players, the vertices of the graph model the possible configurations of the system
and the environment, and the infinite paths in the graph model the continuous
interactions between them. As we cannot assume the cooperation of the envi-
ronment, its objective is the negation of the objective of the system and we
speak of zero-sum games. In this framework, checking whether the system is
able to achieve its objective reduces to the existence of a winning strategy in the
corresponding game, and building a controller reduces to computing such a
strategy [8]. Whether such a controller can be automatically designed from the
objective is known as the synthesis problem.
In this talk, we consider another, more recent, line of research concerned with

the modelization and the study of complex systems. Instead of the simple situ-
ation of a system embedded in a hostile environment, we are now faced with
systems/environments formed of several components each of them with their
own objectives that are not necessarily conflicting. An example is a commu-
nication network composed of several nodes, each of them aiming at sending a
message to some other nodes by using a certain frequency range. These
objectives are conflicting or not, depending on the used frequencies. We model
such complex systems by multi-player non zero-sum games played on graphs:
the components of the complex system are the different players, each of them
aiming at satisfying his own objective. In this context, the synthesis problem is a
little different: winning strategies are no longer appropriate and are replaced by
the concept of equilibrium, that is, a profile of strategies, one for each player,
such that no player has an incentive to deviate from the play consistent with this



profile [9]. Different kinds of relevant equilibria have been investigated among
which the famous notions of Nash equilibrium [10] and subgame perfect
equilibrium [12].
In the setting of multi-player non zero-sum games, classical questions are the

following ones. What are the objectives for which there always exists an
equilibrium of a certain given type? When the existence is not guaranteed, can
we decide whether such an equilibrium exists or not. When the latter problem is
decidable, what is its complexity class? Many results were first obtained for
Boolean objectives, and in particular for x-regular objectives like avoiding a
deadlock, always granting a request, etc [8, 9]. In this context, an infinite path in
the game graph is either winning or losing w.r.t. a player depending on whether
his objective is satisfied or not. More recent results were then obtained for
quantitative objectives such as minimizing the energy consumption or guaran-
teeing a limited response time to a request [6]. To allow such richer objectives,
the game graph is augmented with weights and a payoff (or a cost) is then
associated with each of its infinite paths [7]. When solving the above mentioned
questions, for practical applicability of the studied models, it is also important to
know how complex the strategies composing the equilibrium are. Given past
interactions between the players, a strategy for a player indicates the next action
he has to perform. The amount of memory on those past interactions is one
of the ways to express the complexity of the strategy, the simplest strategies
being those requiring no memory at all [8].
In this talk, we focus on reachability objectives: each player wants to reach a

given subset of vertices (qualitative objective) or to reach it as soon as possible
(quantitative objective). We also restrict the discussion to turn-based games (the
players choose their actions in a turn-based way, and not concurrently) and to
pure strategies (the next action is chosen in a deterministic way, and not
according to a probability distribution). For those games, we explain the dif-
ferent techniques developed and the results obtained for both notions of Nash
equilibrium and subgame perfect equilibrium [1–5]. The talk is made accessible
to a large audience through illustrative examples.
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Hard Problems for Simple Word Equations:
Understanding the Structure of Solution Sets

in Restricted Cases

Joel D. Day

Loughborough University, UK
J.Day@lboro.ac.uk

A word equation is a tuple a; bð Þ, usually written a ¼ b, such that a and b are words
over a combined alphabet X [R consisting of variables X ¼ x; y; z; . . .f g and terminal
symbols R ¼ a; b; . . .f g. A solution to a word equation is a substitution of the variables
for words in R� unifying the two terms a and b. In other words, a solution is a
(homo)morphism h : ðX [RÞ� ! R� satisfying h að Þ ¼ a for all a 2 R such that
h að Þ ¼ h bð Þ. For example, one solution h to the word equation xaby ¼ ybax is given
by h xð Þ ¼ b and h yð Þ ¼ bab.

The task of deciding, for a given word equation E, whether a solution h to E exists
is called the satisfiability problem. There are various reductions showing that the
satisfiability problem for word equations is NP-hard. On the other hand, the satisfia-
bility problem was shown to be decidable by Makanin who gave the first general
algorithm [11]. Since then, improvements on the complexity upper bounds, first to
PSPACE, and later to non-deterministic linear space, have resulted from further
algorithms due to Plandowski [14] and Jeż [7, 8] respectively. Additionally, Plan-
dowksi and Rytter [15] showed that solutions to word equations are highly com-
pressible, and their compressed forms can be verified efficiently, leading to a
(nondeterministic) algorithm running in time polynomial in log Nð Þ, where N is an
upper bound on the length of the shortest solution. It is thought that N is at most
exponential in the length of the equation, resulting in the conjecture that the satisfia-
bility problem for word equations is NP-complete.

Determining the precise complexity of the satisfiability problem for word equa-
tions, in particular its inclusion in NP, remains one of the most important open
problems on the topic. However it is often the case for practical applications such as in
software verification, that more general versions of the satisfiability problem need to be
solved. Specifically, word equations constitute one type of relation on words, and will
typically occur in combination with various other conditions. Examples include
membership of regular languages, numerical comparisons on e.g. word-lengths, and
rewriting operators such as transducers and the ReplaceAll function (see e.g. [1]). In
this context, it is not sufficient to know that an arbitrary solution exists, since it might
violate the other conditions. Instead, we are interested in a class of satisfiability
problems modulo constraints of a given type or combination of types.

The case of satisfiability modulo regular constraints, where for each variable x, a
solution h must satisfy conditions of the form h xð Þ 2 Lx where Lx is a regular



language, is known to be PSPACE-complete [5, 14, 16]. Many other types of con-
straints lead to undecidable variants of the satisfiability problem, as is the case with e.g.
abelian equivalence, letter-counting functions, and the ReplaceAll operator [2, 9]. The
case of satisfiability modulo length constraints, which asks for the existence of a
solution h to the equation such that the lengths of the words h xð Þ for x 2 X additionally
satisfy a given system of linear diophantine equations, remains a long standing open
problem.

One of the main obstacles to solving word equations modulo constraints is that the
set of solutions to a word equation can have a rather complex structure. One natural
way to try to represent potentially-infinite sets of solutions to a given equation is using
parametric words, consisting of word-parameters and numerical-parameters. For
example, solutions h for the equation xy ¼ yx are described by the parametric words
h xð Þ ¼ up; h yð Þ ¼ uq, to be interpreted as “there exists a word u and numbers p; q such
that h xð Þ is p consecutive repetitions of u while h yð Þ is q consecutive repetitions of u”.
Given such a representation, it is not difficult to imagine how we might go about
deciding whether a solution exists which satisfies various kinds of additional con-
straints, including length and regular constraints. Unfortunately, a (finite) representa-
tion using parametric words is typically not possible, even for simple equations such as
xuy ¼ yvx (see [13]). Equations whose solution-sets do not permit such a representation
are called non-parametrisable, and for these instances we must consider other, less
explicit representations.

For quadratic word equations – those for which each variable may occur at most
twice – an algorithm exists based on rewriting operations called Nielsen transforma-
tions which, given an equation E, produces a finite directed graph GE whose vertices
are word equations (including one corresponding to E) with the property that solutions
to E correspond exactly to walks (i.e. paths which may visit vertices and edges more
than once) in the graph from E to the trivial equation e ¼ e, where e denotes the empty
word. As such, properties of the graph GE will often also say something about the set of
solutions to E, and it is natural to draw comparisons between the structure of GE and the
structure of the solution-sets. A connection is made in [13] between the existence of
certain structures in the graph and the non-parametric stability of E, while [10]
demonstrates how restrictions on the structure of GE lead to a decidable satisfiability
problem modulo length constraints. Moreover, if, for a class of word equations C, the
diameter of GE is bounded by a polynomial in the length of E for all E 2 C, then the
satisfiability problem (without constraints) for C is in NP.

In general, the structure of the graphs GE is not well understood. It follows from the
fact that the satisfiability problem remains NP-hard even for very restricted subclasses
of quadratic word equations [4, 6], that simply deciding whether a given equation E0 is
a vertex in GE is NP-hard. Nevertheless, there are regularities and patterns in these
graphs which allow us to begin to describe their structure. In the case of regular
equations – the subclass of quadratic equations introduced in [12] for which each
variable occurs at most once on each side – one can derive results describing these
structures, and, as a consequence, bounds on parameters of the graphs such as diameter,
number of vertices, and connectivity measures (see [3]), all of which are central to
obtaining a better understanding of variants of the satisfiability problem.

xx J. D. Day
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Abstract. Algorithmic teaching studies the problem of determining an optimal
training set that can guide a learning algorithm to identify a target concept as
efficiently as possible. Various models of cooperative teaching and learning
have been proposed in the literature, and they may be broadly classified into
(1) batch models, where the teacher designs a training sample and presents it all
at once to the learner, which then outputs a hypothesis, and (2) sequential or
online models, where the teacher presents examples in a sequential manner and
the learner updates its hypothesis (or retains its original hypothesis) each time a
new datum is received.
The study of teaching-learning models not only has potential real-world

applications, such as in modelling human-computer interaction and in the design
of educational programmes, but also sheds new light on well-established notions
in statistical learning theory. In particular, several teaching complexity measures
such as the Recursive Teaching Dimension, the No-Clash Teaching Dimension
and a recently introduced sequential model teaching dimension have been
shown to be mathematically related to the VC-dimension and/or sample com-
pression schemes. We will give an overview of recently introduced teaching
models as well as results on the connections between various teaching com-
plexity measures and the VC-dimension.
We conclude with a brief discussion of some possible notions of a ‘helpful’

distribution in the Probably Approximately Correct learning model as well as in
probabilistic learning settings.
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Top tree compression is an elegant and powerful compression scheme for ordered and
labeled trees [3]. Top tree compression is based on transforming the input tree T into
another tree T , called the top tree, that represents a balanced hierarchical clustering of
T , and then DAG compressing T . Surprisingly, the resulting top DAG achieves optimal
compression compared to the information-theoretic lower bound, can compress
exponentially better than DAG compression, is never much worse than DAG com-
pression, and supports navigational queries in logarithmic time [1, 3–5]. In this talk we
give an overview of the key ideas and techniques in top tree compression and highlight
recent results on top tree compression and optimal string dictionaries [2].
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The comparison of sequences is both a core problem itself, and a preliminary step of
more complex types of analysis. While many approaches have been developed during
the past decades, the problem of sequence comparison is still a computational challenge
in many application fields that are big data generators. For example, in Bioinformatics,
the development of high-throughput technologies has made the computation of simi-
larity measures based on sequence alignment unpractical in many contexts.

Today, an important portion of state-of-the-art tools for biosequence analysis are
based on alignment-free approaches [1], where sequences are described in terms of
content descriptors such as k-mers, or spaced seeds (i.e. gapped patterns). Thus, the
efficient computation of words statistics, such as presence or frequency, is crucial for all
those tools that are based on alignment-free techniques.

Word counting is a largely studied problem, with apparent relatively simple
solutions. However, when dealing with tens or hundreds of Giga-bases, performing this
task in a reasonable amount of time, given limited resources, becomes a challenge.

This lead to the development of tools that try to exploit system resources in dif-
ferent ways to achieve this goal. These tools are based on approaches that can be
memory-based or disk-based, rely on data structures, statistical filters or sorting, and
exploit parallelism by processing chunks of data and then merging the results (e.g. [2–
4]).

In this talk I will discuss state-of-the-art k-mer counting, with a focus on recently
proposed approaches to further speed-up sequence scanning when collecting statistics
on k-mers [5] and spaced seeds [6].

References

1. Zielezinski, A., Vinga, S., Almeida, J., Karlowski, W.M.: Alignment-free sequence com-
parison: benefits, applications, and tools. Genome Biol. 18, 186 (20170. https://doi.org/10.
1186/s13059-017-1319-7

2. Marçais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting of
occurrences of k-mers. Bioinformatics 27(6), 764–770 (2011). https://doi.org/10.1093/
bioinformatics/btr011

3. Rizk, G., Lavenier, D., Chikhi, R.: DSK: k-mer counting with very low memory usage.
Bioinformatics 29(5), 652–653 (2013). https://doi.org/10.1093/bioinformatics/btt020

http://orcid.org/0000-0002-6616-4003
https://doi.org/10.1186/s13059-017-1319-7
https://doi.org/10.1186/s13059-017-1319-7
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1093/bioinformatics/btt020


4. Kokot, M., Długosz, M., Deorowicz, S.: KMC 3: counting and manipulating k-mer statistics.
Bioinformatics 33(17), 2759–2761 (2017). https://doi.org/10.1093/bioinformatics/btx304

5. Pellegrina, L., Pizzi, C., Vandin, F.: Fast approximation of frequent k-mers and applications to
metagenomics. J. Comput. Biol. 27(4), 534–549 (2020) http://doi.org/10.1089/cmb.2019.
0314

6. Petrucci, E., Noè, L., Pizzi, C., Comin, M.: Iterative spaced seed hashing: closing the gap
between spaced seed hashing and k-mer hashing. J. Comput. Biol. 27(2), 223–233 (2020).
http://doi.org/10.1089/cmb.2019.0298

xxvi C. Pizzi

https://doi.org/10.1093/bioinformatics/btx304
http://doi.org/10.1089/cmb.2019.0314
http://doi.org/10.1089/cmb.2019.0314
http://doi.org/10.1089/cmb.2019.0298


On the Repetitive Structure of Words

Antonio Restivo

DMI, Università di Palermo, via Archirafi, 34 - 90123 Palermo, Italy
antonio.restivo@unipa.it

Abstract. The investigations on repetitions in words began with the work of
Axel Thue at the dawn of last century (cf. [3]). Nowadays they constitute one
of the most fundamental areas of combinatorics on words and are important both
in theory and practice (cf. [18, 19]). In this presentation we report some recent
results related to repetitions in words, focusing on the combinatorial aspects.
Our contribution is not to be intended as a complete survey on the repetitive
structure of words: we have put aside some important aspects as, for instance,
the researches around the “runs” theorem (cf. 1, 7, 17]).
A basic definition in this context is that of power. Recall that a k-power is a

word of the form wk , for some non-empty word w and a positive integer k.
Recently, the notion of antipower has been introduced in [12] to contrast that of
power. If r is a positive integer, an r-antipower is a word of the form w1w2. . .wr ,
where the wi are words such that wi ¼j jwj

�
�

�
� and wi 6¼ wj for every pair i; jð Þ with

i 6¼ j. Problems related to avoidability of antipowers have been recently
approached in several papers (cf. [2, 4, 10, 14, 21]). These studies could be
considered as the first contributions to an anti-Ramsey theory (cf. [11]) in the
context of words. A significant result in this area concerns the simultaneous
avoidance of powers and antipowers. In [12] it is proved that, for any pair k; rð Þ
of positive integers, there is an integer N k; rð Þ such that any word having length
greater than or equal to N k; rð Þ either contains a k-power or an r-antipower. The
exact asymptotic behavior of the function N k; rð Þ remains open. The most recent
results on upper and lower bounds on N k; rð Þ have been obtained in [13].
The notions of power and antipower correspond to the opposite extreme cases

in an analysis of the repetitive structure of a word. Indeed, one could consider,
as a measure of repetitiveness of a word w, the number of distinct factors in a
factorization of w: if this number is small (in comparison to the length of w),
then many factors are repeated (cf. [6, 22]). In this approach, powers, i.e. words
with factorizations having only one (repeated) factor, are at the first level of the
hierarchy, and correspond to maximal repetitiveness. Closely related to the
notion of power are the notions of primitive word and root.
We then investigate the second level of this hierarchy, i.e. words that can be

factorized using (an arbitrary number of) copies of just two words. If these two
words are related by some morphism or anti-morphism, we have
pseudo-powers. The concept of pseudo-power (or pseudo-repetition) has been
introduced in [8] and draws its original motivations from computational biology.
The notions of primitivity and root are extended to pseudo-powers and, in



particular, it is proved that any word has a unique (pseudo-)root. For recent
developments on pseudo-powers, and some extensions, the reader could refer to
[9, 15, 16, 20].
In the last part of the presentation the approach to pseudo-powers is further

generalized by dropping any relation between the two words. We introduce a
notion of primitivity for a set of words and, given a word w, we say that a pair
u; vf g of words is a bi-root of w if w can be written as a concatenation of copies
of u and v, and u; vf g is a primitive set. In particular, we prove (cf. [5]) that the
bi-root of a primitive word is unique provided the length of the word is suffi-
ciently large with respect the size of the bi-root. The tight bound on this length
remains an open problem. We also present some combinatorial properties of
bi-roots proved in [5], and suggestions for further work.
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Learning Algebraic Structures
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Algorithmic learning theory (ALT), initiated by Gold and Putnam in the 1960’s, deals
with the question of how a learner, provided with more and more data about some
environment, is eventually able to achieve systematic knowledge about it. Classical
paradigms of learning concern either learning of formal languages or learning of total
functions. This is a convenient abstraction for representing the learning of a given flow
of data, but it fails to portrait cases in which an agent deals with data embodying a
structure.

So, in this work we want to make sense of the following question: what does it
mean to learn a structure? To do so, we combine the technology of ALT with notions
coming from computable structure theory, and develop a formal framework for
learning structures in the limit.

In this framework, the learner receives larger and larger pieces of an arbitrary copy
of an algebraic structure and, at each stage, is required to output a conjecture about the
isomorphism type of such a structure. The learning is successful if the conjectures
eventually stabilise to a correct guess. We use the infinitary logic Lx1;x to provide a
syntactic characterization of which families of structures can be learned. We apply this
characterization to familiar cases and we show the following: there is an infinite
learnable family of distributive lattices; no pair of Boolean algebras is learnable; no
infinite family of linear orders is learnable.

In the last part of the talk, we compare alternative learning criteria and we report on
recent progress about learning structures lying at various levels of the arithmetical
hierarchy.

This is joint work with Nikolay Bazhenov, Ekaterina Fokina, and Timo Kötzing
[1, 2].
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Abstract. Computable Analysis investigates computability on the real numbers
and related spaces. We discuss an approach to define computability on topo-
logical spaces and classify the class of topological spaces which can be dealt
within this model. Moreover, we investigate the class of Co-Polish spaces.
Co-Polish spaces play a big role in Type Two Complexity Theory.

Keywords: Computable analysis • Topological spaces • QCB-spaces • Co-polish
spaces

1 Computability on QCB-Spaces

Computable Analysis investigates computability and complexity on spaces occurring in
functional analysis like the real numbers, vector spaces and spaces of measures.

A well-established computational model to define computability on topological
spaces is provided by K. Weihrauch’s Type Two Theory of Effectivity (TTE) [15]. The
main idea of TTE is to represent the objects of a given space by infinite sequences of
natural numbers, i.e. by elements of the Baire space N

N. Such a naming function is a
called a representation of that space. The actual computation is performed by a digital
computer on these names. This means that a function f is computable if, whenever p is
a name of an argument x, every finite prefix of some name of f xð Þ can be computed
from some finite prefix of the input name p. Examples of efficient implementations of
exact real arithmetic are N. Müller’s iRRAM [8], P. Collins’ Ariadne [2], B. Lambov’s
RealLib [7], and M. Konečný’s AERN [5].

It is obvious that one should restrict oneself to representations which reflect the
mathematical properties of a given space appropriately. Effective admissibility is a
notion of well-behavedness of representations [11, 13]. The class of topological spaces
that can be endowed with an effectively admissible representation turn out to be the T0-
quotients of countably-based topological spaces [3, 11]. The common acronym is
QCB0-spaces. Examples of QCB-spaces are the Euclidean space R, separable metris-
able spaces and the space of distributions.

The ensuing category QCB0 of QCB0-spaces as objects and continuous functions
as morphisms has a remarkably rich structure. In particular it is cartesian closed, in
contrast to its supercategory Top of topological spaces and its subcategory xTop of
topological spaces with a countable base. Cartesian closedness means that finite
products X � Y and function spaces YX can be formed inside the category with



reasonable properties, e.g., there exists an evaluation function apply : YX � X ! Y and
for every morphism f : Z � X ! Y there exists exactly one morphism curry fð Þ : Z !
YX that satisfies f z; xð Þ ¼ apply curry fð Þ zð Þ; xð Þ for all z 2 Z and x 2 X. For more
details of how to construct finite products and function spaces inside QCB0 we refer to
[10, 11, 13]. Moreover, QCB0 is countably complete and countably co-complete,
meaning that countable products, subspaces, countable co-products and quotiont spaces
can be constructed. These excellent closure properties allow us to canonically deal with
product spaces, function spaces and hyperspaces like the space O Xð Þ of open subsets
and the space K Xð Þ of compact subspaces of a given admissibly represented topo-
logical space X, cf. [9, 13].

2 Co-polish Spaces

A nice subcategory of QCB-spaces is formed by the class of Co-Polish spaces [1, 12].
This class plays a big role in Complexity Theory. The name originates from the
characterisation of Co-Polish spaces as being those QCB0-spaces X for which the
function space RX (formed in QCB0) is a Polish space (i.e., a separable and completely
metrisable space).

The pivotal property which exhibits Co-Polish spaces as suitable for complexity
theory is their characterisation as an inductive limit of an increasing sequence of
compact metrisable spaces. This fact allows us to measure time complexity of functions
between Co-Polish spaces in terms of two discrete parameters: on the one hand in
terms of the output precision, as it is typical for complexity theory on the real numbers,
and on the other hand, like in classical complexity theory, in terms of a discrete
parameter on the input, e.g., the index of a compact metric subspace in which the input
x lies.

So Co-Polish spaces enjoy the property that one can assign to each element a
natural number as its size, like in discrete complexity theory. An upper bound of this
size can be computed from any name of x. By contrast, for assigning a size to the
elements of general spaces (like the function space R

R) one has to resort to elements
of the Baire space. This idea has been developed by A. Kawamura and S. Cook in their
approach to complexity in Computable Analysis [4].

Examples of Co-Polish spaces are all locally compact separable Hausdorff spaces
(e.g. the reals), Silva spaces [6, 14] known from the theory of locally convex vector
spaces (the space of distributions with compact support is an example of a Silva space)
and, more generally, vector space duals of separable Banach spaces formed in the
category of sequentially locally convex QCB-spaces.

xxxii M. Schröder
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Abstract. The history of computing tells us that computers can be made of
almost anything: silicon, gears and levers, neurons, flowing water, interacting
particles or even light. Although lithographically patterned silicon surfaces have
been by far the most successful of these, they give us a limited view of what
computation is capable of. Algorithms typically control the flow of information
by controlling the flow of electrons through digital-electronic devices, but in the
field of molecular computing we imagine algorithms that control matter itself.
This talk will be about DNA molecules that interact with each other in a test

tube to execute algorithms. We will show how DNA can be re-engineered to act
not only as an information encoding polymer (as it is in biology) but also as a
computational primitive for executing somewhat soggy computer programs. The
talk will showcase some of our wet-lab results on implementing 21 different
algorithms using self-assembling DNA strands [1]. We will also see how tools
from the theory of computation can help us understand what kinds of compu-
tations molecules are capable of.
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Abstract. We continue the study of computable embeddings for pairs of
structures, i.e. for classes containing precisely two non-isomorphic struc-
tures. Surprisingly, even for some pairs of simple linear orders, com-
putable embeddings induce a non-trivial degree structure. Our main
result shows that although {ω · 2, ω� · 2} is computably embeddable in
{ω2, (ω2)

�}, the class {ω · k, ω� · k} is not computably embeddable in
{ω2, (ω2)

�} for any natural number k ≥ 3.

Keywords: Computable embedding · Enumeration operator · Linear
order

1 Introduction

The paper studies computability-theoretic complexity for classes of countable
structures. A standard method of investigating this problem is to fix a particular
notion of reduction ≤r between classes, and then to gauge the complexity of
classes via the degrees induced by ≤r.

One of the first examples of such reductions comes from descriptive set the-
ory: Friedman and Stanley [9] introduced the notion of Borel embedding. Infor-
mally speaking, a Borel embedding Φ from a class K into a class K′ is a Borel
measurable function, which acts as follows. Given the atomic diagram of an
arbitrary structure A ∈ K as an input, Φ outputs the atomic diagram of some
structure Φ(A) belonging to K′. The key property of Φ is that Φ is injective on
isomorphism types, i.e. A ∼= B if and only if Φ(A) ∼= Φ(B).

Calvert, Cummins, Knight, and Miller [4] (see also [15]) developed two dif-
ferent effective versions of Borel embeddings. Roughly speaking, a Turing com-
putable embedding (or tc-embedding, for short) is a Borel embedding, which is
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realized by a Turing functional Φ. A computable embedding is realized by an
enumeration operator. It turned out that one of these notions is strictly stronger
than the other: If there is a computable embedding from K into K′, then there
is also a tc-embedding from K into K′. The converse is not true, see Sect. 2 for
formal details.

A powerful tool, which helps to work with Turing computable embeddings,
is provided by the Pullback Theorem of Knight, Miller, and Vanden Boom [15].
Informally, this theorem says that tc-embeddings behave well, when working
with syntactic properties: one can “pull back” computable infinitary sentences
from the output class K′ to the input class K, while preserving the complexity
of these sentences.

Nevertheless, Pullback Theorem and its consequences show that sometimes
tc-embeddings are too coarse: they cannot see finer structural distinctions
between classes. One of the first examples of this phenomenon was provided
by Chisholm, Knight, and Miller [5]: Let V S be the class of infinite Q-vector
spaces, and let ZS be the class of models of the theory Th(Z, S), where (Z, S)
is the integers with successor. Then V S and ZS are equivalent with respect to
tc-embeddings, but there is no computable embedding from V S to ZS.

Another example of this intriguing phenomenon can be found in the simpler
setting of classes generated by pairs of linear orderings, closed under isomor-
phism. Recall that by ω one usually denotes the standard ordering of natural
numbers. For a linear order L, by L� we denote the reverse ordering, i.e. a ≤L� b
iff b ≤L a.

Ganchev, Kalimullin and Vatev [10] gave one such example. For a structure
A, let Ã be the enrichment of A with a congruence relation ∼ such that every
congruence class in Ã is infinite and Ã/∼ ∼= A. Then they showed that the
class {ωS , ω�

S} is tc-equivalent to the class {ω̃S , ω̃�
S}, whereas {ω̃S , ω̃�

S} is not
computably embeddable into {ωS , ω�

S}. Here ωS and ω�
S are linear orderings of

type ω and ω�, respectively, together with the successor relation.
One can prove (see, e.g., Theorem 3.1 in [3]) the following: Let L be a com-

putable infinite linear order with a least, but no greatest element. Then the
pair {L,L�} is equivalent to {ω, ω�} with respect to tc-embeddings. This result
gives further evidence that, in a sense, tc-embeddings cannot work with finer
algebraic properties: Here a tc-embedding Φ can only employ the existence (or
non-existence) of the least and the greatest elements. If one considers, say, the
pair {ωω, (ωω)�}, then our Φ is not able to “catch” limit points, limits of limit
points, etc. Section 2.1 gives a further discussion of interesting peculiarities of
the pair {ω, ω�}.

On the other hand, when one deals with computable embeddings, even finite
sums of ω (together with their reverse orders) already exhibit a quite complicated
structure: Let k and � be non-zero natural numbers. Then there is a computable
embedding from {ω · k, ω� · k} into {ω · �, ω� · �} if and only if k divides �
(Theorem 5.2 of [3]). In other words, in this particular setting the only possible
computable embeddings are the simplest ones—by appending a fixed number of
copies of an input order together. We note that it is quite non-trivial to prove
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that all other embeddings Ψ (e.g., a computable embedding from {ω ·3, ω� ·3} to
{ω ·4, ω� ·4}) are not possible—our proofs fully employ the peculiarities inherent
to enumeration operators. These peculiarities have topological nature: indeed,
one can establish the lack of continuous operators Ψ (in the Scott topology).

The current paper continues the investigations of [3]. We show that even
adding the finite sums of ω2 (and their inverses) to the mix makes the resulting
picture more combinatorially involved (compare with Theorem 5.2 mentioned
above).

2 Preliminaries

We will slightly abuse the notations: both the set of natural numbers and the
standard ordering of this set will be denoted by ω. The precise meaning of the
symbol ω will be clear from the context. We consider only computable languages,
and structures with domain contained in ω. We assume that any considered
class of structures K is closed under isomorphism, modulo the restriction on
domains. For a structure S, D(S) denotes the atomic diagram of S. We will
often identify a structure and its atomic diagram. We refer to atomic formulas
and their negations as basic.

Let K0 be a class of L0-structures, and K1 be a class of L1-structures. In the
definition below, we use the following convention: An enumeration operator Γ
is treated as a computably enumerable set of pairs (α,ϕ), where α is a finite set
of basic (L0 ∪ ω)-sentences, and ϕ is a basic (L1 ∪ ω)-sentence. As usual, for a
set X, we have Γ (X) = {ϕ : (α,ϕ) ∈ Γ, α ⊆ X}.

Definition 1 ([4,15]). An enumeration operator Γ is a computable embedding
of K0 into K1, denoted by Γ : K0 ≤c K1, if Γ satisfies the following:

1. For any A ∈ K0, Γ (A) is the atomic diagram of a structure from K1.
2. For any A,B ∈ K0, we have A ∼= B if and only if Γ (A) ∼= Γ (B).

Any computable embedding has an important property of monotonicity : If
Γ : K0 ≤c K1 and A ⊆ B are structures from K0, then we have Γ (A) ⊆ Γ (B) [4,
Proposition 1.1].

Definition 2 ([4,15]). A Turing operator Φ = ϕe is a Turing computable
embedding of K0 into K1, denoted by Φ : K0 ≤tc K1, if Φ satisfies the following:

1. For any A ∈ K0, the function ϕ
D(A)
e is the characteristic function of the

atomic diagram of a structure from K1. This structure is denoted by Φ(A).
2. For any A,B ∈ K0, we have A ∼= B if and only if Φ(A) ∼= Φ(B).

Proposition (Greenberg and, independently, Kalimullin; see [14,15]).
If K0 ≤c K1, then K0 ≤tc K1. The converse is not true.

Both relations ≤c and ≤tc are preorders. If K0 ≤tc K1 and K1 ≤tc K0, then
we say that K0 and K1 are tc-equivalent, denoted by K0 ≡tc K1. For a class K,
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by degtc(K) we denote the family of all classes which are tc-equivalent to K.
Similar notations can be introduced for the c-reducibility.

We note that except the reductions ≤c and ≤tc, there are many other
approaches to comparing computability-theoretic complexity of classes of struc-
tures. These approaches include: transferring degree spectra and other algo-
rithmic properties [13], Σ-reducibility [8,17], computable functors [11,16], Borel
functors [12], primitive recursive functors [1,7], etc.

For two ω-chains x = (xi)
∞
i=0 and y = (yj)

∞
j=0, analogous to the relation ⊆�

between sets, let us denote by x <� y the following infinitary sentence
∨

q∈ω

∧

i,j>q

xi < yj .

The following proposition is essential for our results. It is a slight reformula-
tion of Proposition 5.7 from [3].

Proposition 1. Suppose {ω ·2, ω� ·2} ≤c {C,D} via Γ , where C is a linear order
without infinite descending chains and D is an infinite order without infinite
ascending chains. Let A and B be copies of ω with mutually disjoint domains.
Then for any ω-chains (xi)

∞
i=0 and (yi)

∞
i=0 such that Γ (A) |= ∧

i∈ω xi < xi+1

and Γ (B) |= ∧
i∈ω yi < yi+1 such that

Γ (A + B) |= x <� y ∨ y <� x.

2.1 Further Background

This paper is focused on the degree degtc({ω, ω�}). Historically speaking, the
choice of this particular degree was motivated by the following open question:

Problem (Kalimullin). It is easy to show that the pairs {ω, ω�} and {ω̃, ω̃�}
are tc-equivalent. Moreover, {ω, ω�} ≤c {ω̃, ω̃�}. Is there a computable embed-
ding from {ω̃, ω̃�} to {ω, ω�}?

This problem was a starting point of investigations of [3] and the current
paper. One can attack the problem via employing model-theoretic properties of
the structures (in a way similar to [5]). In particular, a naive way to distinguish
these pairs would be the following. Each of the orders ω and ω� is rigid, while
both ω̃ and ω̃� have continuum many automorphisms. Maybe, this fact can help
us to prove that {ω̃, ω̃�} �c {ω, ω�}? Nevertheless, this is not the case—one
can show that {ω̃, ω̃�} ≡c {(ω2, B), (ω · ω�, B)}, where B is the standard block
relation on a linear order. Since the structures (ω2, B) and (ω · ω�, B) are both
rigid, it seems that studying automorphism groups does not help in this setting.

We note that quite unexpectedly (at least for us), the theory of Tur-
ing computable embeddings found applications in algorithmic learning theory.
Section 3.2 of [2] establishes connections between tc-embeddings and a particular
paradigm of learnability for classes of countable structures. Informally speaking,
this paradigm employs a learner whose goal is, given the atomic diagram of a
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structure A, to learn the isomorphism type of A. The learner is allowed to use
both positive and negative data provided by the atomic diagram. Remarkably,
the family {ω, ω�} is learnable by a computable learner. We conjecture that our
results can be also connected to learnability, specifically to its topological aspects
(see, e.g., [6]). The reader is referred to [3] for more results on degtc({ω, ω�}).

3 Positive Results

Let A be a linear ordering and let us have, for all a ∈ A, the linear orderings Ba

with mutually disjoint domains. Following Rosenstein [18], we define the general-
ized sum C =

∑
a∈A Ba as the linear ordering such that dom(C) =

⋃
a∈A dom(Ba)

and for any x, y ∈ C, we define x <C y iff x, y ∈ Ba for some a ∈ A and x <Ba
y,

or x ∈ Ba, y ∈ Ba′ and a <A a′.

Theorem 1. For any natural number n ≥ 1,

{ω · n, ω� · n} ≤c {ω2 · n, (ω2)
� · n}.

Proof. The same enumeration operator Γ works for all n ≥ 1. For a linear
ordering L and a ∈ L, let La be the linear ordering consisting of pairs (a, b),
where b ∈ L, and ordered by the second component as in L. Informally, for each
element a in the input linear order L, the enumeration operator outputs La.
Moreover, all pairs in Γ (L) are ordered lexicographically by the order induced
by L. In other words, Γ (L) =

∑
a∈L La.

– If L ∼= ω · n, then Γ (L) ∼= ∑
j∈n

∑
i∈ω ω · n =

∑
j∈n ω2 = ω2 · n.

– If L ∼= ω� · n, then Γ (L) ∼= ∑
j∈n

∑
i∈ω� ω� · n =

∑
j∈n (ω2)� = (ω2)� · n.


�
For the next result, we need the following notation. For a linear ordering L

and an element a in L, we define

leftL(a) = |{b ∈ dom(L) | b ≤L a}|
rightL(a) = |{b ∈ dom(L) | b ≥L a}|

radL(a) = min{leftL(a), rightL(a)}.

Informally, we will show that there exists an enumeration operator Γ which can
“guess” whether an element a in the input linear ordering L has finite or infinite
radius, denoted radL(a).

Theorem 2. {ω · 2, ω� · 2} ≤c {ω2, (ω2)�}.
Proof. We informally describe the work of the enumeration operator Γ . Suppose
we have as input the finite linear ordering L = a0 < a1 < a2 < · · · < an. For
each ai in L, Γ outputs the pairs of the form (ai, aj), where aj ≤N radL(ai),
where ≤N is the standard ordering of natural numbers. All pairs in the output
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structure are ordered in lexicographic order. This concludes the description of
how Γ operates. Now we have two cases to consider for the input structure A.

Suppose that A = A1 +A2, where A1 and A2 are copies of ω. If a ∈ A1 is its
k-th least element, then radA(a) = k and hence a contributes at most k pairs to
Γ (A). If a ∈ A2, then clearly radA(a) = ℵ0 and hence a contributes infinitely
many pairs to Γ (A), forming a linear ordering of type ω · 2.

We conclude that in this case

Γ (A) ∼=
∑

i∈ω

i +
∑

i∈ω

ω · 2 ∼= ω + ω2 = ω2.

Suppose that A = A1 +A2, where A1 and A2 are copies of ω�. If a ∈ A1, then a
contributes infinitely many elements of type ω� · 2 in Γ (A). If a ∈ A2 is its k-th
greatest element, then a contributes at most k pairs in Γ (A). We conclude that
in this case

Γ (A) ∼=
∑

i∈ω�

ω� · 2 +
∑

i∈ω�

i ∼= (ω2)
�

+ ω� = (ω2)
�
.


�
Corollary 1. For any natural number n ≥ 1,

{ω · (n + 1), ω� · (n + 1)} ≤c {ω2 · n, (ω2)
� · n}.

Proof. We use the same enumeration operator Γ as in Theorem 2. Suppose
A = A0 + A1 + · · · + An, where each Ai is a copy of ω. Then if a ∈ A0 is
the k-th least element, then a contributes at most k pairs in Γ (A). If a ∈ Ai,
where i > 0, then a contributes infinitely many pairs of the type of A to Γ (A).
It follows that

Γ (A) ∼=
∑

i∈ω

i +
∑

i∈ω

ω · (n + 1) + · · · +
∑

i∈ω

ω · (n + 1)

︸ ︷︷ ︸
n

= ω + ω2 · n = ω2 · n.

Suppose A = A0+A1+· · ·+An, where each Ai is a copy of ω�. Then if a ∈ An is
the k-th greatest element, then a contributes at most k pairs in Γ (A). If a ∈ Ai,
where 0 ≤ i < n, then a contributes infinitely many pairs of the type of A to
Γ (A). It follows that

Γ (A) ∼=
∑

i∈ω�

ω� · (n + 1) + · · · +
∑

i∈ω�

ω� · (n + 1)

︸ ︷︷ ︸
n

+
∑

i∈ω�

i

= (ω2)
� · n + ω� = (ω2)

� · n.


�
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Corollary 2. For any natural number n ≥ 1,

{ω · 2, ω� · 2} ≤c {ω2 · n, (ω2)
� · n}.

Proof. This is straightforward. Let Γ be the enumeration operator from Theo-
rem 2. Then for a natural number n ≥ 1, the embedding will be obtained by the
enumeration operator, which, for linear ordering A, simply copies n number of
times the linear ordering Γ (A). 
�

4 The Case {ω · 3, ω� · 3} �≤c {ω2, (ω2)
�}

In this section, towards a contradiction, assume Γ : {ω ·3, ω� ·3} ≤c {ω2, (ω2)�}.
Let B be a copy of ω · 3 (or the reverse ordinal). In general, for a subordering
A of B, we may have that Γ (A) is not a linear ordering. For example, we may
have x, y ∈ Γ (A), but none of the sentences x < y or y < x are in Γ (A).
Suppose Γ (B) |= x < y. Then we claim that there is no extension C of A
such that Γ (C) |= y < x. In other words, although Γ (A) does not “know”
the relation between x and y, this relation is already fixed. Assume there is
such an extension C for which Γ (C) |= y < x. By compactness of enumeration
operators, we may suppose that C extends A by only finitely many elements.
We can find another finite extension D of A with dom(D) ∩ dom(B) = dom(A)
and dom(D) ∩ dom(C) = dom(A) such that Γ (D) |= x < y ∨ y < x. Now we use
monotonicity. If Γ (D) |= x < y, then we must have Γ (C ∪ D) |= x < y & y < x.
If Γ (D) |= y < x, then we must have Γ (B ∪ D) |= x < y & y < x. In both cases
we reach a contradiction.

Remark 1. It is safe to always suppose that if A is a linear ordering (or its
corresponding reverse linear ordering), then Γ (A) is also a linear ordering.

Let us denote by a <∞ b the computable infinitary sentence saying that there
are infinitely many elements between a and b.

Proposition 2. For any infinite and coinfinite set A, if there is a copy A of
ω with dom(A) = A such that Γ (A) ∼= ω2, then there is no copy B of ω with
dom(B) ⊆ N \ A such that Γ (B) ∼= ω2.

Proof. Assume that there are at least two copies A and B of ω, with mutually
disjoint domains, such that Γ (A) ∼= ω2 and Γ (B) ∼= ω2. Then we can fix the
infinite sequences a = (ai)

∞
i=0 and b = (bi)

∞
i=0 such that

Γ (A) |= a0 <∞ a1 <∞ a2 <∞ · · ·
Γ (B) |= b0 <∞ b1 <∞ b2 <∞ · · ·

Then by Proposition 1, we have Γ (A + B) |= a <� b ∨ b <� a. It follows
that Γ (A + B) extends a copy of ω2 · 2, which is a contradiction because by
monotonicity of enumeration operators this would mean that there is a copy C
of ω · 3 extending A + B such that Γ (C) extends ω2 · 2. 
�
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From now on, in this section, we suppose that we work with copies A of ω
such that Γ (A) has type strictly less than ω2, i.e. there exist natural numbers
n and � such that Γ (A) ∼= ω · n + �.

Proposition 3. There exists an infinite subset D of natural numbers and a
number n such that any copy A of ω with dom(A) ⊆ D is such that Γ (A) has
type at most ω · n.

Proof. Towards a contradiction, assume that for any infinite subset D of natural
numbers, for any n, there exists a copy A of ω with dom(A) ⊆ D such that
Γ (A) is at least ω · n. This means that we can consider a sequence An of copies
of ω, with mutually disjoint domains, such that Γ (An) has type at least ω · n.
Now we can partition each copy An into an infinite sum of finite parts (αn,i)

∞
i=0

such that An =
∑

i∈ω αn,i. Then we can form a new copy B of ω in the following
way: B =

∑
i∈ω

∑i
n=0 αn,i−n. In other words, B = α0,0 + α0,1 + α1,0 + α0,2 +

α1,1 +α2,0 +α0,3 + · · · Then B contains An for all n and by monotonicity, Γ (B)
has type greater than ω · n for all n. We conclude that Γ (B) has type at least
ω2, which is a contradiction. 
�
Remark 2. Proposition 3 allows us to proceed as in Section 7 of [3] and suppose
that we have fixed an infinite set D and a number n such that any copy A of ω
with dom(A) ⊆ D is such that Γ (A) ∼= ω · n. From here on, all copies of ω that
we consider will have as domains coinfinite subsets of D.

Proposition 4. Let A and B be two such copies of ω, with mutually disjoint
domains, such that for the ω-chains ai = (ai,j)

∞
j=0 and bi = (bi,j)

∞
j=0, where i =

1, . . . , n, we have Γ (A) |= a1 < a2 < · · · < an and Γ (B) |= b1 < b2 < · · · < bn.
Then

Γ (A + B) |= an <� bn.

Proof. Assume not. By Proposition 1 we would have Γ (A + B) |= bn <� an. Let
an,0 ∈ Γ (α) for some finite part α of A. Then C = α + B is a copy of ω such
that Γ (C) |= b1 < b2 < · · · < bn < an,0. It follows that Γ (C) extends a copy of
ω · n + 1, which is a contradiction with Remark 2. 
�
Proposition 5. Let A, B, and C be copies of ω. Suppose that

Γ (C) |= c1 < c2 < · · · < cn,

where ci = (ci,j)
∞
j=0 are ω-chains. Then there exists an infinite subsequence

(is)
∞
s=0 such that

Γ (A + B + C) |=
∧

s∈ω

cn,is
<∞ cn,is+1 .

Proof. Assume not. Then Γ (A + B + C) |= c1 < · · · < cn + D, where D has the
type of ω2. Let d ∈ D be such that d ∈ Γ (α + β + C), where α and β are finite
parts of A and B respectively. Then α + β + C is a copy of ω, but Γ (α + β + C)
extends a copy of ω · n + 1, which is a contradiction with Remark 2. 
�
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Proposition 6. For any linear ordering L of type ω ·3, there is a linear ordering
M of type ω · 2 with dom(L) = dom(M) and Γ (M) ∼= ω2.

Proof. Let L = A +B + C, where A, B, and C are copies of ω. By Proposition 5,
consider the infinite sequence c ∈ Γ (C) such that

Γ (A + B + C) |=
∧

i∈ω

ci <∞ ci+1.

Assume that for some finite parts α and β of A and B respectively, for some i,
Γ (α+β +C) |= ci <∞ ci+1. But since α+β +C is a copy of ω, and Γ (C) ∼= ω ·n,
then Γ (α + β + C) would extend a copy of ω · (n + 1), which is a contradiction
with Remark 2. It follows that any such finite parts α and β contribute finitely
many elements to any interval of the form (ci, ci+1).

Let ui = (ui,j)
∞
j=0 be ω-chains such that we can partition A and B into finite

parts such that A =
∑

i∈ω αi and B =
∑

i∈ω βi and for all i,

Γ (αi + βi + C) |=
i∧

j=0

cj < uj,i−j < cj+1.

Then, by monotonicity, we obtain the following:

Γ (
∑

i∈ω

(αi + βi) + C) |=
∧

i∈ω

∧

j∈ω

ci < ui,j < ci+1.

It follows that M =
∑

i∈ω(αi +βi)+C is a copy of ω ·2 with dom(M) = dom(L)
which produces a copy of ω2. 
�
Proposition 7. Let L and M be disjoint copies of ω · 2 such that Γ (L) ∼= ω2

and Γ (M) ∼= ω2. Then there is a copy N of ω ·3 such that Γ (N ) extends a copy
of ω2 · 2.

Proof. Let L = A+B and M = C +D, where A, B, C and D are copies of ω. Let
us fix the ω-chains bi = (bi,j)

∞
j=0 and di = (di,j)

∞
j=0 where i = 1, . . . , n such that

Γ (B) |= b1 < b2 < · · · < bn and Γ (D) |= d1 < d2 < · · · < dn. By Proposition 5,
we can suppose that the ω-chains bn and dn are such that

Γ (A + B) |=
∧

i∈ω

bn,i <∞ bn,i+1 (1)

Γ (C + D) |=
∧

i∈ω

dn,i <∞ dn,i+1, . (2)

Now by Proposition 4 we have that

Γ (B + D) |= bn <� dn. (3)

For an arbitrary partition of B and C into finite parts such that B =
∑

i∈ω βi

and C =
∑

i∈ω γi, let us consider the copy N of ω · 3, where

N = A +
∑

i∈ω

(βi + γi) + D.
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By monotonicity, (3) implies that Γ (N ) |= bn <� dn. Now, again by monotonic-
ity, (1) and (2) imply that Γ (N ) extends a copy of ω2 · 2. 
�

Now we are ready to finish the proof. Consider two disjoint copies L and M
of ω · 3 such that Γ (L) ∼= ω2 and Γ (M) ∼= ω2. By Proposition 6, we obtain two
disjoint copies L1 and M1 of ω ·2 such that Γ (L1) ∼= ω2 and Γ (M1) ∼= ω2. Then
by Proposition 7, from L1 and M1 we can construct a copy N of ω · 3 such that
Γ (N ) �∼= ω2. Thus, we have proven the following theorem.

Theorem 3. {ω · 3, ω� · 3} �≤c {ω2, (ω2)�}.
Corollary 3. For any non-zero natural number n,

n ≥ 2 ⇐⇒ {ω · 3, ω� · 3} ≤c {ω2 · n, (ω2)
� · n}.

Proof. First consider the direction (⇒). For each n ≥ 2 we will show how to build
an enumeration operator Γn. Notice that by Corollary 1 we have an enumeration
operator Γ2 : {ω · 3, ω� · 3} ≤c {ω2 · 2, (ω�)2 · 2}. Moreover, by Theorem 1, we
have an enumeration operator Γ3 : {ω · 3, ω� · 3} ≤c {ω2 · 3, (ω�)2 · 3}.

Let n = 2k for some k ≥ 1. Then Γn works so that, for any input A, it
outputs k disjoint copies of Γ2(A).

Let n = 2k + 3 for some k ≥ 0. Then Γn works so that, for any input A, it
outputs k disjoint copies of Γ2(A) together with a copy of Γ3(A). The direction
(⇐) is exactly Theorem 3. 
�

5 The General Case

Here, using the same techniques as in Sect. 4, we will obtain the following theo-
rem.

Theorem 4. For any k ≥ 3, {ω · k, ω� · k} �≤c {ω2, (ω2)�}.
Again towards a contradiction, assume that we have fixed a number k ≥ 3

and an enumeration operator Γ : {ω·k, ω�·k} ≤c {ω2, (ω2)�}. Since Proposition 2
and Proposition 3 still apply in this more general case, we can use Remark 2
and suppose we have fixed a number n such that we always work with copies A
of ω such that Γ (A) ∼= ω ·n. By essentially repeating the proof of Proposition 5,
we obtain the following proposition.

Proposition 8. Let A1,A2, . . . ,Ak be copies of ω. Suppose that

Γ (Ak) |= c1 < c2 < · · · < cn,

where ci = (ci,j)
∞
j=0 are ω-chains. Then there exists an infinite subsequence

(is)
∞
s=0 such that

Γ (
k∑

j=1

Aj) |=
∧

s∈ω

cn,is
<∞ cn,is+1 .
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The next proposition is a generalization of Proposition 6.

Proposition 9. For any linear ordering L of type ω ·k, there is a linear ordering
M of type ω · 2 with dom(L) = dom(M) and Γ (M) ∼= ω2.

Proof. Let L =
∑k

i=1 Ai, where Ai are copies of ω. By Proposition 8, consider
the ω-chain (ci)

∞
i=0 in Γ (Ak) such that Γ (

∑k
j=1 Aj) |= ∧

i∈ω ci <∞ ci+1.
As in the proof of Proposition 6, for any �, let u� = (u�,j)

∞
j=0 be an ω-chain

such that we can partition Ai into finite parts with Ai =
∑

j∈ω αi,j , where
i = 1, 2, . . . , k − 1, where for all j,

Γ (
k−1∑

i=1

αi,j + Ak) |=
j∧

�=0

c� < u�,j−� < c�+1.

Then, by monotonicity, we obtain the following:

Γ (
∑

j∈ω

k−1∑

i=1

αi,j + Ak) |=
∧

�∈ω

∧

j∈ω

c� < u�,j < c�+1.

It follows that M =
∑

j∈ω

∑k−1
i=1 αi,j + Ak is a copy of ω · 2 with dom(M) =

dom(L) which produces a copy of ω2. 
�
Let us take two disjoint copies L and M of ω · k such that Γ (L) ∼= ω2 and

Γ (M) ∼= ω2. By Proposition 9, we obtain two disjoint copies L1 and M1 of ω · 2
such that Γ (L1) ∼= ω2 and Γ (M1) ∼= ω2. Then by Proposition 7, from L1 and
M1 we can construct a copy N of ω · 3 such that Γ (N ) extends a copy of ω2 · 2.
By monotonicity, any copy N̂ of ω ·k extending N will be such that Γ (N̂ ) �∼= ω2.
We conclude that {ω · k, ω� · k} �≤c {ω2, (ω2)�}.

6 Positive Results for Powers of ω

Proposition 10. For any n ≥ 1, {ωn, (ωn)�} ≤c {ω2n, (ω2n)�}.
Proof. Standard cartesian product construction as in [18, Definition 1.40]. 
�
Theorem 5. {ω2, (ω2)�} ≤c {ω3, (ω3)�}.
Proof. The idea here is to replace each point by an interval of the form [a, b],
which means that this interval will have type ω ·k+� in the first case and �+ω� ·k
in the second case.

We informally describe the work of the enumeration operator Γ . Let us con-
sider some finite diagram δ(a) of the input structure A. For each a in δ(a), Γ
executes the following steps: Find elements b and c such that b ≤A a ≤A c, where
b, c ≤N a, such that b is the ≤A-least such element and c is the ≤A-greatest such
element in δ(a). For all elements d in δ(a) such that b ≤A d ≤A c, Γ enumerates
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in the output structure the pair (a, d). All pairs are ordered lexicographically.
This concludes the description of Γ . Now we have two cases to consider.

Suppose that A =
∑

i∈ω Ai, where Ai are copies of ω. It is easy to see that
for each i, there are only finitely many elements in Ai, which contribute finitely
many pairs in Γ (A). For instance, let a be the <N-least element in A \ A0. It
follows that in A0 only the elements which are <N-less than a contribute finitely
many pairs in Γ (A). We have

Γ (A) =
∑

a∈A0

(ω · ka,0 + �a,0) + · · · +
∑

a∈Ai

(ω · ka,i + �a,i) + · · ·

= ω2 + · · · + ω2 + · · · = ω3.

For the second case, suppose that A =
∑

i∈ω� Ai, where Ai are copies of ω�.
Again, for each i, there are only finitely many elements in Ai, which contribute
finitely many pairs in Γ (A). It follows that

Γ (A) = · · · +
∑

a∈Ai

(�a,i + ω� · ka,i) + · · · +
∑

a∈A0

(�a,0 + ω� · ka,0)

= · · · + (ω2)
�

+ · · · + (ω2)
�

= (ω3)
�
.


�
Using the same enumeration operator Γ as in Theorem 5, we obtain the

following corollary.

Corollary 4. For any n ≥ 1, {ωn, (ωn)�} ≤c {ω2n−1, (ω2n−1)�}.
Corollary 5. For any n ≥ 2, {ω2, (ω2)�} ≤c {ωn, (ωn)�}.
Proof. For any natural number n ≥ 2, we briefly describe the enumeration oper-
ator Γn : {ω2, (ω2)�} ≤c {ωn, (ωn)�}.

– If n = 2k, where k ≥ 1, then for any input A, Γn outputs Ak.
– If n = 3, then Γ3 is the enumeration operator from Theorem 5.
– If n = 2k + 3, where k ≥ 1, then for any input A, Γn outputs Γ3(A) · Ak.


�

7 Future Work

We strongly conjecture that by employing the methods of this paper, one can
prove that {ω · 3, ω� · 3} �c {ω3, (ω3)�}. Furthermore, it would be interesting to
consider pairs of structures {A,B} such that A and B are not linear orders, but
still {A,B} ≡tc {ω, ω�}. We note that in this case, A and B cannot be Boolean
algebras (see Proposition 4.6 of [2]).
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Abstract. We study clockability for Ordinal Turing Machines (OTMs).
In particular, we show that, in contrast to the situation for ITTMs,
admissible ordinals can be OTM-clockable, that Σ2-admissible ordinals
are never OTM-clockable and that gaps in the OTM-clockable ordinals
are always started by admissible limits of admissible ordinals. This par-
tially answers two questions in [3].

1 Introduction

In ordinal computability, “clockability” denotes the property of an ordinal that
it is the halting time of some program. The term was introduced in [9], which was
the paper that triggered the bulk of research in the area of ordinal computability
by introducing Infinite Time Turing Machines (ITTMs).1 By now, a lot is known
about clockability for ITTMs. To give a few examples: In [9], it was proved that
there are gaps in the ITTM-clockable ordinals, i.e., there are ordinals α < β < γ
such that α and γ are ITTM-clockable, but β is not. Moreover, it is known
that no admissible ordinal is ITTM-clockable (Hamkins and Lewis, [9]), that the
first ordinal in a gap is always admissible (Welch, [14]), that the supremum λ
of the ITTM-writable ordinals (i.e. ordinals coded by a real number that is the
output of some halting ITTM-computation) equals the supremum of the ITTM-
clockable ordinals (Welch, [14]), that an ITTM-clockable γ has a code that is
ITTM-writable in γ many steps (Welch, [14]) and that ITTM-writable ordinals
have real codes that are ITTM-writable at the point the next clockable appears.
Moreover, it is known that not every admissible below λ starts a gap, there are
admissibles properly inside gaps, and occasionally many of them (Carl, Durand,
Lafitte, Ouazzani, [6]). And indeed, clockability turned out to be a central topic
in ordinal computability; it was, for example, crucial for Welch’s analysis of the
computational strength of ITTMs.

Besides ITTMs, clockability was also considered for Infinite Time Register
Machines (ITRMs), where the picture turned out to be quite different: In par-
ticular, there are no gaps in the ITRM-clockable ordinals (see [5]), and in fact,
1 As one of our referees pointed out, there are earlier considerations of machine models

computing along an ordinal time axis; however, none of them was studied in the detail
that ITTMs were.
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the ITRM-clockable ordinals are exactly those below ωCK
ω , which thus includes

ωCK
n for every n ∈ ω, i.e. the first ω many admissible ordinals.

For other models, clockability received comparably little attention. This work
arose out of a question of T. Kihara during the CTFM2 conference in 2019 in
Wuhan who, after hearing that admissible ordinals are never ITTM-clockable,
asked whether the same holds for OTMs. After most of the results of this paper
had been proved, we found two questions in the report of the 2007 BIWOC (Bonn
International Workshop on Ordinal Computability) [3] concering this topic: the
first (p. 42, question 9), due to J. Reitz, was whether ωCK

1 was OTM-clockable,
the second, due to J. Hamkins, whether gap-starting ordinals for OTMs can be
characterized as “something stronger” than being admissible. In [3], both are
considered to be answered by the claim that no admissible ordinal is OTM-
clockable, which is attributed to J. Reitz and S. Warner. Upon personal inquiry,
Reitz told us that they had a sketch of a proof which, however, did not entirely
work; what it does show with a few modifications, though, is that Σ2-admissible
ordinals are not OTM-clockable, and the argument that Reitz sketched in per-
sonal correspondence to us in fact resembles the one of Theorem 6 below. We
thus regard Reitz and Warner as the first discoverers of this theorem. Both
the argument of Reitz and Warner from 2007 and the one we found during the
CTFM in 2019 are adaptations of Welch’s argument that admissible ordinals are
not ITTM-clockable.

The statement actually made in [3], is, however, false: As we will show below,
ωCK

n is OTM-clockable for any n ∈ ω. Thus, there are plenty of admissible
ordinals that are OTM-clockable, and the answer to the first question is positive.
The idea is to use the ITRM-clockability of these ordinals, which follows from
Lemma 3 in [5], together with a slightly modified version of the obvious procedure
for simulating ITRMs on OTMs. This actually shows that ωCK

n is clockable on
an ITTM with tape length α as soon as α > ω. Thus, the strong connection
between admissibility and clockability seems to depend rather strongly on the
details of the ITTM-architecture. We remark that this is a good example of how
the studies of different models of infinitary computability can fruitfully interact:
At least for us, it would not have been possible to find this result while only
focusing on OTMs.

Moreover, we will answer the second question in the positive as well by show-
ing that, if α starts a gap in the OTM-clockable ordinals, then α is an admissible
limit of admissible ordinals.3

Of course, the gap between “admissible limit of admissible ordinals” and
“Σ2-admissible” is quite wide. In particular, we do not know whether every gap
starting ordinal for OTMs is Σ2-admissible, though we conjecture this to be
false.

2 International Conference on Computability Theory and Foundations of Mathemat-
ics.

3 The notion of admissibility will play a prominent role in this paper. Readers unfa-
miliar with it are referred to Barwise [1].
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2 Ordinal Turing Machines

Ordinal Turing Machines (OTMs) were introduced by Koepke in [10] as a kind
of “symmetrization” of ITTMs: Instead of having a tape of length ω and the
whole class of ordinals as their working time, OTMs have a tape of proper class
length On while retaining On as their “working time” structure. We refer to [10]
for details.

In contrast to Koepke’s definition but in closer analogy with the setup of
ITTMs, we allow finitely many tapes instead of a single one. Each tape has a
head, and the heads move independently of each other; the program for such
an OTM is simply a program for a (finite) multihead Turing machine. At limite
times, the inner state (which is coded by a natural number), the cell contents and
the head positions are all determined as the inferior limits of the sequences of
the respective earlier values. At successor steps, an OTM-program is carried out
as if on a finite Turing machine with the addition that, when a head is moved
to the left from a limit posistion, it is reset to the start of the tape. Though
models of ordinal computability generally enjoy a good degree of stability under
such variations as far as computational strength is concerned, this often makes a
difference when it comes to clockability. Intuitively, simulating several tapes with
separate read-write-heads on a single tape requires one to check the various head
positions to determine whether the simulated machine has halted, which leads
to a delay in halting. For ITTMs, this is e.g. demonstrated in [13]. For OTMs,
insisting on a single tape would lead to a theory that is “morally” the same as
the one described here, but make the results much less compelling and the proofs
more technically involved and harder to follow.4 Thus, allowing multiple tapes
seems to be a good idea.

An important property of OTMs that will be used below is the existence
of an OTM-program P that ‘enumerates L’; in particular, P will write (a code
for) the constructible level Lα on the tape in < α′ many steps, where α′ is the
smallest exponentially closed ordinal > α (this notation will be used throughout
the paper).

The following picture of OTM-computations may be useful to some readers:
Let us imagine the tape split into ω-blocks. Then an OTM-computation proceeds
like this: The head works for a bit in one ω-block, then leaves it to the right,
works for a bit in the new ω-portion, again leaves it to the right and so on,
until eventually the computation either halts or the head is moved back from
a limit position, i.e., goes back to 0 and starts over. Thus, if one imagines an
ω-portion as single point, then the head moves from left to right, jumps back
to 0, moves right again etc. Moreover, in each ω-portion, we have a classical
ITTM-computation (up to the limit rules for the head position and the inner
state, which make little difference).

We fix some terminology for the rest of this paper.

4 For example, by simulating multitape machines on a single-type machine in a rather
straightforward way, one can see that the following holds: If α is exponentially closed
and clockable by an OTM, then α · 2 is clockable by an OTM using only one tape.
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Definition 1. If M is one of ITRM, ITTM or OTM and α is an ordinal, then
α is called M -clockable if and only if there is an M -program that halts at time
α + 1.5 α is called M -writable if and only if there is a real number coding α that
is M -computable. An M -clockable gap is an interval [α, β) of ordinals such that
α < β, no element of [α, β) is M -clockable and [α, β) is maximal in the sense
that there are cofinally many M -clockable ordinals below α and β is M -clockable.
In this case, we say that α “starts” the gap and call α a “gap starting ordinal”
or “gap starter” for M .

3 Basic Observations

We start with some useful observations that can mostly be obtained by easy
adaptations of the corresponding results about ITTM-clockability.

We start by noting that the analogue of the speedup-theorem for ITTMs from
[9] holds for multitape-OTMs. This is proved by an adaptation of the argument
for the speedup-theorems for ITTMs. The main difference is that, in contrast to
ITTMs, OTMs do not have their head on position 0 at every limit time and that
the head may make long “jumps” when moved to the left from a limit position.
This generates a few extra complications.

To simplify the proof, we start by building up a few preliminaries.
For the ITTM-speedup, the following compactnes property is used: If P halts

in δ + n many steps and the head is located at position k at time δ, then only
the n cells contents before and after the kth one at time δ are relevant for this.
Now, this is a fixed string s of 2n bits. In [9], a construction is described that
achieves that the information whether these 2n cells currently contain s at a
limit time γ is coded on some extra tapes at time γ. Due to the special limit
rules for ITTMs that set the head back to position 0 at every limit time, the
Hamkins-Lewis-proof has this information stored at the initial tape cells, but
the construction is easily modified to store the respective information on any
other tape position.

We will use it in the following way: Suppose that P is an OTM-program that
halts at time δ + n, where δ is a limit ordinal and n ∈ ω. We want to “speed
up” P by n steps, i.e. to come up with a program Q that halts in δ many steps.
Suppose that P halts with the head on position γ + k, where γ is a limit ordinal
and k ∈ ω. Let m be k − n if k − n ≥ 0 and 0, otherwise, and let s be the
bit string present on positions γ + m until γ + k + n at time δ. Then we use
the Hamkins-Lewis-construction to ensure that the information whether the bit
string present on positions η + m until η + k + n is equal to s on the (η + k)th
cells of three extra tapes, for each limit ordinal η.

An extra complication arises from the possibility of a “setback”: Within the
n steps from time δ to time δ + n, it may happen that the head is moved left
from position δ, thus ending up at the start of the tape. Clearly, it will then take
< n many further steps at the start of the tape and only consider the first n

5 The +1 allows limit ordinals to appear as halting times and thus simplifies the
theory.
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bits during this time. However, we need to know what these bits are - or rather,
whether they are the “right ones”, i.e., the ones present at time δ - while our
head is located at position δ + k. The idea is then to store this information in
the inner state of the sped-up program. We thus create extra states: The new
state 2i will represent the old state i together with the information that the first
n bits were the “right ones” (i.e. the same ones as at time δ) and 2i + 1 will
represent the old state i together with the information that some of these bits
deviated from those at time δ. To achieve this, we use an extra tape T4. At the
start of Q, a 1 is written to each of the first n cells of T4; after that, the head
on T4 is set back to position 0 and then moved along with the head of P . In this
way, we will always know whether the head of P is currently located at one of
the first n cells. Whenever this is the case, we insert some intermediate steps to
read out the first n bits, update the inner state and move the head back to its
original position. (This requires some additional states, but we skip the details).
Note that, if η is a limit time and the first n bits have been changed unboundedly
often before η, then the head will be located at one of these positions at time
η by the liminf-rule and thus, a further update will take place so that the state
will correctly represent the configuration afterwards. On the other hand, if the
first n bits were only changed boundedly often before time η, then let η̄ be
the supremum of these times. We just saw that the state will represent the
configuration correctly finitely many steps after time η̄, after which the first n
cell contents remain unchanged, so that the state is still correct at time η. In each
case, updating this information and returning to the original configuration will
take only finitely many extra steps and thus not cause a delay at limit times.6

In the following construction, we will need to know whether the head is
currently located at a cell the index of which is of the form δ + k, where δ is
a limit ordinal and k is a fixed natural number. To achieve this, we add three
tapes T0, T1 and T2 to P . The tape T0 serves as a flag: By having two cells with
alternating contents 01 and 10, we can detect a limit time as a time at which
both cells contain 0. On T2, we move the head along with the head on P and
place a 1 on a cell whenever we encounter a cell on which a 0 is written. Thus,
the head occupies a certain limit position for the first time if and only if the
head on T1 reads a 0 at a limit time. Finally, on T2, we more the head along
with the heads on T1 and the main tape. Whenever the head on T1 reads a 0 at a
limit time, we interrupt the computation, move the head on T2 for k many steps
to the right, write a 1, move the head k many places to the left, and continue.
In this way, the head on T2 will read a 1 if and only if the head on the main
tape is at a position of the desired form. As this merely inserts finitely many
steps occasionally, running this procedure along with an OTM-program P will
still carry out δ many steps of P at time δ whenever δ is a limit ordinal. We
will say that the head is “at a δ + k-position” if the index of the cell where it is

6 This leaves us with the case that the head occupies one of the first n tape positions at
time δ, in which case even a finite delay would increase our running time. However, in
this special case, no setback will take place during the last n steps of the computation,
so the construction described in this paragraph can simply be skipped.
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currently located is of this form with δ a limit ordinal and, by the construction
just described, we can use formulations like “if the head is currently at a δ + k-
position” in describing OTM-programs without affecting the running time at
limit ordinals.

Lemma 1. If α + n is OTM-clockable and n ∈ ω, then α is OTM-clockable.

Proof. It is clear that finite ordinals are OTM-clockable and that OTM-clockable
ordinals are closed under addition (by simply running one program after the
other).7 Thus, it suffices to consider the case that α is a limit ordinal. Moreover,
we assume for simplicity that P uses only one tape.8

Let P be an OTM-program that runs for α + n many steps, where α is a
limit ordinal. We want to construct a program Q that runs for α many steps.
Let the head position at time α be equal to δ + k, where δ is a limit ordinal and
k ∈ ω. As above, let m be k − n if k − n ≥ 0 and otherwise let m = 0. Let s be
the bit string present on the positions δ + m until δ + k + n at time α, and let t
be the string present on the first n positions.

Using the constructions explained above, Q now works as follows: Run P .
At each step, determine whether the head is currently at a location of the form
η + k with η a limit ordinal and whether one of the two following conditions
holds:

1. The head is currently at one of the first n positions and the bit string currently
present on the positions η + m up to η + k + n is equal to s.

2. The head is currently not on one of the first n positions, the bit string cur-
rently present on the positions η+m up to η+k+n is equal to s and whether
the bit string currently present on the first n positions is equal to t.

If not, continue with P . Otherwise, halt. As described above, the necessary
information can be read off from the various extra tapes and the inner state
simultaneously. Now it is clear that, if Q halts at time β, then P will halt at
time β + n. Thus, Q halts at time α, as desired.

Definition 2. Let σ be the minimal ordinal such that Lσ ≺Σ1 L, i.e. such that
Lσ is a Σ1-submodel of L.

Proposition 3. Every OTM-clockable ordinals is < σ, and their supremum is
σ.

Proof. The statement ‘The program P halts’ is Σ1. Moreover, any halting OTM-
computation is contained in L. Consequently, if P halts, its computation is con-
tained in L, and hence in Lσ, and thus, the halting time of P , if it exists, is < σ.

On the other hand, every real number in Lσ is OTM-computable (see, e.g.,
[12], proof of Corollary 3), including codes for all ordinals < σ, and thus we can
7 It is folklore (and easy to see) that, for any reasonable model of computation, clock-

able ordinals are closed under ordinal arithmetic, i.e. under addition, multiplication
and exponentiation, see e.g. [9] or [5]. This also holds true for OTMs.

8 If P uses several tapes, the construction below is carried out for each of these.
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write such a code for any ordinal α < σ and then run through this code, which
takes at least α many steps. Thus, there is an OTM-clockable ordinal above α
for every α < σ.

Proposition 4. There are gaps in the OTM-clockable ordinals. That is, there
are ordinals α < β < γ such that α and γ are OTM-clockable, but β is not.

Proof. This works like the argument in Hamkins and Lewis ([9], Theorem 3.4)
for the existence of gaps in the ITTM-clockable ordinals: Take the OTM-program
that simultaneously simulates all OTM-programs and halts as soon as it arrives
at a level at which no OTM-program halts. If there were no gap, then this
program would halt after all OTM-halting times, which is a contradiction.

The following is an OTM-version of Welch’s “quick writing theorem” (see
[14], Lemma 48) for ITTMs.

Lemma 2. If an ordinal α is OTM-clockable, then a real number coding α is
OTM-writable in < α′ many steps, where α′ denotes the next exponentially closed
ordinal after α.

Proof. If α is clocked by some OTM-program P , then Lα+ω believes that P
halts. Thus, there is a Σ1-statement that becomes true between Lα and Lα+ω

for the first time and hence, by finestructure (see [2], Lemma 1), a real number
coding α+1 is contained in Lα+ω. But the OTM-program Q that enumerates L
will have (a code for) Lα+ω on the tape in < α′ many steps. So we can simply
run this program until we arrive at a code c for a limit L-level that believes that
P halts for the first time. Now, we can easily find out the desired real code for
α in the code for Lα+ω (by searching the coded structure for an element which
it believes to be the halting time of P ).

Proposition 5. If β < α is exponentially closed and OTM-clockable and there
is a total Σ1(Lα)-function f : β → α such that f is cofinal in α, then α is
OTM-clockable.

Proof. This works by the same argument as the “only admissibles start gaps”-
theorem for ITTMs, see Welch [14]: Suppose for a contradiction that α starts an
OTM-gap, but is not admissible.

Pick β < α OTM-clockable and f : β → α such that f is Σ1(Lα) and
cofinal in α. Let B be an OTM-program that clocks β. By the last lemma, we
can compute a real code for β in < β′ ≤ α many steps. Run the OTM that
enumerates L. If β is exponentially closed, then we will have a code for Lβ on
the tape at time β. In addition, for each new L-level, check which ordinals recieve
f -images when evaluating the definition of f in that level. Determine the largest
ordinal γ such that f is defined on γ. Whenever γ increases, say from γ0 to γ1,
let δ be such that γ0 + δ = γ1 and run B for δ many steps. When B halts, all
elements of β have images, so we have arrived at time α.

This suffices for an OTM-analogue of Welch’s theorem [14], Theorem 50:
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Corollary 1. If α starts a gap in the OTM-clockable ordinals, then α is admis-
sible.

Proof. As α starts an OTM-gap, it is exponentially closed.
If α is not admissible, there is a total cofinal Σ1(Lα)-function f : β → α with

β < α. Pick γ ∈ (β, α) OTM-clockable and large enough so that all parameters
used in the definition of f are contained in Lγ . By Lemma 2, we can write a real
code for Lγ , and thus for all of its elements in time < γ′ ≤ α. We can now clock
α as in Proposition 5, a contradiction.

4 Σ2-admissible Ordinals Are Not OTM-clockable

We now show that no Σ2-admissible ordinal α can be the halting time of a
parameter-free OTM-computation. The proof is mostly an adapatation of argu-
ment in Hamkins and Lewis [9] for the non-clockability of admissible ordinals by
ITTMs to the extra subtleties of OTMs.

Theorem 6. No Σ2-admissible ordinal is OTM-clockable.

Proof. We will show this for the case of a single-tape OTM for the sake of
simplicity.

Let α be Σ2-admissible and assume for a contradiction that α is the halting
time of the parameter-free OTM-program P . At time α, suppose that the read-
write-head is at position ρ, the program is in state s ∈ ω and the head reads the
symbol z ∈ {0, 1}. As one cannot move the head more than α many places to
the right in α many steps, we have ρ ≤ α.

By the limit rules, z must have been the symbol on cell ρ cofinally often
before time α and similarly, s must have been the program state cofinally often
before time α. By recursively building an increasing ‘interleaving’ sequence of
ordinals of both kinds, we see that the set S of times at which the program state
was s and the symbol on ρ was z, we see that S is closed and unbounded in α.

We now distinguish three cases.

Case 1: ρ < α and the head position ρ was assumed cofinally often before time
α.

Let β be the order type of the set of times at which ρ was the head position
in the computation of P . We show that β = α. If not, then β < α; let f : β → α
be the function sending each ι < β to the ιth time at which ρ was the head
position. Then f is Σ1 over Lα and thus, by admissibility of α, f [β] is bounded
in α, contradicting the case assumption.

Let T be the set of times at which ρ was the head position. Then, by the
limit rules and the case assumption, T is closed and unbounded in α.

As S and T are both Σ1 over Lα and α is admissible, it follows that S ∩ T
is also closed and unbounded in α. In particular, there is an element γ < α in
S ∩ T , i.e. there is a time < α at which the head was on position ρ, the cell ρ
contained the symbol z and the inner state was s. But then, the situation that
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prompted P to halt at time α was already given at time γ < α, so P cannot
have run up to time α, a contradiction.

Case 2: ρ < α and the head position ρ was assumed boundedly often before
time α.

By the liminf rule for the determination of the head position at time α, this
implies that, for every ι < ρ, there is a time τι < α such that, from time τι on,
the head never occupied a position < ι. The function f : ι �→ τι is Π1 over Lα

(we have f(ι) = τ if and only if, for all β > τ and all partial P -computations
of length β, the head position in the final state of the partial computation was
≥ ι) and thus in particular Σ2 over Lα. By Σ2-admissibility of α and the case
assumption ρ < α, the set f [ρ] must be bounded in α, say by γ < α. But this
implies that, after time γ, all head positions were ≥ ρ. As ρ was assumed only
boundedly often as the head position, this means that, from some time < α
on, all head positions were actually > ρ. But then, ρ cannot be the inferior
limit of the sequence of earlier head positions at time α, contradicting the case
assumption that the head is on position ρ at time α.

Case 3: ρ = α.
This implies that the head is on position ρ for the first time at time α, so that
we must have z = 0, as there was no chance to write on the ρth cell before time
α.

Let S be the set of times < α at which some head position was assumed for
the first time during the computation of P . By the same reason as above, this
newly reached cell will contain 0 at that time. If we can show that there is such
a time < α at which the inner state is also s, we are done, because that would
mean that the halting situation at time α was already given at an earlier time,
contradicting the assumption that P halts at time α.

As ρ > 0, there must be an ordinal τ < α such that the head was never on
position 0 after time τ (otherwise, the liminf rule would force the head to be on
position 0 at time α). This means that the head was never moved to the left
from a limit position after time τ . This further implies that, after time τ , for
any position β that the head occupied, all later positions were at most finitely
many positions to the left of β and hence that, if β is a limit ordinal, then it
never occupied a position < β afterwards. In particular, the sequence of limit
positions that the head occupied after time τ is increasing. Note that the set of
head positions occupied before time τ is bounded in α, say by ξ. Let S′ be the
set of elements ι > τ of S such that, at time ι, the head occupied a limit position
> ξ for the first time. Then S′ is a closed and unbounded subset of S.

As s is the program state at the limit time α, there must be γ < α such that,
after time γ, the program state was never < s and moreover, the program state
s itself must have occured cofinally often in α after that time.

But now, building an increasing ω-sequence of times starting with γ that
alternately belong to S′ and have the program state s, we see that its limit δ is
< α and is a time at which the head was reading z and the state was s, we have
the desired contradiction.
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Since each case leads to a contradiction, our assumption on P must be false;
as P was arbitrary, α is not a parameter-free OTM-halting time.

To see now that the theorem holds for any finite number of tapes, consider
the argument below for each tape separately, note that we showed above that
case 2 cannot occur while cases 1 and 3 both imply that, as far as the tape
under consideration is concerned, the halting configuration occurred on a closed
unbounded set of times before time α. Thus, one can again build an increas-
ing ‘interleaving’ sequence of times at which each head read the same symbol
as in the halting configuration and the inner state was the one in the halting
configuration. The supremum of this sequence will be < α, leading again to the
contradiction that the program must have halted before α.

5 Existence of Admissible OTM-clockable Ordinals

We will now show that at least the first ω many admissible ordinals are OTM-
clockable, thus answering the first question mentioned in the introduction pos-
itively. To this end, we need some preliminaries about Infinite Time Register
Machines (ITRMs). ITRMs were introduced by Koepke in [11]; we sketch their
architecture and refer to [11] for further information. An ITRM has finitely many
registers, each of which stores one natural number. ITRM-programs are just pro-
grams for (classical) register machines. At successor times, an ITRM proceeds
like a classical register machine. At limit levels, the active program line index
and the register contents are defined to be the inferior limits of the sequences of
earlier program line indices and respective register contents. When that limit is
not finite in the case of a register content, the new content is defined to be 0,
and one speaks of an ‘overflow’ of the respective register.

We recall Lemma 3 from [5]:

Theorem 7. There are no gaps in the ITRM-clockable ordinals. That is, if α <
β and β is ITRM-clockable, then α is ITRM-clockable.

Combining this result with the main result of [11] on the computational
strength of ITRMs, we obtain:

Lemma 3. The ITRM-clockable ordinals are exactly those below ωCK
ω . In par-

ticular, ωCK
n is ITRM-clockable for all n ∈ ω.

Lemma 4. Let α be ITRM-clockable. Then α is OTM-clockable.

Proof. If α < ω2, this is straightforward. Now let α ≥ ω2.
Let P be an ITRM-program that clocks α. We simulate P by an OTM-

program that takes the same running time.
The simulation of ITRMs by OTMs here works like this: Use a tape for each

register, have i many 1s, followed by 0s, on a tape to represent that the respective
register contains i ∈ ω; in addition, after a simulation step is finished, the head
position on this tape represents the register content, i.e. it is at the first 0 on
the tape.



24 M. Carl

For an ITTM, the simulation takes an extra ω many steps to halt because it
takes time to detect an overflow. For an OTM, one can simply use one extra tape
for each register, write 1 to their ωth positions at the start of the computation,
move their heads along with the heads on the register simulating tapes and know
that there is an overflow as soon as one of the heads on the extra tapes reads a
1.9 Since α ≥ ω2, the initial placement of 1s on the ωth tape positions does not
affect the running time.

Corollary 2. For every n ∈ ω, ωCK
n is OTM-clockable.

This answers the first question mentioned above in the positive. By a rela-
tivization of the above argument, we can achieve the same for the second (i.e.
whether gap starters for OTMs are something “better” than admissible):

Theorem 8. Let α = β+ be a successor admissible. Then α does not start an
OTM-clockable gap.

Proof. Suppose for a contradiction that α = β+ starts an OTM-clockable gap.
Then there is an OTM-clockable ordinal γ ∈ (β, α); pick one. By Lemma 2
above, a real code c for γ is OTM-writable in < α many steps. Suppose c has
been written. Then ωCK,c

1 ≥ α. Thus, α is ITRM-clockable in the oracle c. But
now, α is OTM-clockable by first writing c and then ITRM-clocking α relative
to c, contradicting the assumption that α starts a gap.

Corollary 3. Every gap-starting ordinal for OTMs is an admissible limit of
admissible ordinals.

This allows a considerable strengthening of Corollary 2:

Corollary 4. Every admissible ordinal up to the first admissible limit of admis-
sible ordinals is OTM-clockable.

6 Conclusion and Further Work

We showed that OTM-gaps are always started by limits of admissible ordinals
and that, while admissible ordinals can be OTM-clockable, Σ2-admissible ordi-
nals cannot. This provokes the following questions:

Question: Is every gap-starting ordinal for OTMs Σ2-admissible?

9 The fact that more tapes are needed the more registers P uses may be seen as a little
defect. (Note that, by the results of [11], the halting times of ITRM-programs using
n registers are bounded by ωCK

n+1 so that indeed arbitrarily large numbers of registers
- and thus of tapes - are required to make the above construction work for all αCK

n

with n ∈ ω.) It would certainly be nicer to have a uniform bound on the number of
required tapes. And indeed, by a slightly refined argument using that only two of
the used registers are ultimately relevant for the halting of an ITRM, such a bound
can be obtained.
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Question: What is the minimal gap-starting ordinal for OTMs? Does it coincide
with first Σ2-admissible ordinal?

Further worthile topics include clockability for OTMs with a fixed ordinal
parameter α and for other models of computability, like the “hypermachines” of
Friedman and Welch (see [8]), α-ITTMs (see [7]) or α-ITRMs (see [4]), where
the main question left open in [4] is to determine the supremum of the α-ITRM-
clockable ordinals.
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1 Introduction

It was shown in [4] that the quasi-Polish spaces introduced in [2] can be equiv-
alently characterized as spaces of ideals in the following sense.

Definition 1 (see [4]). Let ≺ be a transitive relation on N. A subset I ⊆ N is
an ideal (with respect to ≺) if and only if:

1. I �= ∅, (I is non-empty)
2. (∀a ∈ I)(∀b ∈ N) (b ≺ a ⇒ b ∈ I), (I is a lower set)
3. (∀a, b ∈ I)(∃c ∈ I) (a ≺ c& b ≺ c). (I is directed)

The collection I(≺) of all ideals has the topology generated by basic open sets of
the form [n]≺ = {I ∈ I(≺)|n ∈ I}. 
�

We often apply the above definition to other countable sets with the implicit
assumption that it has been suitably encoded as a subset of N. If ≺ is actually a
partial order, then the definition of ideal above agrees with the usual definition
of an ideal from order theory. Note that I(≺) ⊆ ⋃

n∈N
[n]≺ and if I ∈ [a]≺ ∩ [b]≺

then there is c ∈ N with I ∈ [c]≺ ⊆ [a]≺ ∩ [b]≺, so {[n]≺|n ∈ N} really is a
basis for I(≺) and not just a subbasis. Also note that proving the claim in the
previous sentence requires all three of the axioms that define ideals.

We first give some basic examples. If = is the equality relation on N, then
I(=) is homeomorphic to N with the discrete topology. If ≺ is the strict prefix
relation on the set N

<N of finite sequences of natural numbers, then I(≺) is
homeomorphic to the Baire space N

N. If ⊆ is the usual subset relation on the set
Pfin(N) of finite subsets of N, then I(⊆) is homeomorphic to P(N), the powerset
of the natural numbers with the Scott-topology.

Spaces of the form I(≺) for some transitive computably enumerable (c.e.)
relation on N provide an effective interpretation of quasi-Polish spaces. This
effective interpretation as spaces of ideals was first investigated in [4], where
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they are called precomputable quasi-Polish spaces, but they are equivalent to
the computable quasi-Polish spaces in [10], and they naturally correspond to c.e.
propositional geometric theories via the duality in [7] (see [1] for extending this
duality beyond propositional logic). In many applications it is useful to assume
that I(≺) also comes with a c.e. set E≺ = {n ∈ N|[n]≺ �= ∅}, which provides an
effective interpretation of overt quasi-Polish spaces. These are called computable
quasi-Polish spaces in [4], and are equivalent to the effective quasi-Polish spaces
in [8], and correspond to effectively enumerable computable quasi-Polish spaces in
the terminology of [10]. Dually, they correspond to c.e. propositional geometric
theories where satisfiability is semidecidable.

In this paper, we show some basic results on spaces of ideals, with an emphasis
on the connections with computable topology. We also hope that our approach
will help clarify the relationship between quasi-Polish spaces and domain theory
(see abstract basis in [5] or [6]), and implicitly demonstrate how the theory
of quasi-Polish spaces can be developed within relatively weak subsystems of
second-order arithmetic (see the work on poset spaces in [11]).

2 Computable Functions

Computability of functions between spaces of ideals can be defined in a way
that is compatible with the TTE framework [16]. We briefly review the TTE
approach to computability on countably based T0-spaces, but see [13] for the
extension to the cartesian closed category of admissibly represented spaces and
[12] for more general represented spaces.

Given a countably based T0-space X with fixed basis (Bi)i∈N, the standard
(admissible) representation of X is the partial function δX :⊆ N

N → X defined
as δX(p) = x ⇐⇒ range(p) = {i ∈ N|x ∈ Bi}. A function f : X → Y between
spaces with standard admissible representations is computable if and only if there
is a computable (partial) function F :⊆ N

N → N
N such that f ◦ δX = δY ◦ F . It

follows that a function f : I(≺1) → I(≺2) is computable if and only if there is an
algorithm which transforms any enumeration of the elements of any I ∈ I(≺1)
into an enumeration of the elements of f(I) ∈ I(≺2).

We define a code for a partial function to be any subset R ⊆ N × N. Each
code R encodes the partial function �R� :⊆ I(≺1) → I(≺2) defined as

�R�(I) = {n ∈ N|(∃m ∈ I) 〈m,n〉 ∈ R},

dom(�R�) = {I ∈ I(≺1)|�R�(I) ∈ I(≺2)}.

Theorem 2. Let ≺1 and ≺2 be transitive relations on N. A total function
f : I(≺1) → I(≺2) is computable if and only if there is a c.e. code R ⊆ N × N

such that f = �R�.

Proof. It is clear that if f = �R� for some c.e. code R, then there is an algorithm
which transforms any enumeration of the elements of any I ∈ I(≺1) into an
enumeration of the elements of f(I) ∈ I(≺2). Therefore, f is computable.
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For the other direction, assume f : I(≺1) → I(≺2) is computable. It is a
standard result that there is a computable enumeration (Un)n∈N of c.e. subsets
of N such that f−1([n]≺2) =

⋃
m∈Un

[m]≺1 . Let R = {〈m,n〉|m ∈ Un}. Given
I ∈ I(≺1), if n ∈ �R�(I), then there is some m ∈ I with 〈m,n〉 ∈ R, hence
m ∈ Un. Thus I ∈ [m]≺1 ⊆ f−1([n]≺2) which implies n ∈ f(I). Conversely,
if n ∈ f(I) then I ∈ f−1([n]≺2), so there must be m ∈ Un with I ∈ [m]≺1 .
It follows that 〈m,n〉 ∈ R and that n ∈ �R�(I). Therefore, R is a c.e. code
satisfying f = �R�. 
�

3 Basic Constructions

3.1 Products

Given relations ≺1 and ≺2 on N, define the relation ≺×
1,2 on N as

〈a, b〉 ≺×
1,2 〈a′, b′〉 ⇐⇒ a ≺1 a′ & b ≺2 b′,

where 〈·, ·〉 : N × N → N is a computable bijection. Then I(≺×
1,2) is com-

putably homeomorphic to the product I(≺1) × I(≺2) via the pairing function
〈·, ·〉 : I(≺1) × I(≺2) → I(≺×

1,2)

〈I1, I2〉 = {〈a, b〉|a ∈ I1 & b ∈ I2}
and the projections πi : I(≺×

1,2) → I(≺i) (i ∈ {1, 2})

π1(I) = {a ∈ N|(∃b ∈ N)〈a, b〉 ∈ I},

π2(I) = {b ∈ N|(∃a ∈ N)〈a, b〉 ∈ I}.

We leave most of the proof to the reader as an exercise, but we will show that
π1(I) really is a lower set because it is a nice example of how directedness and
transitivity often compensate for the lack of reflexivity of the relations. Assume
I ∈ I(≺×

1,2) and a ∈ π1(I) and a0 ≺1 a. Then there is b ∈ N with 〈a, b〉 ∈ I. If ≺2

was reflexive, then we would have 〈a0, b〉 ≺×
1,2 〈a, b〉 ∈ I, and since I is a lower

set we would immediately conclude 〈a0, b〉 ∈ I. But without reflexivity, we must
instead use the directedness of I to first obtain 〈a′, b′〉 ∈ I with 〈a, b〉 ≺×

1,2 〈a′, b′〉,
and then we have 〈a0, b〉 ≺×

1,2 〈a′, b′〉 ∈ I by the transitivity of ≺1 and ≺2. We
still get the desired conclusion 〈a0, b〉 ∈ I (hence a0 ∈ π1(I)), albeit with a slight
detour that required directedness and transitivity.

A simple modification of Definition 2.3.13 in [11] can be used to construct
countable products from an enumeration (≺i)i∈N of transitive relations.

3.2 Co-products

We get co-products (i.e., disjoint unions) by defining the relation ≺+
1,2 on N as

〈a, i〉 ≺+
1,2 〈a′, j〉 ⇐⇒ i = j ∈ {1, 2} & a ≺i a′.

Then it is an easy exercise to show that I(≺+
1,2) is computably homeomorphic

to the co-product I(≺1) + I(≺2). It should be clear to the reader how to extend
this to countable co-products.
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3.3 Π0
2 -subspaces and Equalizers

Let ≺ be a transitive relation on N. The Σ0
1 -subsets (or c.e. open subsets) of

I(≺) are encoded by c.e. subsets U ⊆ N by defining

�U� =
⋃

n∈U

[n]≺.

The Π0
2 -subsets of I(≺) are encoded by computable enumerations (Ui, Vi)i∈N of

c.e. subsets of N by defining

�(∀i)Ui ⇒ Vi� = {I ∈ I(≺)|(∀i ∈ N)[I ∈ �Ui� ⇒ I ∈ �Vi�]}.

The next theorem is part of the characterization of precomputable quasi-
Polish spaces from [4]. We provide a direct proof for convenience.

Theorem 3. (see [4]). Let ≺ be a transitive c.e. relation on N. Given a code
of a Π0

2 -subset A of I(≺), one can computably obtain a transitive c.e. relation
� on N such that I(�) is computably homeomorphic to A.

Proof. Assume A = �(∀i)Ui ⇒ Vi� for some computable enumeration (Ui, Vi)i∈N

of c.e. subsets of N. Let ≺(·) be a decidable relation such that

m ≺ n ⇐⇒ (∃k ∈ N)m ≺(k) n, and
k ≤ k′ &m ≺(k) n =⇒ m ≺(k′) n.

Let (U (k)
i )i,k∈N be a double enumeration of decidable subsets of N such that

Ui =
⋃

k∈N

U
(k)
i and k ≤ k′ ⇒ U

(k)
i ⊆ U

(k′)
i .

For F1, F2 ∈ Pfin(N) and k1, k2 ∈ N, define 〈F1, k1〉 � 〈F2, k2〉 if and only if
the following all hold:

1. k1 < k2
2. F1 ⊆ F2

3. F2 �= ∅
4. (∀m ≤ k1)

[
[(∃n ∈ F1)m ≺(k1) n] ⇒ m ∈ F2

]

5. (∀a, b ∈ F1)(∃c ∈ F2)[a ≺ c & b ≺ c]
6. (∀i ≤ k1)[F1 ∩ U

(k1)
i �= ∅ ⇒ F2 ∩ Vi �= ∅].

It is clear that � is c.e., and the monotonicity assumptions on ≺(·) and U
(k)
i

imply that if 〈F1, k1〉 � 〈F2, k2〉 and F ⊆ F1 and k ≤ k1 then 〈F, k〉 � 〈F2, k2〉,
hence � is transitive.

Define f : I(�) → �(∀i)Ui ⇒ Vi� by f(I) =
⋃

〈F,k〉∈I F . Given I ∈ I(�), the
directedness of I implies any 〈F0, k0〉 ∈ I can be extended to a finite �-chain
in I of arbitrary length, hence for any k ∈ N there are 〈F1, k1〉, 〈F2, k2〉 ∈ I
with 〈F0, k0〉 � 〈F1, k1〉 � 〈F2, k2〉 and k < k1. Thus 〈F0, k〉 � 〈F2, k2〉, which
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implies 〈F0, k〉 ∈ I. It follows that n ∈ f(I) if and only if 〈{n}, k〉 ∈ I for
some (equivalently, every) k ∈ N. By using the directedness of I this observation
generalizes from singletons to all finite sets, and so for any F ∈ Pfin(N) we have
F ⊆ f(I) if and only if 〈F, k〉 ∈ I for some (equivalently, every) k ∈ N. Then
conditions 3, 4, and 5 in the definition of � imply that f(I) is indeed an ideal
of ≺, and condition 6 implies f(I) ∈ �(∀i)Ui ⇒ Vi�. Thus f is well-defined, and
it is clearly a computable injection.

A computable inverse of f is given by g : �(∀i)Ui ⇒ Vi� → I(�) defined as
g(I) = {〈F, k〉|k ∈ N &F ⊆ I is finite}. The only part of the proof that g is well-
defined which requires a little thought is showing that g(I) is directed for each
I ∈ �(∀i)Ui ⇒ Vi�, but it is not difficult to see that if 〈F1, k1〉, 〈F2, k2〉 ∈ g(I),
then one can find a finite G ⊆ I which contains F1∪F2 and enough of I to satisfy
conditions 3 through 6 and obtain 〈F1, k1〉, 〈F2, k2〉 � 〈G, k1 + k2 + 1〉 ∈ g(I).
The claim that g is an inverse to f follows from the observations in the previous
paragraph. 
�

If R and S are codes for total functions �R�, �S� : I(≺1) → I(≺2), then for
any I ∈ I(≺1) we have �R�(I) = �S�(I) if and only if

(∀n ∈ N) [n ∈ �R�(I) ⇐⇒ n ∈ �S�(I)] .

This is a Π0
2 -subset of I(≺1) whenever ≺1, ≺2, R, and S are c.e. It follows that

we can computably obtain a c.e. relation � such that I(�) is an equalizer of �R�
and �S�.

Note that Theorem 3 is the best result possible because if ≺, �, R, and S are
c.e. such that �R� : I(�) → I(≺) is total with partial inverse �S� : I(≺) → I(�)
(meaning (∀J ∈ I(�))[J = �S�(�R�(J))]) then I ∈ range(�R�) if and only if
I ∈ dom(�S�) and I = �R�(�S�(I)). Since dom(�S�) is Π0

2 , it follows that I(�)
is computably homeomorphic to the Π0

2 -subset range(�R�) of I(≺).

4 Examples from Computable Topology

4.1 Completion of (Computable) Separable Metric Spaces

Let (X, d) be a separable metric space. Fix a countable dense subset D ⊆ X,
and define a transitive relation ≺ on P = D × N as

〈x, n〉 ≺ 〈y,m〉 ⇐⇒ d(x, y) < 2−n − 2−m.

This definition guarantees that the open ball with center x and radius 2−n

contains the closed ball with center y and radius 2−m. The pair (P,≺) is a
countable substructure of the formal balls of (X, d), a well-known construction in
domain theory (see Section V-6 of [5] and Section 7.3 of [6]). It is straightforward
to see that ≺ is transitive by using the triangular inequality for d.

If I ∈ I(≺) then it contains a cofinal infinite ascending ≺-chain (〈xi, ni〉)i∈N,
which means that 〈xi, ni〉 ≺ 〈xi+1, ni+1〉 for all i ∈ N and that for any 〈x, n〉 ∈ I
there is i ∈ N with 〈x, n〉 ≺ 〈xi, ni〉. Note that (ni)i∈N is strictly increasing
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because 0 ≤ d(xi, xi+1) < 2−ni − 2−ni+1 , and therefore (xi)i∈N is a Cauchy
sequence. It follows that limi→∞ d(x, xi) is well-defined for all x ∈ D.

Next we show that 〈x, n〉 ∈ I if and only if limi→∞ d(x, xi) < 2−n. For any
〈x, n〉 ∈ I the cofinality of (〈xi, ni〉)i∈N implies there is i0 ∈ N with 〈x, n〉 ≺
〈xi, ni〉 for all i ≥ i0. Let ε > 0 be such that d(x, xi0) = 2−n − 2−ni0 − ε. Then
for i ≥ i0 we have

d(x, xi) ≤ d(x, xi0) + d(xi0 , xi) < (2−n − 2−ni0 − ε) + (2−ni0 − 2−ni) < 2−n − ε,

hence limi→∞ d(x, xi) ≤ 2−n − ε < 2−n. Conversely, assume x ∈ D and there is
ε > 0 such that limi→∞ d(x, xi) < 2−n − ε. Fix i ∈ N such that d(x, xi) + ε <
2−n and 2−ni < ε. Then d(x, xi) < d(x, xi) + ε − 2−ni < 2−n − 2−ni , hence
〈x, n〉 ≺ 〈xi, ni〉, which implies 〈x, n〉 ∈ I.

It is now easy to see that I(≺) is homeomorphic to the completion (X̂, d̂) of
(X, d). The usual admissible representation for X̂ is to represent each x ∈ X̂ by
the fast Cauchy sequences (xi)i∈N in D that converge to x (by fast Cauchy we
mean d(xi, xi+1) < 2−(i+1) for each i ∈ N). From an enumeration of I ∈ I(≺) we
can extract a cofinal infinite ascending ≺-chain (〈xi, ni〉)i∈N in I so that (xi)i∈N is
a fast Cauchy sequence determining a point in X̂. In the other direction, given a
fast Cauchy sequence (xi)i∈N in D, we have d(xi, xi+1) < 2−(i+1) = 2−i−2−(i+1)

for each i ∈ N, hence (〈xi, i〉)i∈N is an infinite ascending ≺-chain which generates
an ideal I ∈ I(≺). This determines a homeomorphism between I(≺) and X̂.

A computable metric space (X, d) comes with an indexing α : N → D for some
dense D ⊆ X in such a way that {(q, r, i, j) ∈ Q

2 × N
2|q < d(α(i), α(j)) < r}

is computably enumerable. Defining 〈i, n〉 ≺ 〈j,m〉 if and only if d(α(i), α(j)) <

2−n − 2−m determines a transitive c.e. relation ≺ such that I(≺) and X̂ are
computably homeomorphic.

4.2 Completion of Computable Topological Spaces

A (countably based) computable topological space (also called an effective topo-
logical space; see [8–10,14,17]) is a tuple (X,ϕ, S) where:

1. X is a T0-space (we write O(X) for its topology),
2. ϕ : N → O(X) is an enumeration of a basis for X,
3. S ⊆ N

3 is a c.e. set satisfying ϕ(n) ∩ ϕ(m) =
⋃{ϕ(k)|〈n,m, k〉 ∈ S} for each

n,m ∈ N.

Note that the only effective aspect of this definition is the c.e. set S, and
there are no specifications as to how the space X and the enumeration ϕ should
be defined. As a result, if (X,ϕ, S) is a computable topological space, then
for any subspace Y ⊆ X we can restrict ϕ in the obvious way to obtain a
map ϕ′ : N → O(Y ) such that (Y, ϕ′, S) is also a computable topological space.
A common extension of the above definition additionally requires that {n ∈
N|ϕ(n) �= ∅} is a c.e. set, but even in this case one can define highly non-
constructive dense subspaces of a computable topological space which are still
computable topological spaces.
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Since the effective part of the above definition is compatible with infinitely
many computable topological spaces, a natural question to ask is whether there is
any canonical computable topological space associated to a given c.e. set S. This
question leads to Definition 4 below. In the following, for any continuous function
f : X → Y , the function O(f) : O(Y ) → O(X) is defined as O(f)(U) = f−1(U).

Definition 4. Let S ⊆ N
3 be a c.e. set. A computable topological space (X,ϕ, S)

is complete if and only if for any computable topological space (Y, ψ, S) there is
a unique computable embedding e : Y → X satisfying ψ = O(e) ◦ ϕ.

Intuitively, (X,ϕ, S) is a complete computable topological space if and only
if all other computable topological spaces associated to S are essentially just
restrictions of the kind (Y, ϕ′, S) we saw earlier. Also note that any complete
computable topological space associated to S is unique up to computable home-
omorphism. The next lemma shows that every c.e. subset S ⊆ N

3 determines a
complete computable topological space.

Lemma 5. For any c.e. subset S ⊆ N
3, there is a Π0

2 -subspace X ⊆ P(N) such
that ϕ : N → O(X) defined as ϕ(n) = {x ∈ X|n ∈ x} is an enumeration of a
basis for X and (X,ϕ, S) is a complete computable topological space.

Proof. Let S ⊆ N
3 be a c.e. subset. Define X ⊆ P(N) so that x ∈ X if and only

if the following conditions are all satisfied:

(i) x �= ∅,
(ii) (∀〈n,m, k〉 ∈ S) [k ∈ x ⇒ {n,m} ⊆ x], and
(iii) (∀n,m ∈ N) [{n,m} ⊆ x ⇒ (∃k ∈ x) 〈n,m, k〉 ∈ S].

It is clear that X is a Π0
2 -subspace of P(N). We first show that ϕ is an

enumeration of a basis for X. It is clear that each ϕ(n) is an open subset of X,
and that {ϕ(n)|n ∈ N} covers X because each x ∈ X is non-empty. Next, note
that if 〈n,m, k〉 ∈ S, then condition (ii) implies ϕ(k) ⊆ ϕ(n) ∩ ϕ(m). So for any
x ∈ ϕ(n) ∩ ϕ(m), by using condition (iii) it follows that there is k ∈ N with
x ∈ ϕ(k) ⊆ ϕ(n) ∩ ϕ(m). Therefore, ϕ is an enumeration of a basis for X. It
is then easy to see (using condition (iii) again), that (X,ϕ, S) is a computable
topological space.

Given another computable topological space (Y, ψ, S), define e : Y → X as
e(y) = {n ∈ N|y ∈ ψ(n)}. We first show that e(y) ∈ X for each y ∈ Y . Clearly,
e(y) is non-empty because the basis enumerated by ψ must cover Y . Next, if
〈n,m, k〉 ∈ S then ψ(k) must be a subset of ψ(n)∩ψ(m) by condition (3) of the
definition of a computable topological space, hence e(y) satisfies condition (ii).
Finally, condition (iii) is satisfied because if {n,m} ⊆ e(y) then y ∈ ψ(n)∩ψ(m)
hence there must be 〈n,m, k〉 ∈ S with y ∈ ψ(k) which implies k ∈ e(y).
Therefore, e is well-defined.

Using the fact that ψ enumerates a basis for Y , it is easy to see that e
is a computable topological embedding. Furthermore, y ∈ ψ(n) if and only if
n ∈ e(y) if and only if e(y) ∈ ϕ(n), hence ψ(n) = e−1(ϕ(n)). This proves that
ψ = O(e) ◦ ϕ, and it is clear that e is the only possible embedding of Y into X
that satisfies this property. 
�
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We take a brief moment to consider the extension where a computable topo-
logical space comes with an additional c.e. set E = {n ∈ N|ϕ(n) �= ∅}. Com-
pleteness is defined as in Definition 4, but with quantification over spaces of the
form (Y, ψ, S,E). There is no guarantee that arbitrarily chosen S and E will be
compatible, but if they are compatible with at least one computable topological
space, then a complete space can be obtained by adding a fourth (Π0

2 ) axiom
“(∀n ∈ N) [n ∈ x ⇒ n ∈ E]” to the construction in the proof of Lemma 5.
These modifications could also be made to the following theorem, which shows
that complete computable topological spaces provide an effective interpretation
of quasi-Polish spaces that is equivalent to the approach using spaces of ideals.

Theorem 6. Every complete computable topological space is computably home-
omorphic to I(≺) for some transitive c.e. relation ≺ on N. Conversely, given
a transitive c.e. relation ≺ on N one can computably obtain a c.e. subset
S ⊆ N

3 such that (I(≺), ϕ≺, S) is a complete computable topological space, where
ϕ≺ : N → O(I(≺)) is the standard enumeration of a basis for I(≺) given by
ϕ≺(n) = [n]≺.

Proof. The first claim follows from Lemma 5 and Theorem 3.
For the converse, let ≺ be a transitive c.e. relation on N. Define

S = {〈n,m, k〉 ∈ N
3|n ≺ k and m ≺ k},

and let (X,ϕ, S) be the complete computable topological space for S as con-
structed in the proof of Lemma 5. The proof will be completed by showing that
X = I(≺) as subsets of P(N).

First we show I(≺) ⊆ X. Fix I ∈ I(≺). It is clear that I satisfies condition
(i) of the definition of X. Next, condition (ii) is satisfied because if 〈n,m, k〉 ∈ S
and k ∈ I, then n,m ≺ k by the definition of S, hence {n,m} ⊆ I because
I is a lower set. Finally, condition (iii) is satisfied because if {n,m} ⊆ I the
directedness of I implies there is k ∈ I with n,m ≺ k, hence 〈n,m, k〉 ∈ S.
Therefore, I ∈ X.

To show X ⊆ I(≺), fix any x ∈ X. Clearly x is non-empty. Next, assume
k ∈ x and n ≺ k. Then 〈n, n, k〉 ∈ S, hence condition (ii) on X implies n ∈ x,
so x is a lower set. Finally, if n,m ∈ x then condition (iii) on X implies there is
〈n,m, k〉 ∈ S with k ∈ x. By definition of S we have n ≺ k and m ≺ k, which
shows that x is directed. Therefore, x ∈ I(≺). 
�

The above theorem shows that we get a computably equivalent definition of
computable topological space if we simply define them to be a pair (≺,X), where
≺ is a transitive c.e. relation and X ⊆ I(≺). A more rigorous approach would also
require a precise definition of the set X, for example by defining a (countably
based) “computable topological space” to be a pair (≺, ΦX) that contains an
explicit (finite) formula ΦX with a single free variable I that defines the set X =
{I ∈ I(≺)|ΦX(I)} within some fixed formal system. This would lead us more
into the realm of effective descriptive set theory, but adopting such a definition
would guarantee that computable topological spaces are unambiguously defined
by a finite amount of information.
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5 Powerspaces

Given a topological space X, we write A(X) for the lower powerspace of X
(the closed subsets of X with the lower Vietoris topology), and K(X) for the
upper powerspace of X (the saturated compact subsets of X with the upper
Vietoris topology). Our notation follows that of [3], where other basic results on
quasi-Polish powerspaces can be found. For countably based spaces, the lower
powerspace defined here is equivalent to the space of (closed) overt sets in [4,12].
In this section, we show how to represent powerspaces as spaces of ideals using
the construction introduced in [15] for ω-algebraic domains (which is equivalent
to the case that ≺ is a partial order within our framework). We fix a transitive
relation ≺ on N for the rest of this section.

5.1 Lower Powerspace

A basis for the lower Vietoris topology on A(I(≺)) is given by sets of the form
⋂

n∈F

♦[n]≺ = {A ∈ A(I(≺))|(∀n ∈ F )(∃I ∈ A)n ∈ I}

for F ∈ Pfin(N). Define the transitive relation ≺L on Pfin(N) as

F ≺L G if and only if (∀m ∈ F ) (∃n ∈ G)m ≺ n.

Transitivity of ≺L easily follows from the transitivity of ≺, and it is clear that
≺L is c.e. whenever ≺ is. Next, define fL : A(I(≺)) → I(≺L) as

fL(A) = {F ∈ Pfin(N)|(∀m ∈ F )(∃I ∈ A)m ∈ I}
and gL : I(≺L) → A(I(≺)) as

gL(J) = {I ∈ I(≺)|(∀m ∈ I)(∃F ∈ J)m ∈ F}.

We will need the following lemma when we prove that these two functions are
well-defined computable homeomorphisms.

Lemma 7. If J ∈ I(≺L) and F ∈ Pfin(N), then (∀m ∈ F ) gL(J) ∩ [m]≺ �= ∅ if
and only if F ∈ J .

Proof. First assume (∀m ∈ F ) gL(J) ∩ [m]≺ �= ∅. For each m ∈ F , there is
I ∈ gL(J) with m ∈ I, and as I is directed, there is n ∈ I with m ≺ n, but since
I ∈ gL(J) there must be G ∈ J with n ∈ G, and therefore {m} ≺L G ∈ J . This
shows that {m} ∈ J for each m ∈ F . Since F is finite and J is directed, there is
H ∈ J such that (∀m ∈ F ) {m} ≺L H. It follows that F ≺L H, and therefore
F ∈ J .

For the converse, assume F ∈ J , and fix any m ∈ F . Since J is directed there
exists an infinite sequence F = F0 ≺L F1 ≺L F2 ≺L · · · with Fi ∈ J for each
i ∈ N. From the definition of ≺L, there exists an infinite sequence m = m0 ≺
m1 ≺ m2 ≺ · · · with mi ∈ Fi for each i ∈ N. Then I = {n ∈ N|(∃i ∈ N)n ≺ mi}
is in I(≺) and m ∈ I. For any n ∈ I there is i ∈ N with n ≺ mi ∈ Fi, thus
{n} ≺L Fi ∈ J which implies {n} ∈ J . Therefore, I ∈ gL(J) ∩ [m]≺. 
�
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Theorem 8. A(I(≺)) and I(≺L) are computably homeomorphic.

Proof. We will prove that fL and gL are well-defined computable inverses of
each other in several steps.

• fL is well-defined: We must show that fL(A) is an ideal.

1. ( fL(A) is non-empty). fL(A) �= ∅ because ∅ ∈ fL(A).
2. ( fL(A) is a lower set). If G ∈ fL(A) and F ≺L G, then for any m ∈ F

there is n ∈ G with m ≺ n. There is some I ∈ A with n ∈ I, and also
m ∈ I because I is a lower set. Therefore, F ∈ fL(A).

3. ( fL(A) is directed). Assume F,G ∈ fL(A). For each m ∈ F ∪ G there is
some I ∈ A with m ∈ I, and by directedness of I we can choose some
nm ∈ I with m ≺ nm. Combine these choices into a single (finite) set
H = {nm|m ∈ F ∪ G}. Then H ∈ fL(A) and F,G ≺L H.

• gL is well-defined: We must show that gL(J) is a closed subset of I(≺). If
I �∈ gL(J), then by definition of gL(J) there must be m ∈ I such that (∀F ∈
J)m �∈ F . Then [m]≺ is an open neighborhood of I that does not intersect
gL(J), hence gL(J) is closed.

• fL is computable: Clearly, fL(A) ∈ [F ]≺L
if and only if A ∈ ⋂

m∈F♦[m]≺.
• gL is computable: Lemma 7 is the statement gL(J) ∈ ⋂

m∈F ♦[m]≺ if and
only if J ∈ [F ]≺L

.
• fL(gL(J)) = J : The above proofs that fL and gL are computable imply that

F ∈ fL(gL(J)) if and only if gL(J) ∈ ⋂
m∈F♦[m]≺ if and only if F ∈ J .

• gL(fL(A)) = A: The above proofs that gL and fL are computable imply
that gL(fL(A)) ∈ ⋂

m∈F ♦[m]≺ if and only if F ∈ fL(A) if and only if A ∈⋂
m∈F ♦[m]≺.


�

5.2 Upper Powerspace

A basis for the upper Vietoris topology on K(I(≺)) is given by sets of the form

�
⋃

n∈F

[n]≺ = {K ∈ K(I(≺))|(∀I ∈ K)(∃n ∈ F )n ∈ I}

for F ∈ Pfin(N). Define the transitive relation ≺U on Pfin(N) as

F ≺U G if and only if (∀n ∈ G) (∃m ∈ F )m ≺ n.

Transitivity of ≺U easily follows from the transitivity of ≺, and it is clear that
≺U is c.e. whenever ≺ is. Next, define fU : K(I(≺)) → I(≺U ) as

fU (K) = {F ∈ Pfin(N)|(∀I ∈ K)(∃m ∈ F )m ∈ I}
and gU : I(≺U ) → K(I(≺)) as

gU (J) = {I ∈ I(≺)|(∀F ∈ J)(∃m ∈ I)m ∈ F}.

We will need the following lemma when we prove that these two functions are
well-defined computable homeomorphisms.
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Lemma 9. If J ∈ I(≺U ) and S ⊆ N, then gU (J) ⊆ ⋃
m∈S [m]≺ if and only if

there is finite F ⊆ S with F ∈ J .

Proof. For the easy direction, assume F ⊆ S is finite and F ∈ J . Then every
I ∈ gU (J) intersects F , which implies gU (J) ⊆ ⋃

m∈F [m]≺ ⊆ ⋃
m∈S [m]≺.

Conversely, assume gU (J) ⊆ ⋃
m∈S [m]≺. Since J is an ideal and countable,

there is a sequence (Fi)i∈N in J satisfying (∀i ∈ N)Fi ≺U Fi+1 and (∀F ∈
J)(∃i ∈ N)F ≺U Fi. It is straightforward to see that I ∈ gU (J) if and only if
(∀i ∈ N)Fi ∩ I �= ∅. Define T to be the set of all σ ∈ N

<N satisfying:

1. (∀i < len(σ) − 1)σ(i) ≺ σ(i + 1),
2. (∀i < len(σ))σ(i) ∈ Fi,
3. (∀i < len(σ))(∀m ∈ S)m �≺ σ(i).

Clearly T is closed under subsequences, hence T is a finitely branching tree
because of item 2. If T contained an infinite path p then the ideal I = {n ∈
N|(∃i ∈ N)n ≺ p(i)} would be in gU (J) even though item 3 prevents I from
being in

⋃
m∈S [m]≺, which would be a contradiction. It follows from König’s

lemma that T is finite. Let k ∈ N be an upper bound for {len(σ)|σ ∈ T}.
Assume for a contradiction that there is nk ∈ Fk such that (∀m ∈ S)m �≺ nk.

If k > 0, then Fk−1 ≺U Fk, hence there is nk−1 ∈ Fk−1 with nk−1 ≺ nk, and
transitivity of ≺ implies (∀m ∈ S)m �≺ nk−1. Continuing in this way, we can
construct a finite sequence σ ∈ N

<N as σ(k) = nk, σ(k − 1) = nk−1, and so on,
in such a way that σ ∈ T but len(σ) = k + 1, which contradicts the choice of k.

Therefore, for each n ∈ Fk there is mn ∈ S with mn ≺ n. Then F = {mn|n ∈
Fk} is a finite subset of S satisfying F ≺U Fk, hence F ∈ J . 
�
Theorem 10. K(I(≺)) and I(≺U ) are computably homeomorphic.

Proof. We will prove that fU and gU are well-defined computable inverses of
each other in several steps.

• fU is well-defined: We must show that fU (K) is an ideal.

1. ( fU (K) is non-empty). Ideals are non-empty, so we can fix some mI ∈ I for
each I ∈ K. By compactness of K there is a finite subset F of {mI |I ∈ K}
such that K ⊆ ⋃

mI∈F [mI ]≺. Then F ∈ fU (K), hence fU (K) �= ∅.
2. ( fU (K) is a lower set). Assume G ∈ fU (K) and F ≺U G. For any I ∈ K

there exists n ∈ G ∩ I, and since F ≺U G there is m ∈ F with m ≺ n.
Then m ∈ F ∩ I because I is a lower set, and it follows that F ∈ fU (K).

3. ( fU (K) is directed). Assume F,G ∈ fU (A). For each I ∈ K there exist
mI ∈ F ∩I and nI ∈ G∩I. Since I is an ideal, there is pI ∈ I with mI ≺ pI
and nI ≺ pI . By compactness of K there is a finite subset H of {pI |I ∈ K}
such that K ⊆ ⋃

pI∈H [pI ]≺. Then H ∈ fU (K) and F,G ≺U H.

• gU (J) is well-defined: We must show that gU (J) is a saturated compact subset
of I(≺). It is clear that gU (J) is saturated, because the specialization order
on I(≺) is subset inclusion, and if I intersects each F ∈ J then so does any
superset I ′ of I. To show compactness, assume S ⊆ N is such that gU (J) ⊆⋃

m∈S [m]≺. Using Lemma 9, there is finite F ⊆ S with F ∈ J , hence gU (J) ⊆⋃
m∈F [m]≺.
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• fU is computable: Clearly, fU (K) ∈ [F ]≺U
if and only if K ∈ �

⋃
m∈F [m]≺.

• gU is computable: Lemma 9 implies gU (J) ∈ �
⋃

m∈F [m]≺ if and only if
J ∈ [F ]≺U

.
• fU (gU (J)) = J : The above proofs that fU and gU are computable imply that

F ∈ fU (gU (J)) if and only if gU (J) ∈ �
⋃

m∈F [m]≺ if and only if F ∈ J .
• gU (fU (K)) = K: The above proofs that gU and fU are computable imply

that gU (fU (K)) ∈ �
⋃

m∈F [m]≺ if and only if F ∈ fU (K) if and only if
K ∈ �

⋃
m∈F [m]≺.


�
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Abstract. In the framework of finite-type arithmetic, we characterize
the notion that an existence statement is primitive recursive Weihrauch
reducible to the parallelization of another existence statement by a stan-
dard derivability notion in constructive reverse mathematics.

Keywords: Weihrauch reducibility · Parallelization · Constructive
reverse mathematics

1 Introduction

A large amount of mathematical statements are of the logical form

∀f(A(f) → ∃gB(f, g)), (1)

where f and g may be tuples. Such statements are often called existence state-
ments since they argue the existence of some objects. One can see existence
statements represented as sentences of the form (1) as problems to be solved. In
such a context, any f such that A(f) holds is called an instance of the problem
and g is called a solution to the instance. Uniform relationships between exis-
tence statements have been investigated extensively in computable analysis and
classical reverse mathematics ([4–8,15] etc.). The investigation usually employs
the following reduction: a Π1

2 sentence P of the form (1) is reducible to another
Π1

2 sentence Q of the form (1) if there exist Turing functionals Φ and Ψ such that
whenever f1 is an instance of P, then Φ(f1) is an instance of Q, and whenever g2
is a solution to Φ(f1), then g1 := Ψ(f1, g2) is a solution to f1. This is a particu-
lar case of Weihrauch reducibility for Π1

2 sentences with Baire space as their
represented spaces (see [8, Appendix]). For a detailed account of uniformity, the
parallelizations:

∀〈fn〉n∈N
(∀nNA(fn) → ∃〈gn〉n∈N

∀nNB(fn, gn)),

have been studied in computable analysis ([4,5]) and also in classical reverse
mathematics under the name of sequential versions ([8,11,12]). In particular,
the weak König lemma WKL, is not Weihrauch reducible to the intermediate
value theorem IVT, but is so to the parallelization of IVT (see [4]).
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On the other hand, there is another development on the relation between
existence statements from constructive mathematics [3], where every existence
is shown by giving a construction of the witness entirely in the proofs. Ishihara
and others have developed reverse mathematics first informally in Bishop’s con-
structive mathematics, and later formally in two-sorted intuitionistic arithmetic
([1,9,14] etc.). In particular, the intermediate value theorem IVT is known to
be equivalent to the weak König lemma WKL over the constructive base theory
containing a countable choice principle (see [1, Section 1]).

Interestingly, there are several corresponding results between constructive
reverse mathematics and computability-theoretic investigations on paralleliza-
tions or sequential versions, including the above mentioned facts on WKL and
IVT. In particular, it seems to be believed in the community of computable
analysis that constructive equivalences of two existence statements in Bishop’s
constructive mathematics (which accepts the use of a countable choice principle)
correspond to Weihrauch equivalences of their parallelizations (see [6, Footnote
c]). In this paper, we verify that this experimental belief is plausible by showing
some meta-theorems in the framework of finite-type arithmetic together with
observations in some concrete examples. This sheds light on the correspondence
between computable analysis and constructive reverse mathematics which have
been developed independently until recently. The investigation in this paper is
based on the previous work [10] of the author himself.

As a framework for our investigation, we employ an extensional variant
E-HAω of intuitionistic arithmetic in all finite types and its fragment ̂E-HA

ω
�

from [17, Section 3.3]. Recall that finite types are defined as follows: N is a
type; if σ and τ are types, then so is σ → τ . Note that ̂E-HA

ω
� has a recursor

only of type N and its induction schema is restricted to quantifier-free formu-
las. The λ-abstraction is officially defined by using the combinators. The set
of the closed terms of E-HAω and that for ̂E-HA

ω
� are denoted by T and T0

respectively. The set-theoretic functionals definable in T (resp. T0) are called
Gödel (resp. Kleene) primitive recursive functionals of finite type. A classical
variant E-PAω (resp. ̂E-PA

ω
�) is obtained from E-HAω (resp. ̂E-HA

ω
�) by adding

the axiom scheme of excluded middle A ∨ ¬A. The language of our systems
contains a binary predicate symbol =N for equality between objects of type N

only. Throughout this paper, we employ the same notations as in [10]. Note that
the type superscripts (for terms) and subscripts (for equality) are omitted when
they are clear from the context. A tuple of terms is denoted with a underline as
t. In addition, −̇ denotes the primitive recursive cut-off subtraction, and {0, 1}m

denotes the set of all binary sequences of length m. Recall that an ∃-free formula
is a formula which does not contain ∨ and ∃. A countable choice principle AC0,ω

is the following schema:

(AC0,ω)∀xN∃fτA(x, f) → ∃FN→τ∀xNA(x, Fx),

where τ is any type. This principle is crucial for our meta-theorems (see
Remark 8). For the other principles in this paper, we refer the reader to [10,
Section 1.1].



40 M. Fujiwara

2 Meta-theorems

In this decade, there are several attempts to reveal the proper relation between
constructive reverse mathematics and Weihrauch reducibility in classical reverse
mathematics and computable analysis ([10,12,13,18,20] etc.). In particular,
the author formalized in [10, Definition 2.5] the primitive recursive variants
of Weihrauch reduction between existence statements P and Q formalized as
̂E-HA

ω
�-sentences ∀f(A1(f) → ∃gB1(f, g)) and ∀f(A2(f) → ∃gB2(f, g)) in the

context of finite-type arithmetic as follows:

– For a finite-type arithmetic Sω containing E-HAω, P is Gödel-primitive-
recursive Weihrauch reducible to Q in Sω if there exist closed terms s
and t (of suitable types) in T such that Sω proves

∀f(A1(f) → A2(sf)) ∧ ∀f, g′ (B2(sf, g′) ∧ A1(f) → B1(f, tf g′)
)
. (2)

– For a finite-type arithmetic Sω containing ̂E-HA
ω
�, P is Kleene-primitive-

recursive Weihrauch reducible to Q in Sω if there exist closed terms s
and t (of suitable types) in T0 such that Sω proves (2).

In addition, P is normally reducible to Q in Sω if Sω proves

∀f
(
A1(f) → ∃f ′ (A2(f ′) ∧ ∀g′ (B2(f ′, g′) → ∃gB1(f, g)

)))
.

The notions of Gödel/Kleene-primitive-recursive Weihrauch reducibility is a nat-
ural restriction of formalized Weihrauch reducibility e.g. in [8,18] where Turing
functionals for the reduction are replaced by primitive recursive functionals in
the sense of Gödel/Kleene. The normal reducibility, which requires a proof of
Q → P with a specific form, is a stronger notion than just proving Q → P (see
[10, Remark 2.9]). Since intuitionistic finite-type arithmetic with a choice princi-
ple roughly corresponds to Bishop’s constructive mathematics, one may regard
the normal reducibility in a nearly intuitionistic finite-type arithmetic as a sort
of constructive reducibility. In [10, Theorem 2.10], the author showed a meta-
theorem stating that the primitive-recursive Weihrauch reducibility verifiably in
a fragment of classical finite-type arithmetic is equivalent to the normal reducibil-
ity in the corresponding (nearly) intuitionistic finite-type arithmetic for all exis-
tence statements formalized with ∃-free formulas. Thus constructive reducibility
can be captured by the primitive-recursive variant of Weihrauch reducibility with
an additional restriction on the verification theory (which has not been taken into
account in computable analysis). Of course, the Weihrauch reductions between
concrete existence statements are not always primitive recursive (in the sense of
Gödel/Kleene). In addition, there are many existence statements which are not
formalized with ∃-free formulas. Nonetheless, there seem to be plenty of exam-
ples to which the meta-theorem is applicable. In fact, the Weihrauch reductions
between concrete existence statements can be verified usually in a weak theory
(cf. [10, Section 3]). On the other hand, any characterization on parallelizations
was still missing.
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We call sentences of the form ∀f(A(f) → ∃gB(f, g)), where f :≡ fσ1
1 , . . . , fσk

k

and g :≡ gτ1
1 , . . . , gτl

l are finite tuples of variables, normal existential sen-
tences. In the language of finite-type arithmetic, the parallelization of this sen-
tence is formalized as

∀fN→σ1
1 , . . . , fN→σk

k

(∀nNA (f1n, . . . , fkn) →
∃gN→τ1

1 , . . . , gN→τl
l ∀nNB (f1n, . . . , fkn, g1n, . . . , gln)

)
,

which is again a normal existential sentence. For each normal existential sentence
P, we write its parallelization as P̂. Throughout this paper, we sometimes iden-
tify a normal existential sentence with the indicated existence statement. The
following proposition is shown straightforwardly by the soundness of modified
realizability [17, Theorem 5.8].

Proposition 1. For normal existential sentences P and Q with ∃-free formulas
of ̂E-HA

ω
� (in the sense of Theorem 6), if P is normally reducible to Q in E-HAω+

ACω + IPω
ef , then P̂ is normally reducible to Q̂ in E-HAω. The analogous result

also holds where E-HAω is replaced by E-HAω + QF-AC0,0 + Σ0
1-DNS0, E-HAω +

Π0
1-AC0,0 +Σ0

2-DNS0, E-HAω +ACω +mr-DNSω, ̂E-HA
ω
�, ̂E-HA

ω
�+QF-AC0,0 +

Σ0
1-DNS0, ̂E-HA

ω
� + Π0

1-AC0,0 + Σ0
2-DNS0, or ̂E-HA

ω
� + ACω + mr-DNSω.

The following corollary is obtained immediately from [10, Theorem 2.10] and
Proposition 1 together with the general fact that P is normally reducible to P̂.

Corollary 2. Let Sω be one of the systems E-PAω, E-PAω +QF-AC0,0, E-PAω +
Π0

1-AC0,0
, E-PAω + ACω, ̂E-PA

ω
�, ̂E-PA

ω
� + QF-AC0,0, ̂E-PA

ω
� + Π0

1-AC0,0, and
̂E-PA

ω
�+ACω. For P and Q as in Proposition 1, if P is Gödel/Kleene-primitive-

recursive Weihrauch reducible to Q in Sω, then P is so to Q̂ in Sω.

Remark 3. The relation between WKL and IVT in computable analysis, which
is mentioned in Sect. 1, shows that the converse of Corollary 2 does not hold.

From the perspective of Corollary 2 and Remark 3, it is worthwhile to
characterize the property that P is Gödel/Kleene-primitive-recursive Weihrauch
reducible to Q̂ in Sω in some natural context of constructive reverse mathematics.
For this purpose, we introduce the following notions:

Definition 4. Let P and Q be existence statements formalized as normal exis-
tential sentences ∀f(A1(f) → ∃gB1(f, g)) and ∀f1, . . . , fk(A2(f1, . . . , fk) →
∃gB2(f1, . . . , fk, g) of ̂E-HA

ω
� respectively. For a finite-type arithmetic Sω con-

taining ̂E-HA
ω
�, P is normally T-derivable from Q in Sω if there exist closed

terms s1, . . . , sk (of suitable types) in T such that Sω proves

∀f
(
A1(f) → ∀mNA2(s1mf, . . . , skmf)

)
(3)

and

∀f

(
A1(f) ∧ ∀m

(
A2(s1mf, . . . , skmf) → ∃g′B2

(
s1mf, . . . , skmf, g′))

→ ∃gB1(f, g)

)

.

(4)
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The notion that P is normally T0-derivable from Q in Sω is defined in the
same manner with using T0 instead of T. In fact, “A2(s1mf, ..., skmf) →” in
(4) is redundant in the presence of (3).

Remark 5. For existence statements P : ∀f(A1(f) → ∃gB1(f, g)) and Q, the
fact that P is normally derivable from Q demands some proof of Q → P with
the following structure:

1. Fix f such that A1(f);
2. Assuming A1(f), derive ∃gB1(f, g) by using Q for the countably many

instances which are given primitive recursively in f .

For existence statements P and Q, it is quite common in practical mathematics
(not only in constructive mathematics) to show Q → P in this manner.

On the other hand, the normal derivability is properly weaker than the nor-
mal reducibility in the context of (nearly) intuitionistic systems. Note also that
the normal derivability relation is reflexive and transitive.

Theorem 6. Let P and Q be existence statements formalized as normal exis-
tential sentences ∀f(A1(f) → ∃gB1(f, g)) and ∀f1, . . . , fk(A2(f1, . . . , fk) →
∃g′B2(f1, . . . , fk, g′) of ̂E-HA

ω
� respectively with ∃-free formulas A1, A2, B1, and

B2. Then the following hold:

1. P is Gödel-primitive-recursive Weihrauch reducible to Q̂ in E-PAω if and only
if P is normally T-derivable from Q in E-HAω + AC0,ω.

2. P is Kleene-primitive-recursive Weihrauch reducible to Q̂ in ̂E-PA
ω
� if and

only if P is normally T0-derivable from Q in ̂E-HA
ω
� + AC0,ω.

Proof. (1) Assume that P is Gödel-primitive-recursive Weihrauch reducible
to Q̂ in E-PAω. As in the proof of [10, Theorem 2.10], by the negative
translation (see [17, Section 10.1]), we have that E-HAω proves ∀f(A1(f) →
∀nNA2(s1fn, . . . , skfn)) and ∀f,G′(∀nNB2(s1fn, . . . , skfn,G′n) ∧ A1(f) →
B1(f, tfG′)) for some closed terms s1, . . . , sk and t in T. Put a closed term
s̃i as λn, f. sifn for each i ∈ {1, . . . , k}. Then we have that E-HAω proves

∀f(A1(f) → ∀nNA2(s̃1nf, . . . , s̃knf)) (5)

and
∀f,G′ (∀nNB2(s̃1nf, . . . , s̃knf), G′n) ∧ A1(f) → ∃gB1(f, g)

)
. (6)

Applying AC0,ω to (6), we have

∀f
(∀nN∃g′B2(s̃1nf, . . . , s̃knf), g′) ∧ A1(f) → ∃gB1(f, g)

)
. (7)

Then it follows from (5) and (7) that

∀f

(
A1(f) ∧ ∀nN

(
A2(s̃1nf, . . . , s̃knf) → ∃g′B2

(
s̃1nf, . . . , s̃knf, g′))

→ ∃gB1(f, g)

)

. (8)
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Thus P is normally T-derivable from Q in E-HAω + AC0,ω.
For the converse direction, assume that E-HAω +AC0,ω proves (5) and (8) for

some closed terms s̃1, . . . , s̃k in T. By (8), we have that E-HAω + AC0,ω proves
(7), and hence, (6).

As in the proof of [10, Theorem 2.10], by the soundness of modified real-
izability [17, Theorem 5.8], there exist closed terms t in T such that E-HAω

proves

∀f,G′ (A1(f) ∧ ∀nNB2

(
s̃1nf, . . . , s̃knf,G′n

) → B1(f, tf G′)
)
. (9)

Put a closed term si as λf, n. s̃inf for each i ∈ {1, . . . , k}. Then, by (5) and (9),
we have that P is Gödel-primitive-recursive Weihrauch reducible to Q̂ in E-HAω

(and hence, so is in E-PAω) with s1, . . . , sk and t as the witnesses.
The same proof works also for (2). ��
Combining the proof of Theorem 6 with [10, Lemma 2.1] and [10, Lemma

2.2] as in [10, Theorem 2.10], we have the following:

Theorem 7. Let P and Q be existence statements formalized as normal exis-
tential sentences ∀f(A1(f) → ∃gB1(f, g)) and ∀f ′(A2(f ′) → ∃g′B2(f ′, g′) of
̂E-HA

ω
� respectively with ∃-free formulas A1, A2, B1, and B2. Then

1. P is Gödel-primitive-recursive Weihrauch reducible to Q̂ in E-PAω+QF-AC0,0

(resp. E-PAω + Π0
1-AC0,0

, E-PAω + ACω) if and only if P is normally T-
derivable from Q in E-HAω + AC0,ω + Σ0

1-DNS0 (resp. E-HAω + AC0,ω +
Σ0

2-DNS0, E-HAω + ACω + mr-DNSω).
2. P is Kleene-primitive-recursive Weihrauch reducible to Q̂ in ̂E-PA

ω
� +

QF-AC0,0 (resp. ̂E-PA
ω
� + Π0

1-AC0,0
, ̂E-PA

ω
� + ACω) if and only if P is nor-

mally T0-derivable from Q in ̂E-HA
ω
� + AC0,ω + Σ0

1-DNS0 (resp. ̂E-HA
ω
� +

AC0,ω + Σ0
2-DNS0, ̂E-HA

ω
� + ACω + mr-DNSω).

Remark 8. The meta-theorem where AC0,ω is replaced by QF-AC0,0 in The-
orem 7.(2) does not hold: If it holds, by Proposition 10 below, we have that
WKL is normally T0-derivable from LLPO in ̂E-HA

ω
� + QF-AC0,0 + Σ0

1-DNS0,
and hence, WKL is provable in ̂E-PA

ω
� + QF-AC0,0 (cf. Remark 5). This is a

contradiction (see [16]). The same argument holds also for Theorem 7.(1).

3 Application

There seem to be many results (proofs) in computable analysis and constructive
reverse mathematics to which our meta-theorems are applicable. For the purpose
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of demonstrating the availability of our meta-theorems, we inspect the existing
proofs in both of the contexts on the relation between the weak König lemma
WKL and the lesser limited principle of omniscience LLPO. This is the core for
the relation between the intermediate value theorem IVT and WKL which is
mentioned in Sect. 1.

Recall that WKL states that for any infinite binary tree, there exists an
infinite path through the tree (see [10, Section 3.1] for the formal definition) and
LLPO is formalized as

∀fN→N

0 , fN→N

1

(¬ (∃xNf0(x) = 0 ∧ ∃yNf1(y) = 0
)

→ ∃kN((k = 0 → ¬∃x f0(x) = 0) ∧ (k = 0 → ¬∃y f1(y) = 0))

)

in the language of ̂E-HA
ω
�. Both of them are normal existential sentences of the

form to which our meta-theorems are applicable. We also recall the following
disjunctive variant of Π0

1-AC0,0 from [2,14]:

Π0
1-AC

0,0

∨ : ∀nN
(∀xNAqf(n, x) ∨ ∀yNBqf(n, y)

)

→ ∃h∀n ((h(n) = 0 → ∀xAqf(n, x)) ∧ (h(n) = 0 → ∀y Bqf(n, y))) ,

where Aqf and Bqf are quantifier-free. In the context of constructive reverse
mathematics, Ishihara [14, Section 5] first showed that WKL is equivalent to
LLPO plus Π0

1-AC0,0
∨ over a weak intuitionistic arithmetic. More recently, Berger,

Ishihara, and Schuster [2, Section 6] provided a simpler proof of the fact. On the
other hand, in the context of computable analysis, Brattka and Gherardi [5,
Theorem 8.2] showed that WKL is Weihrauch equivalent to the parallelization
of LLPO while it is not so to LLPO.

Proposition 9. WKL is normally T0-derivable from LLPO in ̂E-HA
ω
� +

Π0
1-AC0,0

∨ + QF-AC0,0 + Σ0
1-DNS0.

Proof. The proof is basically the same as that for [2, Theorem 27]. We rea-
son informally in ̂E-HA

ω
� + Π0

1-AC0,0
∨ + QF-AC0,0 + Σ0

1-DNS0 and let TN→N be
an infinite binary tree (officially given by its characteristic function as in [10,
Section 3.1]).

For each i ∈ {0, 1} and each code uN of a finite sequence of natural num-
bers, define Ci(u, T ) as ∃mN (¬D(m,u ∗ 〈i〉) ∧ D(m,u ∗ 〈1 − i〉)), where D(m,u)
expresses that there exists a finite binary sequence vN of length m such that u∗v
is contained in T . Then we have ∀uN¬ (C0(u, T ) ∧ C1(u, T )). Notice that there
exist closed terms s0 and s1 of type N → ((N → N) → (N → N)) in T0 such
that

∃mN siuTm = 0 ↔ Ci(u, T )

for each i ∈ {0, 1}. Thus we have ∀uN¬(∃mN s0uTm = 0 ∧ ∃mN s1uTm = 0).
This validates the first condition of normal derivability in Definition 4.

For the second condition, assume also that for each uN, there exists kN

such that k = 0 → ¬∃mN s0uTm = 0 and k = 0 → ¬∃mN s1uTm = 0.
Using a dependence choice principle which is derived from Π0

1-AC0,0
∨ (see [2,
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Corollary 5]), we have a function hN→N such that ∀uN¬∃mN sh(u)

(
hu

)
Tm =

0, equivalently, ∀uN¬Ch(u)

(
hu, T

)
. As in the proof of [2, Theorem 27], one

can show that ∀nN,mND(m,hn) by using Π0
1 induction which is provable in

̂E-HA
ω
� + QF-AC0,0 + Σ0

1-DNS0 (see [9, Lemma 20]). Then it follows that h is
an infinite path through T . ��

Applying Theorem 7.(2) to Proposition 9, as a corollary, we obtain the fol-
lowing result in the context of computable analysis:

Proposition 10. WKL is Kleene-primitive-recursive Weihrauch reducible to
̂LLPO in ̂E-PA

ω
� + QF-AC0,0.

On the other hand, by refining the proof of [5, Theorem 8.2] (where WKL
itself is used for the verification as it is mentioned there), we can also have a
direct proof of Proposition 10:

Proof. Recall that ̂LLPO states that for all f0 and f1 of type N → (N → N), if
∀nN¬ (∃xNf0nx = 0 ∧ ∃xNf1nx = 0

)
, then there exists hN→N such that

∀nN
((

hn = 0 → ¬∃xNf0nx = 0
) ∧ (

hn = 0 → ¬∃xNf1nx = 0
))

. (10)

We reason informally in ̂E-PA
ω
� + QF-AC0,0 and let TN→N be an infinite binary

tree (officially given by its characteristic function).
As in the proof of [5, Theorem 8.2], for each i ∈ {0, 1}, let PT

k,i denote the set
of finite binary sequences u such that u∗〈i〉 is incomparable with all branches in
T of length k. We define f0 and f1 of type N → (N → N) primitive recursively
(in the sense of Kleene) in the given tree T as

fiux =
{

0 if x is the least k such that u ∈ PT
k,i \ PT

k,1−i,

1 otherwise,

for i ∈ {0, 1}. For each uN, we have ¬ (∃xNf0ux = 0 ∧ ∃xNf1ux = 0
)

straightfor-
wardly by definition.

For the second condition, let h satisfy (10) for f0 and f1 defined above. Define
pN→N primitive recursively in h as

p(k) =
{

0 if h (pk) = 0,
1 otherwise,

For verifying that p is an infinite path through T , it suffices to show that for all
nN and mN, there exists u ∈ {0, 1}m such that pn∗u is in T . In the following, we
show this assertion by Π0

1 induction (which is provable in ̂E-PA
ω
�+QF-AC0,0) on

nN. When n = 0, we are done since T is infinite. Assume that for all mN, there
exists u ∈ {0, 1}m such that pn∗u is in T . Our goal is to show the corresponding
assertion for n + 1. Based on classical logic, we consider the following 4 cases:

1. There exists kN such that pn ∈ PT
k,1 \ PT

k,0;
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2. There exists kN such that pn ∈ PT
k,0 \ PT

k,1;
3. There is no kN such that pn ∈ PT

k,0 ∪ PT
k,1;

4. There exists kN such that pn ∈ PT
k,0 ∩ PT

k,1.

We first work in the first case. Using classical logic, it follows from our induction
hypothesis that at least one of the following holds:

– For all mN, there exists u ∈ {0, 1}m such that pn ∗ 〈0〉 ∗ u is in T ;
– For all mN, there exists u ∈ {0, 1}m such that pn ∗ 〈1〉 ∗ u is in T .

If the latter holds, then for m0 := k −̇ (n+1), there exists u ∈ {0, 1}m0 such that
pn ∗ 〈1〉 ∗ u is in T , which contradicts pn ∈ PT

k,1. Thus the former holds. Since
p(n) must be 0 by definition, we have our goal. In the second case, by mimicking
the above argument, we have our goal as well. Next, we work in the third case.
Fix mN

1 and assume that for all u ∈ {0, 1}m1 , p(n + 1) ∗ u is not in T . Then all
branches in T of length n + 1 + m1 (note that there is at least one branch of
this length by induction hypothesis) are incomparable with p(n+1), and hence,
pn ∈ PT

n+1+m1,p(n), which is a contradiction. Thus there exists u ∈ {0, 1}m1

such that p(n + 1) ∗ u is in T . Finally, we show that the fourth case does not
occur. If pn ∈ PT

k,0 ∩ PT
k,1, then for any s ∈ {0, 1}k in T , s is incomparable

with both of pn ∗ 〈0〉 and pn ∗ 〈1〉. Note that k must be greater than n. By
induction hypothesis, there exists u ∈ {0, 1}k−n such that pn ∗ u is in T . This
is a contradiction. ��
Remark 11. We obtain Proposition 9 by applying Theorem 7.(2) to Proposi-
tion 10 with the following observation: In particular cases where Q is LLPO in
Theorem 7.(2), the proof shows that only Π0

1-AC0,0
∨ rather than AC0,ω is enough

for the corresponding argument. On the other hand, one needs QF-AC0,0 and
Σ0

1-DNS0 for deriving the negative translation of QF-AC0,0 (see [10, Lemma
2.1.(3)]).

Remark 12. One can notice that the proof of Proposition 9 and the proof of
Proposition 10 are somewhat similar. Nevertheless, the primitive recursive wit-
nesses for the latter is not obvious from the proof of Proposition 9. On the other
hand, the proof of Proposition 10 heavily uses classical logic for the verification,
and hence, the former is also not an immediate consequence from the latter. This
observation illustrates that our meta-theorems should give rise to new results in
one of the contexts from the results or the proofs in the other context.

At the end of this section, we briefly deal with the relation between the
intermediate value theorem IVT (see [10, Section 3.2] for the formal definition)
and WKL which is mentioned in Sect. 1.

Proposition 13. 1. DICHR is normally reducible to IVT in ̂E-HA
ω
� +

QF-AC0,0, where
DICHR : ∀fN→N∃kN ((k = 0 → f ≥R 0) ∧ (k = 0 → f ≤R 0)) .
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2. LLPO is normally reducible to DICHR in ̂E-HA
ω
� + QF-AC0,0.

3. ̂WKL is normally reducible to WKL in ̂E-HA
ω
� + QF-AC0,0.

Proof. (1): Inspect the argument in [19, 6.1.2]. (2): Inspect the argument in [19,
5.2.12]. (3): Inspect the proof of (1) → (3) of [11, Lemma 5]. ��

By Propositions 1, 9, 10, and 13, together with [10, Proposition 3.8], we have
the following:

Corollary 14. WKL is Kleene-primitive-recursive Weihrauch reducible to ÎVT
and vice versa in ̂E-PA

ω
� + QF-AC0,0.

Corollary 15. WKL is normally T0-derivable from IVT and vice versa in
̂E-HA

ω
� + Π0

1-AC0,0
∨ + QF-AC0,0 + Σ0

1-DNS0.

4 Another Possible Consequence from Constructive
Reverse Mathematics

A lot of existing proofs in constructive reverse mathematics show not only prov-
ability but rather normal derivability (see Remark 5). However, this is not always
the case. For example, in the proof of deriving the convex weak König lemma
WKLc from IVT [1, Theorem 3], for a given infinite convex tree T , IVT is first
used to construct an infinite convex subtree T ′ having at most 2 branches for each
height, and then it is used again for taking an infinite path through T ′. Thus,
while the first instance to which one applies IVT is provided primitive recursively
in a given infinite convex tree T , the second instance is not so. In this section, we
characterize this kind of proofs by the notion of Weihrauch reducibility to the
consecutive composition of the finitely many copies of an existence statement,
which has been studied recently in computable analysis (e.g. [7,15,18]).

Definition 16. Let P and Q be existence statements formalized as normal exis-
tential sentences ∀f(A1(f) → ∃gB1(f, g)) and ∀f ′(A2(f ′) → ∃g′B2(f ′, g′)) of
̂E-HA

ω
� respectively.

– For a finite-type arithmetic Sω containing E-HAω, P is Gödel-primitive-
recursive Weihrauch reducible to the 2-copies of Q in Sω if there exist closed
terms s, t, and u (of suitable types) in T such that Sω proves

∀f(A1(f) → A2(sf))∧
∀f, g′ (B2(sf, g′) ∧ A1(f) → A2(tf g′)

) ∧
∀f, g′, g′′ (B2(tf g′, g′′) ∧ B2(sf, g′) ∧ A1(f) → B1(f, uf g′ g′′)

)
.

(11)

– For a finite-type arithmetic Sω containing ̂E-HA
ω
�, P is Kleene-primitive-

recursive Weihrauch reducible to the 2-copies of Q in Sω if there exist closed
terms s, t, and u (of suitable types) in T0 such that Sω proves (11).
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– For a finite-type arithmetic Sω containing ̂E-HA
ω
�, P is normally reducible to

the 2-copies of Q in Sω if Sω proves

∀f

⎛

⎜
⎜
⎝

A1(f) →

∃f ′

⎛

⎝A2(f ′) ∧ ∀g′

⎛

⎝
B2(f ′, g′) →
∃f ′′

(
A2(f ′′) ∧ ∀g′′

(
B2(f ′′, g′′) →
∃gB1(f, g)

))
⎞

⎠

⎞

⎠

⎞

⎟
⎟
⎠ .

The versions for k-copies (k = 3, 4, 5, . . . ) are also defined in the same manner.
Note that [10, Definition 2.5] is the case of k = 1.

The proof of [10, Theorem 2.10] allows us to generalize it as follows:

Theorem 17. Let k be a fixed natural number. Let P and Q be existence
statements formalized as normal existential sentences ∀f(A1(f) → ∃gB1(f, g))

and ∀f ′(A2(f ′) → ∃g′B2(f ′, g′) of ̂E-HA
ω
� respectively with ∃-free formulas

A1, A2, B1, and B2. Then the following hold:

1. P is Gödel-primitive-recursive Weihrauch reducible to the k-copies of Q
in E-PAω (resp. E-PAω + QF-AC0,0, E-PAω + Π0

1-AC0,0
, E-PAω + ACω) if

and only if P is normally reducible to the k-copies of Q in E-HAω (resp.
E-HAω+QF-AC0,0+Σ0

1-DNS0, E-HAω+Π0
1-AC0,0+Σ0

2-DNS0, E-HAω+ACω+
mr-DNSω).

2. P is Kleene-primitive-recursive Weihrauch reducible to the k-copies of Q in
̂E-PA

ω
� (resp. ̂E-PA

ω
� + QF-AC0,0, ̂E-PA

ω
� + Π0

1-AC0,0
, ̂E-PA

ω
� + ACω) if

and only if P is normally reducible to the k-copies of Q in ̂E-HA
ω
� (resp.

̂E-HA
ω
� + QF-AC0,0 + Σ0

1-DNS0, ̂E-HA
ω
� + Π0

1-AC0,0 + Σ0
2-DNS0, ̂E-HA

ω
� +

ACω + mr-DNSω).

Applying Theorem 17.(2) for k = 2 to the proof of deriving WKLc from IVT
in [1, Theorem 3], one can obtain a non-trivial result in computable analysis:

Proposition 18. WKLc is Kleene-primitive-recursive Weihrauch reducible to
the 2-copies of IVT in ̂E-PA

ω
� + QF-AC0,0.

Remark 19. The notion of normal derivability does not imply the notion of
normal reducibility to k-copies (verifiably even in a nearly intuitionistic system
containing a choice principle) for any natural number k: if so, by Corollary 15,
we have that WKL is normally reducible to the k-copies of IVT, and hence,
WKL is Kleene-primitive-recursive Weihrauch reducible to the k-copies of IVT
by Theorem 17. However, this is not the case because any computable instance
of IVT has a computable solution while WKL is not so.
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Abstract. We study the computational complexity of uniformly con-
verting the base-a expansion of an irrational numbers to the base-b
expansion. In particular, we are interested in subsets of the irrationals
where such conversion can be performed with little overhead. We show
that such conversion is possible, essentially with polynomial overhead,
for the set of irrationals that are not Liouville numbers. Furthermore, it
is known that there are irrational numbers x such that the expansion of
x in one integer base is efficiently computable, but the expansion of x in
certain other integer bases is not. We prove that any such number must
be a Liouville number.

Keywords: Computability · Computational complexity · Diophantine
approximation · Number theory

1 Introduction

Let a, b ≥ 1 be integers, and let prim(a) and prim(b) be the sets of prime
factors of a and b. If prim(b) ⊆ prim(a) there is an easily computable constant
k that only depends on the exponents in the prime decompositions of a and b
such that for any irrational number α with 0 < α < 1 and any n ∈ N, the first n
digits of the base-b expansion of α can be obtained efficiently knowing only the
first kn digits of the base-a expansion of α.

However, if prim(b) � prim(a), there are irrational numbers whose base-a
expansion can be computed efficiently (say, in polynomial time), but whose base-
b expansion cannot. Early partial results go back to Specker [21] and Mostowski
[16], while Lachlan [13] showed that the set of primitive recursive reals to base b
are a subset of the primitive recursive reals to base a iff prim(b) ⊆ prim(a), a
result recently extended by Kristiansen [12] to show that for each sufficiently
large subrecursive class S, there are irrationals with base-a expansion com-
putable in polynomial time, but whose base-b expansion is not S-computable.

The above phenomena all concern non-uniform complexity in the sense that
the complexity of expansions of single numbers are concerned. One can also
study a uniform version where the complexity of Turing machines provided with
a, b, and the base-a expansion of any irrational number from a well-behaved set
c© Springer Nature Switzerland AG 2020
M. Anselmo et al. (Eds.): CiE 2020, LNCS 12098, pp. 50–62, 2020.
https://doi.org/10.1007/978-3-030-51466-2_5
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must produce the digits of the base-b expansion without unbounded search. If
good subrecursive bounds on such uniform conversion exists for some subset T of
the irrational numbers, it follows that numbers exhibiting the “wild” behaviour
of [12,13,16,21] cannot be elements of T .

This paper is devoted to proving that set R \ (Q ∪ L) of irrational num-
bers that are not Liouville numbers is an example of such a set T —and thus
that any “wild” number must be Liouville. As almost all “naturally occurring”
irrational numbers (algebraic numbers, π, e, numbers with very slow-growing
partial quotients, etc.) are not Liouville, this shows that “wild” differences in
the computational complexity across integer bases is a somewhat artificial prop-
erty of irrationals. We believe that some of the machinery we introduce to prove
this result may be useful to reveal the connections between the computational
complexity of expansions to integer bases and traditional number theory beyond
what is already done in the literature (see, e.g. [3,4,8]).

1.1 Some Intuition

Converting a number from base a to base b is easy if the number of digits
that need to be examined is limited—colloquially, if the “lookahead” is small.
Consider a Turing machine converting an irrational number from base a to base
b using the standard schoolbook algorithm. Write 〈x〉a and 〈x〉b for the base-a
and base-b expansions of the irrational number x. To find the initial n digits
v1, . . . , vn ∈ {0, . . . , b − 1} of 〈x〉b amounts to finding a particular integer k =∑n

i=1 vib
n−i such that kb−n < x < (k + 1)b−n; the standard schoolbook method

of doing so is to write the rational number kb−n in base a and compare the result
to successive digits of the base-a expansion of x until a digit is found where the
two sequences differ sufficiently. The number of digits that the machine needs to
consider to find the nth digit of 〈x〉b is bounded above by some integer s(n) where
|x − kb−n| ≥ a−s(n)—because, roughly, if the base-a expansions of x and kb−n

did not differ in the s(n)th digit, we would have |x − kb−n| < a−s(n). Hence, for
efficient conversion from base a to base b, it is natural to consider real numbers x
where the “lookahead” function s(n) does not grow too rapidly. Furthermore, as
a−s(n) = b−(log a/ log b)s(n), we can rewrite the above inequality as |x − kb−n| ≥
b−(log a/ log b)s(n), and it is thus natural to consider a subset of real numbers
where the lookahead is not contingent on a, but efficient conversion to base b
from any integer base is possible, in which case the criterion above naturally
becomes |x − kb−n| ≥ b−t(n) where the function t(n) should be independent of
a (we call this criterion (b, t)-sanity, see Sect. 3).

The reader should by now appreciate that the “lookahead” is a special case
of the more general phenomenon of the convergence speed of rapidly converging
sequences of rational approximations to x, that is, finding rational numbers p/q
with |x − p/q| < g(q) where g is a rapidly decreasing function. Indeed, for base-
a expansions q will always be a negative power of a, and we will always have
p/q < x if p/q is a truncation of the base-a expansion of x. Thus, the study of
finite truncations of base-a expansions is a limited special case of Diophantine
approximation (see, e.g. [7]). Consider creating an irrational number x such
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that its base-a expansion is not efficiently computable; a typical first attempt
would be to take a very rapidly growing function f : N −→ N such that f(n)
is known to not be computable within appropriate bounds, and consider the
irrational number x =

∑∞
i=1 a−f(i); this is essentially the same approach that

Liouville used when defining Liouville’s constant
∑∞

i=1 10−i! as the first irrational
number explicitly proven to be transcendent [14]. It is thus not surprising that
there should be strong connections between the wider class of Liouville numbers
and the problem of converting between integer bases.

2 Preliminaries

We assume familiary with standard computability theory and basic complexity
theory at the level of introductory textbooks (see, e.g. [2,9,20]). Familiarity with
basic computable analysis (e.g., [11,22]) will make the paper easier to read, but
is not needed.

Notation. We write N for the set of positive integers and Q for the set of rationals.
If f : N −→ N and j ≥ 1 is an integer, we write f◦j for the jth iterate of f , that
is, f◦1(n) = f(n) and f◦j(n) = f(f◦(j−1)(n)) for all n ∈ N. We write poly(n)
for an unspecified polynomial in n. For a ∈ N, we write Σa = {0, . . . , a − 1}.
We usually view Σa as an alphabet of a symbols and denote by Σ∗ the set of
finite, possibly empty, strings over Σ, by Σ+ the set of finite non-empty string
over Σ, by Σω the set of right-infinite strings over Σ, and set Σ≤ω = Σ∗ ∪ Σω.
The binary representation of a is denoted by abin. The open interval of all reals
between 0 and 1 is denoted by (0, 1), and if x ∈ (0, 1) is a real number and
a > 1 is an integer, we denote by 〈x〉a the greedy base-a expansion of x, that
is 〈x〉a = (en)n∈N where x =

∑∞
i=1 ei/ai such that each ei ∈ {0, . . . , a − 1}

and each successive ei is chosen as large as possible. We write 〈x〉a|≤n for the
length-n initial prefix of 〈x〉a, 〈x〉a|n for the nth element of 〈x〉a, and define
kx,a,n =

∑n
i=1 eia

n−i, i.e. kx,a,n · a−n =
∑n

i=1 eia
−i, so kx,a,na−n is the multiple

of a−n corresponding to the length-n prefix 〈x〉a|≤n of the base-a expansion of
x.

Turing Machines and Conversion Between Bases. Let a ≥ 2 be an integer and
f : N −→ {0, . . . , a − 1} be a map. A Turing machine M with input and output
alphabet {0, 1} is said to compute f if, for each positive integer n, M will, on
input nbin, output f(n)bin. We assume that if x is a real number and is given as
input to a Turing machine M , then (a binary encoding of the infinite sequence
of elements of) 〈x〉a is supplied to M on a particular input tape. All Turing
machines considered in this paper will thus be (type-2) Turing machines: Let
Σ be a finite alphabet with 0, 1 ∈ Σ. A type-2 Turing machine M is a Turing
machine with k read-only input tapes accepting infinite inputs (called ω-tapes),
m read-only input tapes accepting finite inputs, one (write-only, one-way) output
tape and finitely many additional work tapes. Such a machine computes a partial
function φM : (Σω)k × (Σ+)m ⇀ Σ∗ in the usual way (i.e., it has to reach a
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halting state in finite time, and the output is what is present on the output
tape at that time). Time and space-complexity will throughout the paper be
specified in terms of the content on the input tapes accepting finite inputs (if
a Turing machine runs in time at most T (n), then it can examine at most the
initial T (n) elements on the ω-tapes). Note also that we will typically give the
desired number of output symbols (e.g., the first n elements in 〈x〉b) as input
in binary nbin, hence using at most 1 + 	log n
 bits, but time complexities will
be specified as functions of n, not nbin. We assume that both the input ω-tapes
and the output tape has binary alphabet. Thus, 〈x〉a will be coded on the input
as an infinite sequence of binary representations of elements of {0, 1 . . . , a − 1}
(each taking space 1 + 	log a
); similarly, output in base b will be encoded as
elements of {0, . . . , b − 1} with each digit using 1 + 	log b
 bits of space.

Liouville Numbers. The irrationality measure of a real number x, denoted μ(x),
is the infimum of the set of positive reals μ such that the inequality |x − p/q| <
1/qμ has only finitely many distinct solutions (p, q) ∈ Z × N (conversely, μ(x) is
the supremum of the set of positive reals such that the inequality has infinitely
many distinct solutions).

A real number x is a Liouville number [14] if it is irrational and for every
integer c ∈ N there are integers p and q with q ≥ 2 such that |x − p/q| < q−c.
We denote the set of Liouville numbers by L. Hence, L is the set of reals having
infinite (recall that inf ∅ = ∞ by convention) irrationality measure.

An Ancillary Result. The multiple of b−n that best approximates x is either
kx,b,n or kx,b,n + 1. We state this straightforward result explicitly as we shall
refer to it several times:

Proposition 1. Let x ∈ (0, 1) be irrational. Then, for all integers b ≥ 2 and
n ≥ 1, we have kx,b,nb−n < x < (kx,b,n + 1)b−n, and either (i) ∀k ∈ Z.|x −
kx,b,nb−n| ≤ |x − kb−n|, or (ii) ∀k ∈ Z.|x − (kx,b,n + 1)b−n| ≤ |x − kb−n|.

3 Rational Approximations and Sanity

The discussion in the paper’s introduction prompts the definition of sane num-
bers below.

Definition 1. Let x ∈ (0, 1) be a real number, and b ≥ 2 an integer. Then, x is
said to be: (b, t)-sane if there is a non-decreasing and unbounded map t : N −→ N

such that for all integers k, n with n ≥ 1 we have |x − k · b−n| ≥ b−t(n). The
map t is said to be a witness of (b, t)-sanity of x. Furthermore, x is said to be
uniformly sane if there exists a non-decreasing and unbounded map t : N −→ N

such that x is (b, t)-sane for all b. Again, t is said to be a witness of uniform
sanity of x.

Sane numbers are irrational: If p/q is rational, then it has a finite base-q
expansion, whence it cannot be q-sane witnessed by any unbounded map t.
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Observe that for every irrational x and every b, there is a non-decreasing
and unbounded function t such that x is (b, t)-sane: for each n ∈ N, there is
a k ∈ Z such that |x − kb−n| is minimal. Let k′ be such a k, define dn =
�−(log |x − k′b−n|)/ log b�, and define t(1) = d1, and t(n) = max{dn, t(n − 1)}
for n > 1. Note that this t is unbounded as x is irrational.

If there is no slow -growing function t such that x is (b, t)-sane, then–
intuitively–bounding x away from very good rational approximations is difficult,
and hence converting between bases may require large lookahead. As every irra-
tional x is (b, tb)-sane for at least one function tb depending on b (and x), it is
natural to consider the function t′ : N × N −→ N such that t′(b, n) = tb(n). Hav-
ing small lookahead in all bases b then intuitively corresponds to the function t′

not growing too fast in either of its arguments.

Proposition 2. Let x ∈ (0, 1) be irrational. If b ≥ 2 is an integer and t : N −→
N is a non-decreasing and unbounded map such that for all but finitely many
integer pairs (k, n) with n ≥ 1 we have |x − k · b−n| ≥ b−t(n), then there exists
an ex (which may depend on x) such that x is (b, n �→ ext(n))-sane.

To show that the growth rate of the functions witnessing sanity actually
matters, we now prove existence of a real number the sanity of which can be
witnessed by a fast-growing function, but not witnessed by functions that grow
slightly more slowly.

Proposition 3. Let b ≥ 2 be an integer. Furthermore, let t : N −→ N be a
map such that t(1) ≥ 3 and t(n) − t(n − 1) ≥ n + 1 for all n > 1. Then, for
any non-decreasing unbounded function s : N −→ N such that s(n) > t(n), the
number x =

∑∞
j=1 b−t◦j(1) is (b, s)-sane. However, if u : N −→ N is any function

such that u(n) < t(n) for all sufficiently large n, then x is not (b, u)-sane.

Proof. First observe that x is irrational as 〈x〉b is not finite. Observe also that the
requirement t(n) − t(n − 1) ≥ n + 1 for all n > 1 entails that t is non-decreasing
(in fact, strictly increasing) and unbounded. Furthermore, note that we must
have t(t(n)) > t(n+1) for all n ≥ 1, because the fact that t is strictly increasing
implies that t(t(n)) > t(t(n)− t(n−1)) > t(n+1). Finally, note that as t(1) ≥ 3
and t(n) ≥ t(n − 1) + n + 1 by assumption, it follows that t(n) ≥ n + 1 for all
n ∈ N.

For ease of notation, write z1 = t(1), z2 = t(t(1)), . . . , zj = t◦j(1), . . .. As t
is strictly increasing, 〈x〉b has ones at positions z1, z2, . . . , zj , . . ., and zeros at
all other positions. Observe, for j ≥ 1, that the number of zeros following the
occurrence of 1 at position zj is at least

zj+1 − zj − 1 = t(zj) − zj − 1 ≥ zj + 1 + t(zj − 1) − zj − 1 = t(zj − 1) > zj

For each n, let j be the largest integer such that zj ≤ n < zj+1 (such a j exists
because t is strictly increasing, so zj < zj+1 < n is only possible for finitely
many j). Then 〈x〉b has zeros at all positions zj + 1, . . . , zj+1 − 1, and we thus
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have |x − kx,b,nb−n| = |x − kx,b,zj
b−zj |. But as 〈x〉b also contains a 1 at position

zj+1, we have
kx,n,zj

b−zj + b−zj+1 = kx,n,zj+1b
−zj+1 (1)

Now, by the above, and by Proposition 1, we have kx,n,zj
b−zj < kx,n,zj+1b

−zj+1 <
x, and thus |x − kx,b,zj

b−zj | ≥ b−zj+1 . Therefore:

|x − kx,b,nb−n| = |x − kx,b,zj
b−zj | ≥ b−zj+1 = b−t(zj) ≥ b−t(n) > b−s(n)

where the last inequality follows from the fact that t is strictly increasing and
zj ≤ n. Hence, |x − kx,b,nb−n| ≥ b−s(n).

By Proposition 1, we have 0 < x − kx,b,zj+1b
−zj+1 , and thus:

0 <x − kx,b,nb−n = x − kx,n,zj
b−zj = x − (kx,b,zj+1b

−zj+1 − b−zj+1) =

x − kx,b,zj+1b
−zj+1 + b−zj+1 = x − (kx,b,zj+2b

−zj+2 − b−zj+2) + b−zj+1=

x − kx,b,zj+2b
−zj+2 + b−zj+2 + b−zj+1 < 2b−zj+2 + b−zj+1

Now, zj+1 ≥ t(t(1)) ≥ t(3) ≥ 4, and we thus have:

zj+2 = t(zj+1) ≥ zj+1 + 1 + t(zj+1 − 1) ≥ zj+1 + 1 + t(3) ≥ zj+1 + 5

Hence, b−zj+2 ≤ b−zj+1−5, and thus:

|x − (kx,b,n + 1)b−n)| = b−n − (x − kx,b,nb−n) ≥ b−n − (2b−zj+2 + b−zj+1)

≥ b−zj+1 − 2b−zj+2 ≥ b−zj+1 − 2b−zj+1−5

= (1 − 2/b5)b−zj+1 ≥ (15/16)b−zj+1

≥ b−1 · b−zj+1 = b−(1+zj+1)

= b−(1+t(zj)) ≥ b−(1+t(n))

≥ b−s(n)

where the first inequality in the second line above follows from the fact that
n < zj+1 and thus b−n ≥ b · b−zj+1 ≥ 2b−zj+1 . By Proposition 1, either kx,b,n or
kx,b,n + 1 is an integer that minimizes |x − db−n| among all d ∈ Z. Hence, for all
k ∈ Z, we have |x − kb−n| ≥ b−s(n), showing that x is (b, s)-sane, as desired.

Now, pick any j ≥ 1 and set n = zj . Then by (1) above we have:

|x − kx,b,nb−n| = x − (kx,b,zj+1b
−zj+1 − b−zj+1)

= |x − kx,b,zj+1b
−zj+1 | + b−zj+1

< 2b−zj+1 = 2b−t(zj) = 2b−t(n)

≤ b−t(n)+1

But by assumption we have u(n) < t(n) for all sufficiently large n, whence
b−t(n)+1 ≤ b−u(n), and thus |x − kx,b,nb−n| < b−u(n) for infinitely many n
(because n = zj , and j ∈ N was chosen arbitrary). Hence, x is not (b, u)-sane. ��



56 S. K. Jakobsen and J. G. Simonsen

Functions t satisfying the assumptions of Proposition 3 are not hard to devise.
For example, any polynomial n �→ 2 + nq (for q ≥ 2) satisfies the requirements.

Proposition 3 shows that, for each b, there is a hierarchy of (b, t)-sane numbers
for successively faster-growing functions t, and there are numbers that require
arbitrarily fast-growing witnesses for (b, t)-sanity. It is natural to conjecture that
the same phenomena hold for uniform sanity, but–surprisingly–it turns out (see
Lemma 2) not to be the case.

We have the following key lemma:

Lemma 1. A number x ∈ (0, 1) is uniformly sane iff it is irrational and is not
a Liouville number.

Proof. Proceed as follows:

– Let x be uniformly sane witnessed by the map t. Then, for all integers b, k, n
with b ≥ 2 and n ≥ 1, we have |x − kb−n| ≥ b−t(n), in particular |x −
k/b| ≥ b−t(1). By the comments after Definition 1, x is irrational. Assume,
for contradiction, that x ∈ L. As t(1) is a positive integer, there are integers
b, k with b ≥ 2 such that |x − k/b| < b−t(1), and we obtain the contradiction.
Hence, x /∈ L.

– Let x /∈ L∪ Q. Assume, for contradiction, that x is not uniformly sane. Then
for each c ∈ N, the map n �→ cn does not witness uniform sanity, whence there
are integers bc, kc, nc with bc ≥ 2 and nc ≥ 1 such that |x − kcb

−nc
c | < b−cnc

c .
Setting q = bnc

c and p = kc we obtain |x−p/q| < q−c. As c ≥ 1 was arbitrary,
x ∈ L, a contradiction. Hence, x is uniformly sane.

��

Let E2 be the set of total functions on the naturals in the second level of the
Grzegorczyk hierarchy. A real number x is said to be E2-irrational if there is
f ∈ E2 such that for all integers p, q with q > 0 we have |x − p/q| > 1/f(q). By
a result of Georgiev, a real number is E2-irrational iff it is irrational and not a
Liouville number [10]; thus, by Lemma 1, the set of uniformly sane numbers is
exactly the set of E2-irrational numbers.

Lemma 1 has the surprising consequence that fast-growing functions t : N −→
N are never needed as witnesses for uniform sanity—uniform sanity can always
be witnessed by a linear map:

Lemma 2. A number x ∈ (0, 1) is uniformly sane iff uniform sanity can be
witnessed by a map of the form t(n) = cn, for some c ∈ N such that c ≥ μ(x).

Furthermore, no function t(n) = cn with c < μ(x) witnesses uniform sanity
of x.

Proof. If uniform sanity is witnessed by a linear map, then obviously x is uni-
formly sane.

Conversely, assume that x is uniformly sane and, for contradiction, that there
is no map t of the form t(n) = cn that witnesses this. Then, for every c ∈ N there
are integers k, b,m with b ≥ 2 and m ≥ 1 such that |x−kb−m| < b−cm = (bm)−c.
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Set p = k and q = bm; thus, for each integer c ≥ 1, there are p, q with q ≥ 2
such that |x − p/q| < q−c, whence x ∈ L, contradicting Lemma 1; hence, some
map of the form t(n) = cn witnesses uniform sanity of x. Further assume, for
contradiction, that c < μ(x). Then, by uniform sanity, we have for all integers
b, k, n with b ≥ 2 and n ≥ 1 that |x − kb−n| ≥ b−cn. Setting n = 1, we thus
have for any real number d with c ≤ d ≤ μ(x) and any integers p, q with q ≥ 2
that |x − p/q| ≥ q−c ≥ q−d ≥ q−μ(x). Thus, the inequality |x − p/q| < q−d

has only finitely many solutions in integers p, q (namely the case q = 1 where
|x − p| < 1−c = 1 might have the solutions p = 0 or p = 1 as x ∈ (0, 1)). Thus,
as there are infinitely many d with c ≤ d < μ(x), the number μ(x) cannot be
the supremum of the set of numbers d such that |x − p/q| < q−d has infinitely
many solutions in integers p, q, a contradiction. ��

We do not know whether it is always possible to choose n �→ �μ(x)�n as a witness
of uniform sanity.

Lemma 1 furnishes a method for proving that concrete real numbers are
(uniformly) sane: the set of Liouville numbers is exactly the set of real num-
bers having irrationality measure infinity. Thus: if a real number has finite irra-
tionality measure it is uniformly sane. By the Thue-Siegel-Roth theorem [18], all
algebraic irrational numbers have irrationality measure 2 and are thus uniformly
sane, as are numbers with continued fractions whose partial quotients grow very
slowly as o(n), for example e. Further examples of specific uniformly sane num-
bers can be found where finite upper bounds on their irrationality measure have
been proven. For example, π (the first bound by Mahler, μ(π) ≤ 30 [15], has
been improved on many occasions; at the time of writing, the best known bound
is μ(π) ≤ 7.60630852 · · · [19]), and Apéry’s constant [1]. Similarly, all Martin-
Löf random reals are not Liouville [8], hence are uniformly sane. Lemma 1 also
implies that almost all real numbers are uniformly sane: By standard results,
the set of Liouville numbers has Lebesgue measure zero [17] (and has Hausdorff
dimension zero, hence d-dimensional Hausdorff measure zero for all positive inte-
gers d > 0 [17]). Likewise, the set of uniformly sane numbers is a Gδ-set, hence
co-meagre.

3.1 A Digression: Normal Numbers

Recall that a real number x is b-normal [5] if every string of symbols s ∈
{0, . . . , b−1}+ occurs in 〈x〉b with limiting frequency b−|s|, and b-simply normal
if every element of {0, . . . , b − 1} occurs in 〈x〉b with limiting frequency 1/b.
Clearly, a b-normal number is b-simply normal. We have:

Proposition 4. Let x ∈ (0, 1) be irrational and let b ≥ 2 be an integer. If x is
b-simply normal, then there is cx ∈ N such that x is (b, n �→ cxn)-sane.

Recall also that x is said to be absolutely normal if it is b-normal for every
b ≥ 2. Proposition 4 yields the following corollary:

Corollary 1. For any absolutely normal number x ∈ (0, 1) and any integer
b ≥ 2, there is cb,x ∈ N such that x is (b, n �→ cb,xn)-sane.
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By a result of Bugeaud [6] there are uncountably many absolutely normal
Liouville numbers, hence, by Lemma 1 there are uncountably many absolutely
normal numbers that are not uniformly sane. By Corollary 1 each of these normal
numbers are (b, n �→ cb,xn)-sane for each b with some constant cb,x dependent
on b and x. However, for each absolutely normal Liouville number, the sequence
c2,x, c3,x, . . . must grow unboundedly as otherwise the numbers would be uni-
formly sane. Examples of computable absolutely normal Liouville numbers can
be found in [4]. Another consequence of Proposition 4 is that every b-normal
number has a very tame witness for sanity—and that numbers requiring fast-
growing witnesses (such as the ones constructed in Proposition 3) cannot be
b-normal for any b.

4 Uniform Conversion with Subrecursive Overhead
Between Arbitrary Integer Bases

The following theorem shows that sanity implies that changing bases can be done
without using unbounded search, indeed polynomial-time overhead is sufficient:

Theorem 1. There is a (type-2) Turing machine M and a polynomial P with
positive integer coefficients satisfying the following:

For any integers a, b ≥ 2, any non-decreasing and unbounded t : N −→ N,
any (b, t)-sane number x ∈ (0, 1), and any n ∈ N, M will on input abin,
bbin, nbin, and 〈x〉a (on an ω-tape) output 〈x〉b|≤n in time T (a, b, x)(n) ≤
P (t(n) log(max{a, b})).

Proof. The proof is essentially just an application of the schoolbook algorithm for
changing the base of an irrational number. We first describe M and subsequently
bound its running time.

(Start of Description of M)
M works in n stages, with each stage outputting the next digit of 〈x〉b until the
entire sequence 〈x〉b|≤n has been output. For 1 ≤ i ≤ n, at the beginning of the
ith stage, M has on its work tapes the (binary representations of) (i) i, (ii) the
string 〈x〉b|≤i−1 = s1 · · · si−1 of the first i− 1 digits of 〈x〉b, and (iii) the number
zi−1 = s1b

−1 + · · · si−1b
−(i−1) = kx,b,i−1b

−(i−1) in base b. Initially, i = 0, and
〈x〉b|≤0 = ε, and z0 = 0.

In stage i, M finds the ith digit, si = 〈x〉b|i, as follows: M uses binary search
in {0, . . . , b − 1} to find the largest s ∈ {0, . . . , b − 1} such that

zi−1 + sb−i = s1b
−1 + · · · + si−1b

−(i−1) + sb−i < x

By definition, the largest such s is si = 〈x〉b|i, and M increments i and sets
〈x〉b|≤i = 〈x〉b|≤i−1s and zi = zi−1 + sb−i.

For each s, checking whether zi−1+sb−i < x is done by inspecting sufficiently
many digits of 〈x〉a. For ease of notation, define r = �(log b)/(log a)�t(i). As x
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is (b, t)-sane, we have |x − kb−i| ≥ b−t(i) = a− t(i) log b
log a for all integers k, so in

particular for the number

zi + sb−i = kx,b,i−1b
−(i−1) + sb−i = (bkx,b,i−1 + s)b−i

we have:

|x − (zi + sb−i)| = |x − (bkx,b,i−1 + s)b−i| ≥ a− t(i) log b
log a ≥ a−r

By Proposition 1 we have:

x − a−r < kx,a,ra
−r < x < (kx,a,r + 1)a−r < x + a−r

and thus we have either
zi + sb−i < kx,a,ra

−r (2)

or
zi + sb−i > (kx,a,r + 1)a−r (3)

Clearly, if (2) holds, si = 〈x〉b|i ≥ s, and if (3) holds, si = 〈x〉b|i < s. Thus,
M needs only scan the initial r base-a elements of 〈x〉a (and compute the
rational numbers above) to compute 〈x〉b|i; each of these elements are repre-
sentable in at most (1 + 	a
) bits, hence can be read in time O(r log a) =
poly(t(i) log(max{a, b})). Observe that M does not need to know t or even
compute r: it can simply compute zo + sb−i and then brute-force scan enough
digits of 〈x〉a until either (2) or (3) holds.

(End of Description of M)
By the above it is clear that M does not use unbounded search to output 〈x〉b|≤n,
and indeed the search in 〈x〉a is limited to the r initial symbols of it, whence
subrecursive conversion is obviously possible. We now show that the conversion
is indeed efficient by establishing the existence of the polynomial P .

Time Use of M: In stage i, all computations are performed on integer argu-
ments smaller than max{bi, ar}, or on rational numbers p/q where p, q ≤
max{bi, ar}. All exponentiation involves only computing powers of a and b,
respectively, and all exponents involve negative powers of magnitude at most
max{i, r}; by repeated squaring each power can be computed in time at most:

poly(max{i, r} log(max{a, b})) = poly(t(i) log(max{a, b}))

Apart from squaring, all multiplications and divisions involve at most two num-
bers, and by schoolbook arithmetic are thus computable in time polynomial in
the logarithm of the largest integer involved, hence in time at most:

poly(log(max{bi, ar}) = poly(t(i) log(max{a, b}))

The remaining arithmetical operations are sums of at most max{i, r} rational
numbers with numerators and denominators that are positive integers bounded
above by max{bi, r}. By schoolbook arithmetic, this can be done in time at most:

max{i, r} · poly(log(max{bi, ar}) = poly(t(i) log(max{a, b}))
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As there are n stages 0, . . . , i, . . . , n, and each stage–by the above analysis–takes
time at most poly(t(i) log(max{a, b})), the total time use of M to print 〈x〉b|≤n is
at most O(npoly(t(n) log(max{a, b}))) = poly(t(n) log(max{a, b})), as desired.

��

Observe in Theorem 1 that the polynomial P is independent of x, a, and b.
However t(n) will in general depend on both b and x. If we consider a class of
reals for which t(n) is bounded above by a slow-growing function, we can obtain
stronger results, to wit the following theorem for numbers that are not Liouville:

Theorem 2. There is a Turing machine M and a polynomial P with the fol-
lowing property: For any x ∈ (0, 1) \ (Q ∪ L), there exists mx ∈ N such that for
all integers a, b ≥ 2 and n ∈ N, M will on input abin, bbin, nbin, and 〈x〉a (on
an ω-tape) output 〈x〉b|≤n in time T (a, b, x)(n) ≤ mx · P (n log(max{a, b})).

Proof. Let M and P be the Turing machine and polynomial of Theorem 1. By
Lemma 1, every x ∈ (0, 1)\ (Q∪L) is uniformly sane, and by Lemma 2, uniform
sanity is witnessed by some function t(n) = cxn for some cx ∈ N that depends on
x. By Theorem 1, M outputs 〈x〉b|≤n in time at most P (cxn log(max{a, b})) ≤
cd
x · P (n log(max{a, b})) (for some d ∈ N). Setting mx = cd

x now furnishes the
result. ��

Inspection of the proof of Theorem 1 reveals that the Turing machine M
reads at most r = �(log b)/(log a)�t(n) base-a symbols of 〈x〉a, and thus for a
non-Liouville number x at most �(log b)/(log a)�cxn base-a symbols for some
cx ≥ μ(x). If we fix x, we can absorb the constant mx in Theorem 2 into the
polynomial characterising the running time, and we obtain the following:

Corollary 2. Let x ∈ (0, 1) \ (Q ∪ L). There is a polynomial R such that if
a, b ≥ 2, and 〈x〉a|≤n is computable in time at most T (n) for all n, then there is
a constant cx such that 〈x〉b|≤n is computable in time at most R(T (cxn)) for all
n.

Thus in particular, every real number x where finite prefixes of 〈x〉a can be
computed in polynomial time in n, but the finite prefixes of 〈x〉b cannot, must
be a Liouville number.

5 Future Work

This paper has concerned the connection between Liouville numbers and the con-
struction of real numbers with great disparity in the computational complexity
needed to compute their expansion in different bases, and more generally the
computational complexity needed to obtain “good” rational approximations to
irrationals—indeed, the notion of expansion to integer bases is an example of a
very particular kind of approximation, but we expect the results of this paper to
hold, mutatis mutandis for other approximations with rationals as well. Further-
more, the set of Liouville numbers is almost certainly an over -approximation
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of the set of “poorly behaved” irrationals where conversion with polynomial
overhead is not in general possible; it is interesting to pinpoint a proper sub-
set of the Liouville numbers—hopefully connected to existing areas of number
theory—that precisely contain those numbers having egregious differences in the
complexity of their various integer base expansions.

Acknowledgments. We are grateful to Siddharth Bhaskar and the referees for useful
feedback, and to one referee in particular for pointing out the connection between
uniform sanity and E2-irrationality.
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Abstract. We introduce two essentially undecidable first-order theories
WT and T. The intended model for the theories is a term model. We
prove that WT is mutually interpretable with Robinson’s R. Moreover,
we prove that Robinson’s Q is interpretable in T.

1 Introduction

A first-order theory T is undecidable if there is no algorithm for deciding if T � φ.
If every consistent extension of an undecidable theory T also is undecidable, then
T is essentially undecidable.

We introduce two first-order theories, WT and T, over the language LT =
{⊥, 〈·, ·〉,�} where ⊥ is a constant symbol, 〈·, ·〉 is a binary function symbol
and � is a binary relation symbol. The intended model for these theories is a
term model: The universe is the set of all variable-free LT-terms. Each term is
interpreted as itself, and � is interpreted as the subterm relation (s is a subterm
of t iff s = t or t = 〈t1, t2〉 and s is a subterm of t1 or t2).

The non-logical axioms of WT are given by the two axiom schemes:

(WT1) s �= t

where s and t are distinct variable-free terms.

(WT2) ∀x[ x � t ↔
∨

s∈S(t)

x = s ]

where t is a variable-free term and S(t) is the set of all subterms of t. There
are no other non-logical axioms except those given by these two simple schemes,
and at a first glance WT seems to be a very weak theory. Still it turns out that
Robinson’s essentially undecidable theory R is interpretable in WT, and thus it
follows that also WT is essentially undecidable. The theory T is given by the
four axioms:

T1 ∀xy[ 〈x, y〉 �= ⊥ ]
T2 ∀x1x2y1y2[ 〈x1, x2〉 = 〈y1, y2〉 → ( x1 = y1 ∧ x2 = y2 ) ]
T3 ∀x[ x � ⊥ ↔ x = ⊥ ]
T4 ∀xyz[ x � 〈y, z〉 ↔ ( x = 〈y, z〉 ∨ x � y ∨ x � z ) ].
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It is not difficult to see that T is a consistent extension of WT. Thus, since WT
is essentially undecidable, we can conclude right away that also T is essentially
undecidable. Furthermore, since every model of the finitely axiomatizable theory
T is infinite, T cannot be interpretable in WT, and the obvious conjecture would
be that T is mutually interpretable with Robinson’s Q.

The Axioms of R

R1 n + m = n + m ; R2 n × m = nm ; R3 n �= m for n �= m ;
R4 ∀x[ x ≤ n x = 0 ∨ . . . ∨ x = n ] ; R5 ∀x[ x ≤ n ∨ n ≤ x ]

The Axioms of Q

Q1 ∀xy[ Sx = Sy x = y ] ; Q2 ∀x[ Sx �= 0 ] ; Q3 ∀x[ x �= 0 ∃y[ x = Sy ] ] ;
Q4 ∀x[ x + 0 = x ] ; Q5 ∀xy[ x + Sy = S(x + y) ] ; Q6 ∀x[ x × 0 = 0 ] ;
Q7 xy[ x Sy = (x y) + x ] ; Q8 xy[ x y z[ x + z = y ] ]

Fig. 1. The axioms of R are given by axiom schemes where n, m ∈ N and n denotes
the nth numeral, that is, 0 ≡ 0 and n + 1 ≡ Sn.

The seminal theories R and Q are theories of arithmetic. The theory R is given
by axiom schemes, and Q is a finitely axiomatizable extension of R, see Fig. 1
(Q is also known as Robinson arithmetic and is more or less Peano arithmetic
without the induction scheme). It was proved in Tarski et al. [9] that R and Q
are essentially undecidable. Another seminal essentially undecidable first-order
theory is Grzegorcyk’s TC. This is a theory of concatenation. The language is
{∗, α, β} where α and β are constant symbols and ∗ is a binary function symbol.
The standard TC model is the structure where the universe is {a, b}+ (all finite
nonempty strings over the alphabet {a, b}), ∗ is concatenation, α is the string a
and β is the string b. It was proved in Grzegorzyk and Zdanowski [3] that TC
is essentially undecidable. It was later proved that TC is mutually interpretable
with Q, see Visser [10] for further references. The theory WTC−ε is a weaker
variant of TC that has been shown to be mutually interpretable with R, see
Higuchi and Horihata [4] for more details and further references. The axioms of
TC and WTC−ε can be found in Fig. 2.

The overall picture shows three finitely axiomatizable and essentially unde-
cidable first-order theories of different character and nature: Q is a theory of
arithmetic, TC is a theory of concatenation, and T is a theory of terms (it may
also be viewed as a theory of binary trees). All three theories are mutually inter-
pretable with each other, and each of them come with a weaker variant given
by axiom schemes. These weaker variants are also essentially undecidable and
mutually interpretable with each other.

The theory T has, in contrast to Q and TC, a purely universal axiomatiza-
tion, that is, there are no occurrences of existential quantifiers in the axioms.
Moreover, its weaker variant WT has a neat and very compact axiomatization
compared to R and WTC−ε.
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The Axioms of WTC−ε

WTC−ε
1 ∀xyz x ∗ (y ∗ z) � t ∨ (x ∗ y) ∗ z � t

)
x ∗ (y ∗ z) = (x ∗ y) ∗ z

]
;

WTC−ε
2 ∀xyzu

[
x ∗ y = z ∗ u ∧ x ∗ y � t (x = z ∧ y = u) ∨

∃w[ (x ∗ w = z ∧ w ∗ u = y) ∨ (z ∗ w = x ∧ w ∗ y = u ]
) ]

;
WTC−ε

3 ∀xy[ α �= x ∗ y ] ; WTC−ε
4 ∀xy[ β �= x ∗ y ] ; WTC−ε

5 α �= β

where x � y is defined by

x = y ∨ ∃z1z2[ z1 ∗ x = y ∨ x ∗ z2 = y ∨ (z1 ∗ x) ∗ z2 = y ∨ z1 ∗ (x ∗ z2) = y ] .

The Axioms of TC

TC1 ∀xyz[ x ∗ (y ∗ z) = (x ∗ y) ∗ z ] ;
TC2 ∀xyzu

[
x ∗ y = z ∗ u (x = z ∧ y = u) ∨
∃w[ (x ∗ w = z ∧ w ∗ u = y) ∨ (z ∗ w = x ∧ w ∗ y = u ] ;

TC3 xy[ α = x y ] ; TC4 xy[ β = x y ] ; TC5 α = β

Fig. 2. WTC−ε
1 and WTC−ε

2 are axiom schemes where t ∈ {a, b}+ and t is a term
inductively defined by: a ≡ α, b ≡ β, au ≡ α ∗ u and bu ≡ β ∗ u.

Another interesting theory which is known to be mutually interpretable with
Q, and thus also with TC and T, is the adjunctive set theory AST. More on
AST and adjunctive set theory can found in Damnjanovic [2]. For recent results
related to the work in the present paper, we refer the reader to Jerabek [5],
Cheng [1] and Kristiansen and Murwanashyaka [7].

The rest of this paper is fairly technical, and we will assume that the reader is
familiar with first-order theories and the interpretation techniques introduced in
Tarski et al. [9]. In Sect. 2 we prove that R and WT are mutually interpretable. In
Sect. 3 we prove that Q is interpretable in T. We expect that T can be interpreted
in Q by standard techniques available in the literature.

2 R and WT Are Mutually Interpretable

The theory R− over the language of Robinson arithmetic is given by the axiom
schemes

R−
1 n + m = n + m ; R−

2 n × m = nm ; R−
3 n �= m for n �= m ;

R−
4 ∀x[ x ≤ n ↔ x = 0 ∨ . . . ∨ x = n ]

where n,m ∈ N. Recall that n denotes the nth numeral, that is, 0 ≡ 0 and
n + 1 ≡ Sn.

We now proceed to interpret R− in WT. We choose the domain I(x) ≡ x = x
(thus we can just ignore the domain). Furthermore, we translate the successor
function S(x) as the function given by λx.〈x, ⊥〉, and we translate the constant
0 as 〈⊥, ⊥〉. Let n� denote the translation of the numeral n. Then we have
n + 1� ≡ 〈n�, ⊥〉. It follows from WT1 that the translation of each instance of
R−
3 is a theorem of WT since m� and n� are different terms whenever m �= n.
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We translate x ≤ y as x � y ∧ x �= ⊥. It is easy to see that

WT � ∀x[ x � n� ∧ x �= ⊥ ↔
∨

s∈T (n)

x = s ] (1)

where T (n) = S(n�) \ {⊥} and S(n�) denotes the set of all subterms of n�. We
observe that T (n) = {k

� | k ≤ n} and that (1) indeed is the translation of the
axiom scheme R−

4 . Hence we conclude that the translation of each instance of
R−
4 is a theorem of WT.

Next we discuss the translation of +. The idea is to obtain n + i through a
formation sequence of length i. Such a sequence will be represented by a term
of the form

〈. . . 〈〈〈n�, 0�〉, 〈n + 1�
, 1�〉〉, 〈n + 2�

, 2�〉〉 . . . , 〈n + i
�
, i

�〉〉. (2)

Accordingly we translate x + y = z by the predicate add(x, y, z) given by the
formula

( y = 0� ∧ z = x ) ∨
{

y �= 0� ∧ ∃W
[

〈x, 0�〉 � W ∧

∀X ∀Y � y
[

〈X, Y 〉 � W ∧ Y �= y ∧ Y �= ⊥ →
(

〈〈X, ⊥〉, 〈Y, ⊥〉〉 � W ∧ ( 〈Y, ⊥〉 = y → 〈X, ⊥〉 = z )
) ] ] }

.

Lemma 1. For any m,n ∈ N, we have

WT � ∀z
[
add(n�,m�, z) ↔ z = n + m

� ]
.

Proof. First we prove that WT � add(n�,m�, n + m
�). This is obvious if m = 0.

Assume m > 0. Let

Sn
0 ≡ 〈n�, 0�〉 and Sn

i+1 ≡ 〈Sn
i , 〈n + i + 1

�
, i + 1

�〉〉

and observe that Sn
i is of the form (2). We will argue that we can choose the W

in the definition of add(x, y, z) to be the term Sn
m.

So let W = Sn
m. By the axioms of WT, we have 〈n�, 0�〉 � W . Assume

〈X, Y 〉 � W and Y �= y = m� and Y � y = m� and Y �= ⊥.

By the axioms of WT, we have that Y � m�, Y �= m� and Y �= ⊥ imply Y = k
�

for some k < m. Since 〈X, Y 〉 � W , we know by WT2 that 〈X, Y 〉 is one of
the subterms of W . By WT1 and the form of Sn

m, we conclude that X = n + k
�
.

Furthermore, the form of Sn
m and WT2 then ensures that 〈〈X, ⊥〉, 〈Y, ⊥〉〉 �

W = Sn
m. Moreover, if 〈Y, ⊥〉 = m�, then by WT1, we must have k = m− 1, and

thus, 〈X, ⊥〉 = 〈n + (m − 1)
�
, ⊥〉 = n + m

�. This proves that we can deduce
add(n�,m�, n + m

�) from the axioms of WT, and thus we also have

WT � ∀z
[

z = n + m
� → add(n�,m�, z)

]
.
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Next we prove that the converse implication add(n�,m�, z) → z = n + m
�

follows from the axioms of WT (and thus the lemma follows). This is obvious
when m = 0. Assume m �= 0 and add(n�,m�, z). Then we have W such that
〈n�, 0�〉 � W and

∀X ∀Y � m�
[

〈X, Y 〉 � W ∧ Y �= m� ∧ Y �= ⊥ →
(

〈〈X, ⊥〉, 〈Y, ⊥〉〉 � W ∧ ( 〈Y, ⊥〉 = m� → 〈X, ⊥〉 = z )
) ]

. (3)

Since 〈n, 0�〉 � W and (3) hold, we have 〈n + k + 1
�
, k + 1

�〉 � W for any
k < m. It also follows from (3) that z = n + k + 1

�
when m = k + 1. ��

It follows from the preceding lemma that there for any n,m ∈ N exists a
unique k ∈ N such that WT � add(n�,m�, k

�
). We translate x + y = z by the

predicate φ+ where φ+(x, y, z) is the formula
(

∃!u[add(x, y, u)] ∧ add(x, y, z)
)

∨
(

¬∃!u[add(x, y, u)] ∧ z = ⊥
)
. (4)

The second disjunct of (4) ensures the functionality of our translation, that is,
it ensures that WT � ∀xy∃!xφ+(x, y, z) (the same technique is used in [6]). By
Lemma 1, we have WT � φ+(n�,m�, n + m

�). This shows that the translation
of any instance of the axiom scheme R−

1 can be deduced from the axioms of WT.
We can also achieve a translation of x × y = z such that the translation of

each instance of R−
2 can be deduced from the axioms of WT. Such a translation

claims the existence of a term Sn
m where

Sn
1 ≡ 〈n�, 1�〉 and Sn

i+1 ≡ 〈Sn
i , 〈(i + 1)n

�
, i + 1

�〉〉

and will more or less be based on the same ideas as our translation of x+ y = z.
We omit the details.

Theorem 2. R and WT are mutually interpretable.

Proof. We have seen how to interpret R− in WT. It follows straightforwardly
from results proved in Jones and Shepherdson [6] that R− and R are mutually
interpretable. Thus R is interpretable in WT. A result of Visser [11] states that a
theory is interpretable in R if and only if it is locally finitely satisfiable, that is,
each finite subset of the non-logical axioms has a finite model. Since WT clearly
is locally finitely satisfiable, WT is interpretable in R. ��

3 Q is Interpretable in T

The language of the arithmetical theory Q− is {0, S,M,A} where 0 is a constant
symbol, S is a unary function symbol, and A and M are ternary predicate sym-
bols. The non-logical axioms of the first-order theory Q− are the the following:

A ∀xyz1z2[ A(x, y, z1) ∧ A(x, y, z2) → z1 = z2 ] ;
M ∀xyz1z2[ M(x, y, z1) ∧ M(x, y, z2) → z1 = z2 ] ;
Q1 ∀xy[ x �= y → Sx �= Sy ] ; Q2 ∀x[ Sx �= 0 ] ; Q3 ∀x[ x = 0 ∨ ∃y[ x = Sy ] ] ;
G4 ∀x[ A(x, 0, x) ] ; G5 ∀xyu[ ∃z[ A(x, y, z) ∧ u = Sz ] → A(x, Sy, u) ] ;
G6 ∀x[ M(x, 0, 0) ] ; G7 ∀xyu[ ∃z[ M(x, y, z) ∧ A(z, x, u) ] → M(x, Sy, u) ] .



68 L. Kristiansen and J. Murwanashyaka

Svejdar [8] proved that Q− and Q are mutually interpretable. We will prove that
Q− is interpretable in T.

The first-order theory T+ is T extended by the two non-logical axioms

T5 ∀x[ x � x ] and T6 ∀xyz[ x � y ∧ y � z → x � z ].

Lemma 3. T+ is interpretable in T.

Proof. We simply relativize quantification to the domain

I = { x | x � x ∧ ∀uv[ u � v ∧ v � x → u � x ] } .

Suppose x1, x2 ∈ I. We show that 〈x1, x2〉 ∈ I. Since 〈x1, x2〉 = 〈x1, x2〉,
we have 〈x1, x2〉 � 〈x1, x2〉 by T4. Suppose now that u � v ∧ v � 〈x1, x2〉. We
need to show that u � 〈x1, x2〉. By T4 and v � 〈x1, x2〉, at least one of the
following three cases holds: (a) v = 〈x1, x2〉, (b) v � x1, (c) v � x2. Case (a):
Since u � v and v = 〈x1, x2〉, we have u � 〈x1, x2〉 by our logical axioms. Case
(b): u � v ∧ v � x1 implies u � x1 since x1 ∈ I. By T4, we have u � 〈x1, x2〉.
Case (c): We have u � 〈x1, x2〉 by an argument symmetric to the one used in
Case (b). Hence, ∀uv[ u � v ∧ v � 〈x1, x2〉 → u � 〈x1, x2〉 ].

This proves that I is closed under 〈·, ·〉. It follows from T3 that ⊥ ∈ I, and
thus I satisfies the domain condition. Clearly, the translation of each non-logical
axiom of T+ is a theorem of T. ��

We now proceed to interpret Q− in T+. We choose the domain N given by

N(x) ≡ x �= ⊥ ∧ ∀y � x[ y = ⊥ ∨ ∃z[ y = 〈z, ⊥〉 ] ] .

Lemma 4. We have (i) T+ � N(〈⊥, ⊥〉), (ii) T+ � ∀x[N(x) → N(〈x, ⊥〉)] and
(iii) T+ � ∀yz[ N(y) ∧ z � y → ( z = ⊥ ∨ N(z) ) ].

Proof. It follows from T1, T3 and T4 that (i) holds. In order to see that (ii)
holds, assume N(x) (we will argue that N(〈x, ⊥〉) holds). Suppose y � 〈x, ⊥〉.
Now, N(〈x, ⊥〉) follows from

y = ⊥ ∨ ∃z[ y = 〈z, ⊥〉 ]. (5)

Thus it is sufficient to argue that (5) holds. By T4, we know that y � 〈x, ⊥〉
implies y = 〈x, ⊥〉 ∨ y � x ∨ y � ⊥. The case y = 〈x, ⊥〉: We obviously have
∃z[ y = 〈z, ⊥〉 ] and thus (5) holds. The case y � x: (5) holds since N(x) holds.
The case y � ⊥: We have y = ⊥ by T3, and thus (5) holds. This proves (ii).

We turn to the proof of (iii). Suppose N(y) ∧ z � y (we show z = ⊥ ∨ N(z)).
Assume w � z. By T6, we have w � y, moreover, since N(y) holds, we have
w = ⊥ ∨ ∃u[w = 〈u, ⊥〉]. Thus, we conclude that

∀w � z[ w = ⊥ ∨ ∃u[ w = 〈u, ⊥〉 ] ]. (6)

Now
z = ⊥ ∨ ( z �= ⊥ ∧ ∀w � z[ w = ⊥ ∨ ∃u[ w = 〈u, ⊥〉 ] ] )

︸ ︷︷ ︸
N(z)

follows tautologically from (6). ��
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We interpret 0 as 〈⊥, ⊥〉. We interpret the successor function Sx as λx.〈x, ⊥〉.
To improve the readability we will occasionally write 0̇ in place of 〈⊥, ⊥〉, Ṡt in
place of 〈t, ⊥〉 and t ∈ N in place of N(t). We will also write ∃x ∈ N [ η ]
and ∀x ∈ N [ η ] in place of, respectively, ∃x[ N(x) ∧ η ] and ∀x[ N(x) → η ].
Furthermore, Qx1, . . . , xn ∈ N is shorthand for Qx1 ∈ N . . .Qxn ∈ N where Q
is either ∀ or ∃.

Lemma 5. The translations of Q1, Q2 and Q3 are theorems of T+.

Proof. The translation of Q1 is ∀x, y ∈ N [ x �= y → Ṡx �= Ṡy ]. By T2, we have
x �= y → Ṡx �= Ṡy for any x, y, and thus, the translation of Q1 is a theorem of
T+.

The translation of Q2 is ∀x ∈ N [ Ṡx �= 0̇ ]. Assume x ∈ N . Then we have
x �= ⊥, and by T2, we have Ṡn ≡ 〈x, ⊥〉 �= 〈⊥, ⊥〉 ≡ 0̇.

The translation of Q3 is ∀x ∈ N [ x = 0̇ ∨ ∃y ∈ N [ x = Ṡy ] ]. Assume x ∈ N ,
that is, assume

x �= ⊥ ∧ ∀y � x[ y = ⊥ ∨ ∃z[ y = 〈z, ⊥〉 ] ] . (7)

By T5, we have x � x. By (7) and x � x, we have

x �= ⊥ ∧ ( x = ⊥ ∨ ∃z[ x = 〈z, ⊥〉 ] )

and then, by a tautological inference, we also have ∃z[x = 〈z, ⊥〉]. Thus, we have
z such that 〈z, ⊥〉 ≡ Ṡz = x ∈ N . By Lemma 4 (iii), we have z = ⊥ ∨ z ∈ N .
If z = ⊥, we have x = 〈⊥, ⊥〉 ≡ 0̇. If z ∈ N , we have z ∈ N such that x = Ṡz.
Thus, T+ � ∀x ∈ N [x = 0̇ ∨ ∃y ∈ N [x = Ṡy]]. ��

Before we give the translation of A, we will provide some intuition. The
predicate A(a, b, c) holds in the standard model for Q− iff a + b = c. Let 0̃ ≡ 0̇
and ñ + 1 ≡ Ṡñ, and observe that a + b = c iff there exists an LT-term of the
form

〈. . . 〈〈〈⊥, 〈ã, 0̃〉〉, 〈ã + 1, 1̃〉〉, 〈ã + 2, 2̃〉〉 . . . , 〈ã + b, b̃〉〉 (8)

where c = a + b. We will give a predicate φA such that φA(ã, b̃, w) holds in T+

iff w is of the form (8). Thereafter we will use φA to give the translation ΨA of
A.

Let φA(x, y, w) ≡

( y = 0̇ → w = 〈⊥, 〈x, 0̇〉〉 ) ∧ ∃w′∃z ∈ N [ w = 〈w′, 〈z, y〉〉 ] ∧
∀u∀Y,Z ∈ N [ θA(u,w, Y, Z) ]

where θA(u,w, Y, Z) ≡

〈u, 〈Z, Y 〉〉 � w ∧ Y �= 0̇ →
∃v ∃Y ′Z ′ ∈ N

[
Z = ṠZ ′ ∧ Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉 ∧

( Y ′ = 0̇ → ( Z ′ = x ∧ v = ⊥ ) )
]

.
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The translation ΨA of A is ΨA(x, y, z) ≡

∃w
[

φA(x, y, w) ∧ ∃w′[ w = 〈w′, 〈z, y〉〉 ] ∧ ∀u[ φA(x, y, u) → u = w ]
]

.

Lemma 6.

T+ � ∀x ∈ N∀w[ φA(x, 0̇, w) ↔ w = 〈⊥, 〈x, 0̇〉〉 ] .

Proof. We assume x ∈ N and prove the equivalence

φA(x, 0̇, w) ↔ w = 〈⊥, 〈x, 0̇〉〉 (9)

The left-right direction of (9) follows straightforwardly from the definition of φA.
To prove the right-left implication of (9), we need to prove φA(x, 0̇, 〈⊥, 〈x, 0̇〉〉).
It is easy to see that φA(x, 0̇, 〈⊥, 〈x, 0̇〉〉) holds if

∀u∀Y,Z ∈ N [ θA(u, 〈⊥, 〈x, 0̇〉〉, Y, Z) ] (10)

holds, and to show (10), it suffices to show that

x, Y, Z ∈ N and 〈u, 〈Z, Y 〉〉 � 〈⊥, 〈x, 0̇〉〉 and Y �= 0̇ (11)

is a contradiction. (If (11) is a contradiction, then (10) will hold as the antecedent
of θA will be false for all x, Y, Z ∈ N and all u.)

By T4 and 〈u, 〈Z, Y 〉〉 � 〈⊥, 〈x, 0̇〉〉 we have to deal with the following three
cases: (a) 〈u, 〈Z, Y 〉〉 = 〈⊥, 〈x, 0̇〉〉, (b) 〈u, 〈Z, Y 〉〉 � ⊥ and (c) 〈u, 〈Z, Y 〉〉 �
〈x, 0̇〉. Case: (a): We have Y = 0̇ by T2, but we have Y �= 0̇ in (11). Case (b):
We have 〈u, 〈Z, Y 〉〉 = ⊥ by T3, and this contradicts T1. Case (c): By T4, this
case splits into the three subcases: (a’) 〈u, 〈Z, Y 〉〉 = 〈x, 0̇〉, (b’) 〈u, 〈Z, Y 〉〉 � x
and (c’) 〈u, 〈Z, Y 〉〉 � 0̇. Case (a’): We have 〈u, 〈Z, Y 〉〉 = 〈x, 〈⊥, ⊥〉〉 since 0̇ is
shorthand for 〈⊥, ⊥〉. Thus, by T2, we have Z = ⊥ and Y = ⊥. This contradicts
Y,Z ∈ N . Case (b’): We have 〈u, 〈Z, Y 〉〉 � x and x ∈ N . By Lemma 4 (iii), we
have 〈u, 〈Z, Y 〉〉 = ⊥ or 〈u, 〈Z, Y 〉〉 ∈ N . Now, 〈u, 〈Z, Y 〉〉 = ⊥ contradicts T1.
Furthermore, by our definitions, 〈u, 〈Z, Y 〉〉 ∈ N implies that

∀y0 � 〈u, 〈Z, Y 〉〉[ y0 = ⊥ ∨ ∃z0[ y0 = 〈z0, ⊥〉 ] ].

By T5, we have 〈u, 〈Z, Y 〉〉 = ⊥ ∨ ∃z0[ 〈u, 〈Z, Y 〉〉 = 〈z0, ⊥〉 ], and this yields
a contradiction together with T1 and T2. Case (c’) is similar to Case (a’), but a
bit simpler. This completes the proof of the lemma. ��

Lemma 7.

T+ � ∀x, y ∈ N∀zww′[ w = 〈w′, 〈z, y〉〉 ∧ φA(x, y, w) →
φA(x, Ṡy, 〈w, 〈Ṡz, Ṡy〉〉) ].

Proof. We assume

x, y ∈ N and w = 〈w′, 〈z, y〉〉 and φA(x, y, w) . (12)
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We need to prove φA(x, Ṡy, 〈w, 〈Ṡz, Ṡy〉〉) ≡
( Ṡy = 0̇ → w = 〈⊥, 〈x, 0̇〉〉 ) ∧

∃w0∃z0 ∈ N [ 〈w, 〈Ṡz, Ṡy〉〉 = 〈w0, 〈z0, Ṡy〉〉 ] ∧
∀u∀Y, Z ∈ N [ θA(u, 〈w, 〈Ṡz, Ṡy〉〉, Y, Z) ] (13)

First we prove

z ∈ N and Ṡz ∈ N (14)

Since φA(x, y, w) holds by our assumptions (12), we have z1 ∈ N and w1 such
that w = 〈w1, 〈z1, y〉〉. We have also assumed w = 〈w′, 〈z, y〉〉. By T2, we have
z = z1, and thus z ∈ N . By Lemma 4 (ii), we have Ṡz ∈ N . This proves (14).

The second conjunct of (13) follows straightforwardly from (14). (simply let
z0 be Ṡz and let w0 be w). The first conjunct follows easily from T2 and the
assumption y ∈ N . Thus, we are left to prove the third conjunct of (13), namely

∀u∀Y,Z ∈ N
[

〈u, 〈Z, Y 〉〉 � 〈w, 〈Ṡz, Ṡy〉〉 ∧ Y �= 0̇ →
∃v ∃Y ′Z ′ ∈ N

[
Z = ṠZ ′ ∧ Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉 ∧

( Y ′ = 0̇ → ( Z ′ = x ∧ v = ⊥ ) )
] ]

(15)

In order to do so, we assume

Y,Z ∈ N and 〈u, 〈Z, Y 〉〉 � 〈w, 〈Ṡz, Ṡy〉〉 and Y �= 0̇ (16)

and prove

∃v ∃Y ′Z ′ ∈ N
[

Z = ṠZ ′ ∧ Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉 ∧
( Y ′ = 0̇ → ( Z ′ = x ∧ v = ⊥ ) )

]
. (17)

By our assumptions (16), we have 〈u, 〈Z, Y 〉〉 � 〈w, 〈Ṡz, Ṡy〉〉, and then T4

yields three cases: (a) 〈u, 〈Z, Y 〉〉 = 〈w, 〈Ṡz, Ṡy〉〉, (b) 〈u, 〈Z, Y 〉〉 � w and (c)
〈u, 〈Z, Y 〉〉 � 〈Ṡz, Ṡy〉. We prove that that (17) holds in each of these three
cases.

Case (a): By T2, we have u = w, Z = Ṡz and Y = Ṡy. By (14), we have z ∈ N .
By (12), we have y ∈ N . Moreover, by (12), we also have u = w = 〈w′, 〈z, y〉〉.
Thus there exist v and Y ′, Z ′ ∈ N such that

Z = ṠZ ′ ∧ Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉 .

If y = 0̇, we must have 〈v, 〈z, y〉〉 = w = 〈⊥, 〈x, 0̇〉〉 since φA(x, y, w) holds by
our assumptions (12). By T2, this implies z = x and v = ⊥. This proves that
(17) holds in Case (a).

Case (b): By our assumptions (12), we have φA(x, y, w), and thus we also
have θA(u,w, Y, Z) ≡

〈u, 〈Z, Y 〉〉 � w ∧ Y �= 0̇ →
∃v ∃Y ′Z ′ ∈ N

[
Z = ṠZ ′ ∧ Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉) ∧

( Y ′ = 0̇ → ( Z ′ = x ∧ v = ⊥ ) )
]
. (18)
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We are dealing with a case where the antecedent of (18) holds, and thus (17)
holds.

Case (c): This case is not possible. By T4, this case splits into the subcases:
(a’) 〈u, 〈Z, Y 〉〉 = 〈Ṡz, Ṡy〉, (b’) 〈u, 〈Z, Y 〉〉 � Ṡz and (c’) 〈u, 〈Z, Y 〉〉 � Ṡy.
We prove that each of these subcases contradicts our axioms. Case (a’): Recall
that Ṡy is shorthand for 〈y, ⊥〉. Thus, by T2, we have Y = ⊥. This contra-
dicts the assumption (12) that Y ∈ N . Case (b’): By Lemma 4 (iii), we have
〈u, 〈Z, Y 〉〉 = ⊥ ∨ N(〈u, 〈Z, Y 〉〉). Now, 〈u, 〈Z, Y 〉〉 = ⊥ contradicts T1. Further-
more, N(〈u, 〈Z, Y 〉〉) implies that there is z0 such that 〈u, 〈Z, Y 〉〉 = 〈z0, ⊥〉.
By T2, we have 〈Z, Y 〉 = ⊥. This contradicts T1. Case (c’) is similar to Case
(b’). This proves that (17) holds, and thus we conclude that the lemma holds. ��

Lemma 8.

T+ � ∀xy ∈ N∀w[ φA(x, Ṡy, w) →
∃u ∈ N∃w′[ w = 〈w′, 〈u, Ṡy〉〉 ∧ φA(x, y, w′) ] ].

Proof. Let x, y ∈ N and assume φA(x, Ṡy, w). Thus, we have w′ and z ∈ N such
that

w = 〈w′, 〈z, Ṡy〉〉 and ∀u∀Y,Z ∈ N [ θA(u,w, Y, Z) ] (19)

Use the assumptions (19) to prove that φA(x, y, w′) ≡

( y = 0̇ → w′ = 〈⊥, 〈x, 0̇〉〉 ) ∧ ∃w′′∃z ∈ N [ w′ = 〈w′′, 〈z, y〉〉 ] ∧
∀u∀Y,Z ∈ N [ θA(u,w′, Y, Z) ] (20)

holds. We omit the details. ��

Lemma 9. The translations of A, G4 and G5 are theorems of T+.

Proof. The translation of the axiom A is

∀x, y, z1, z2 ∈ N [ ΨA(x, y, z1) ∧ ΨA(x, y, z2) → z1 = z2 ] .

Assume ΨA(x, y, z1) and ΨA(x, y, z2). Then it follows straightforwardly from the
definition of ΨA and T2 that z1 = z2. Hence the translation is a theorem of T+.

The translation of G4 is ∀x ∈ N [ΨA(x, 0̇, x)], that is

∀x ∈ N∃w
[

φA(x, 0̇, w) ∧ ∃w′[ w = 〈w′, 〈x, 0̇〉〉 ] ∧
∀u[ φA(x, 0̇, u) → u = w ]

]
.

We have

T+ � φA(x, 0̇, 〈⊥, 〈x, 0̇〉〉) and T+ � ∀u[φA(x, 0̇, u) → u = 〈⊥, 〈x, 0̇〉〉

by Lemma 6, and it easy to see that the translation of G4 is a theorem of T+.
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The translation of G5 is

∀x, y, u ∈ N [ ∃z ∈ N [ ΨA(x, y, z) ∧ u = Ṡz ] → ΨA(x, Ṡy, u) ] . (21)

In order to prove that (21) can be deduced from the axioms of T+, we assume
ΨA(x, y, z) ∧ u = Ṡz. Then we need to prove ΨA(x, Ṡy, Ṡz) ≡

∃w
[

φA(x, Ṡy, w) ∧ ∃w′[ w = 〈w′, 〈Ṡz, Ṡy〉〉 ] ∧
∀u[ φA(x, Ṡy, u) → u = w ]

]
. .(22)

By our assumption ΨA(x, y, z) there is a unique w1 such that φA(x, y, w1) and
w1 = 〈w0, 〈z, y〉〉 for some w0. By Lemma 7, we have φA(x, Ṡy, 〈w1, 〈Ṡz, Ṡy〉〉).
Thus, we have w2 such that φA(x, Ṡy, w2) and w2 = 〈w1, 〈Ṡz, Ṡy〉〉. It is easy to
see that (22) holds if w2 is unique. Thus we are left to prove the uniqueness of
w2, more precisely, we need to prove that

∀W2[ φA(x, Ṡy,W2) → W2 = w2 ] . (23)

In order to prove (23), we assume φA(x, Ṡy,W2) (we will prove W2 = w2 =
〈w1, 〈Ṡz, Ṡy〉〉). By our assumption φA(x, Ṡy,W2) and Lemma 8, we have u0 ∈
N and W1 such that W2 = 〈W1, 〈u0, Ṡy〉〉 and φA(x, y,W1). We have argued
that there is a unique w1 = 〈w0, 〈z, y〉〉 such that φA(x, y, w1) holds. By this
uniqueness, we have W1 = w1 = 〈w0, 〈z, y〉〉. So far we have proved

w2 = 〈
w1

︷ ︸︸ ︷
〈w0, 〈z, y〉〉 , 〈Ṡz, Ṡy〉 〉 and W2 = 〈

W1
︷ ︸︸ ︷
〈w0, 〈z, y〉〉 , 〈u0, Ṡy〉 〉

and then we are left to prove that u0 = Ṡz. By our assumption φA(x, Ṡy,W2),
we have v and Z ′, Y ′ ∈ N such that u0 = ṠZ ′, Ṡy = ṠY ′ and W1 = 〈v, 〈Z ′, Y ′〉〉.
Thus, 〈v, 〈Z ′, Y ′〉〉 = 〈w0, 〈z, y〉〉. By T2, we have z = Z ′, and thus, u0 = ṠZ ′ =
Ṡz. This proves that (23) holds. ��

We will now give the translation ΨM of M . Let φM (x, y, w) ≡

( y = 0̇ → w = 〈⊥, 〈0̇, 0̇〉〉 ) ∧ ∃w′∃z ∈ N [ w = 〈w′, 〈z, y〉〉 ] ∧
∀u∀Y,Z ∈ N θM (u,w, Y, Z)

where θM (u,w, Y, Z) ≡

〈u, 〈Z, Y 〉〉 � w ∧ Y �= 0̇ → ∃v ∃Y ′, Z ′ ∈ N
[

ΨA(Z ′, x, Z) ∧
Y = ṠY ′ ∧ u = 〈v, 〈Z ′, Y ′〉〉 ∧ ( Y ′ = 0̇ → Z ′ = 0̇ ∧ v = ⊥ )

]
.

We let ΨM (x, y, z) ≡

∃w
[

φM (x, y, w) ∧ ∃w′[ w = 〈w′, 〈z, y〉〉 ∧ ∀u[ φM (x, y, u) → u = w ]
]

.
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The translations of M, G6 and G7 are

M ∀x, y, z1, z2 ∈ N [ ΨM (x, y, z1) ∧ ΨM (x, y, z2) → z1 = z2 ]
G6 ∀x ∈ N [ M(x, 0̇, 0̇) ]
G7 ∀x, y, u ∈ N [ ∃z ∈ N [ ΨM (x, y, z) ∧ ΨA(z, x, u) ] → ΨM (x, Ṡy, u) ] .

The proof of the next lemma follows the lines of the proof of Lemma 9. We omit
the details.

Lemma 10. The translations of M, G6 and G7 are theorems of T+.

Theorem 11. Q is interpretable in T.

Proof. It is proved in Svejdar [8] that Q is interpretable in Q−. It follows from
the lemmas above that Q− is interpretable in T+ which again is interpretable in
T. Hence the theorem holds. ��
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Abstract. It is known that while it is possible to convert between many
different representations of irrational numbers (e.g., between Dedekind
cuts and Cauchy sequences), it is in general not possible to do so subre-
cursively: conversions in general need to perform unbounded search. This
raises the question of categorizing the pairs of representations between
which either subrecursive conversion is possible, or is not possible.

The purpose of this paper is to prove the following positive result: for a
number of well-known representations (Beatty sequences, Dedekind cuts,
General base expansions, Hurwitz characteristics, and Locators) conver-
sion between the representations can be performed effectively and with
good subrecursive bounds.

Keywords: Computable analysis · Computational complexity ·
Subrecursion · Representation of irrational numbers

The benefits of various representations of real numbers by computable func-
tions is well-studied [10,16–18,21–23], and it is a standard result that the set
of “computable reals” is the same in most representations, but that uniformly
computable conversion between different representations is not always possi-
ble [18,22]. When computable conversion is possible, it is in general necessary
to perform unbounded search, and efficient, or subrecursive, conversion cannot
be done. For example, for any sufficiently large subrecursive class S of func-
tions satisfying mild conditions (e.g., the set of primitive recursive functions
or the set of Kalmár elementary functions), write SF ,SD, and SC for the sets
of irrational numbers representable by continued fractions, Dedekind cuts, and
rapidly converging Cauchy sequences computable by functions in S. Then it is
known that SF � SD � SC [13,21], and thus a fortiori there can in general
be no S-computable uniform conversion from the Cauchy representation to the
Dedekind cut representation, or from the Dedekind cut representation to the
continued fraction representation (for, if S is closed under composition, such
uniform conversions would imply SF = SD = SC).
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In this paper we derive upper bounds on the computational complexity of
conversion between various representations of irrational numbers where subre-
cursive conversion is possible. In general, an irrational α in some representation
R1 will be computable by some function f (e.g., for the continued fraction rep-
resentation [3; 7, 15, 1, 292, . . .] of π, f(0) = 3, f(1) = 7, . . .), and in some other
representation R2 by some function g (e.g., for the decimal expansion of π,
g(0) = 3, g(1) = 1, g(2) = 4); we are interested in the computational resources
required to compute g(n) when given access to the function f—in general this
will require both querying the function f a number of times and performing a
number of other operations, which we collectively call the “overhead” of conver-
sion. In addition to the intrinsic value of this is the consequence that, roughly,
if the overhead is a function in S, and S satisfies natural closure properties, it
follows that SR1 ⊆ SR2 .

The results of the paper are shown in the diagram below; all results in the
left-hand side of the diagram are proved explicitly in the paper. The arrows in
the right-hand side of the diagram are known from the literature [13–15]; we
defer more precise bounds on these (to wit, the existence of primitive recursive
bounds) to future research.

Dedekind cut

LocatorBeatty sequence

General base expansion Hurwitz characteristic

Complete left- and right- approximations

Continued fraction

Contractor Trace function

(Lem. 15 & 16)

(Lem. 19 & 20)

(Lem. 21 & 22)

(Lem. 17 & 18)

Subrecursive conversion impossible in general

Polynomial overhead between conversions Subrecursive conversion possible

For the purposes of the present paper, we are only interested in upper bounds
on conversion overhead. Our results show that conversion between Dedekind cuts
and other classic representations can be done with polynomial overhead (and,
by composition, conversion between any two of the considered representations in
the left-hand side of the diagram above can be done with exponential overhead).
More involved algorithms than the one we present here can indubitably be made,
forcing the upper bounds to be low-degree polynomials.

Certain prior results are known for the representations we consider, but at
a much coarser level of granularity; for example, Lehman [17] proved that the
Hurwitz characteristic of α is primitive recursive iff the Dedekind cut of α is
primitive recursive.

Remark 1. The overhead we consider is polynomial in the value of the index of
the desired approximation to an irrational; for example, if one wants to compute
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the nth digit in the base-b expansion of an irrational α ∈ (0, 1) from a Dedekind
cut of α, the overhead will be polynomial in n and b (as opposed to polynomial in
the binary representations of n and b). Note that accordingly, the conversions we
consider are thus computable in exponential time in the binary representations
of n and b.

Remark 2. As the representations in the above diagrams are most easily
expressed using functions, we believe that the natural formalizations for con-
versions are Turing machines with oracle access to the representations being
converted from. In other work on real number computation, there is a well-
developed notion of reducibility between representations that, roughly, requires
the representation to be written as an infinite string on one of the input tapes
of a type-2 Turing machine [6,12,22,24]. In that setting, for example, a function
f : Q ∩ [0, 1] −→ {0, . . . , b − 1} is most naturally expressed by imposing a com-
putable ordering on its domain (e.g., rationals appear in non-decreasing order of
their denominator), and the function values f(q) appear encoded as bit strings
in this order. We strongly conjecture that our results carry over to the type-2
setting mutatis mutandis.

1 Preliminaries

We assume basic familiary with computability and computational complexity
(standard textbooks are [1,8,20]). We write f(n) = poly(n) if f : N −→ N

is bounded above by a polynomial in n with positive integer coefficients, and
f(n) = polylog(n) if f is bounded above by a polynomial in log n with positive
integer coefficients.

We first define oracle machines in the usual way:

Definition 3. A (parameterized) function-oracle Turing machine is a (multi-
tape) Turing machine M = (Q, q0, F,Σ, Γ, δ) with initial state q0 ∈ Q, final
states F ⊆ Q, input and tape alphabets Σ and Γ (with Σ ⊆ Γ and { } ⊆ Γ \Σ),
and partial transition function δ such that M has a special query tape and two
distinct states qq, qa ∈ Q (the query and answer states).

To be executed, M is provided with a total function f : N −→ N (the oracle)
prior to execution on any input. We write Mf for M when f has been fixed–note
that Mf is then a usual (non-parameterized) function-oracle machine [8]. The
transition relation of Mf is defined as usual for Turing machines, except for the
state qq: If M enters state qq, let m be (a representation in the tape alphabet of)
the value currently on the query tape; M moves to state qa in a single step, and
the contents of the query tape are instantaneously changed to (the representation
in the tape alphabet of) f(m). The time- and space complexity of a function-
oracle machine is counted as for usual Turing machines, with the transition
between qq and qa taking |f(m)| time steps, and the space use of the query tape
after the transition being |f(m)|. The (input) size of a query is the number of
symbols on the query tape when M enters state qq.
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Function-oracle machines are in standard use in complexity theory of func-
tions on the set of real numbers (see, e.g., [11]).

Remark 4. All input and output tapes of Turing machines are assumed to have
alphabet {0, 1} in addition to the blank symbol. All work tapes have alphabet
{0, 1, 2} in addition to the blank symbol. Unless otherwise stated, all elements
of N, Z, and elements of any finite set, are assumed to be written on input,
query, and output tapes in their binary representation. Pairs (p, q) of integers
are assumed to be written using interleaved notation (i.e., the first bit of the
binary representation of p followed by the first bit of the binary representation
of q, and so forth). In case the representations have unequal length, the shortest
binary representation is padded with ‘2’ in the interleaving. Observe that the
length of the representation of a pair (p, q) is then O(log max{p, q}). All elements
p/q ∈ Q are assumed to be represented by the representation of (p, q).

As expected, using the semantic function of a function-oracle Turing machine
M with oracle to f as the oracle of another function-oracle Turing machine N
can be made to “cut out the middleman machine M”; that is, we could use a
single oracle machine with an oracle to f with bounds on time and oracle use
not much higher than the original machines M and N :

Proposition 5 (Compositionality). Let M and N be parameterized function-
oracle machines and let f be a map. Write g = φMf : A −→ B and
φNg : C −→ D for sets A,B,C,D (all representable by elements of {0, 1}+).
Let tM , tN , qM , qN , s : N −→ N be maps. Suppose that

1. Mf on input a ∈ A computes g(a) in time tM (|a|) using qM (|a|) queries to
f , and

2. Ng on input c ∈ C computes φNg in time tN (|c|) using qN (|c|) queries to g,
each of input size at most s(|c|).

Then there is a parameterized function-oracle machine P such that φf
P = φNg ,

and P f on input c ∈ C runs in time at most

O(qN (|c|)tM (s(|c|)) + tN (|c|))

using at most
qN (|c|)qM (s(|c|))

queries to f .

Proof. P is merely N with the original oracle tape replaced by two new work
tapes, a new oracle tape added, and each query to g replaced by execution of a
copy of M , with the new work tapes functioning as the “input” and “output”
tapes of the copy of M , and the new oracle tape as the oracle tape of the copy
of M . Every time N would query g, it writes the query a on the new “input”
work tape. The copy of M then computes g(a) using time at most tM (s(|c|))
with qM (s(|c|)) queries to f , hence a total of qN (|c|)qM (s(|c|)) queries to f . The
total time spent by P is the time spent by N plus at most tM (s(|c|)) steps per
oracle query, for a total of O(qN (|c|)tM (s(|c|)) + tN (|c|)) steps. ��
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In particular, function-oracle machines running in polynomial time and hav-
ing queries of polynomial input size are composable in the above way and yield
new machines running in polynomial time.

1.1 Farey Sequences and the Stern-Brocot Tree

A Farey sequence is a strictly increasing sequence of fractions between 0 and 1.
The Farey sequence of order k, denoted Fk, contains all fractions which when
written in their lowest terms, have denominators less than or equal to k.

Let a/b and c/d be fractions in their lowest terms. The fraction m(a/b, c/d) =
(a + c)/(b + d) is called the mediant of a/b and c/d. The ordered pair of two
consecutive fractions in a Farey sequence is called a Farey pair. It is easy to see
that a/b < m(a/b, c/d) < c/d if a/b �= c/d.

We arrange the fractions strictly between 0 and 1 in a binary search tree TF.

Definition 6. The Farey pair tree TF is the complete infinite binary tree where
each node has an associated Farey pair (a/b, c/d) defined by recursion on the
position σ ∈ {0, 1}∗ of a node in TF as follows: TF(ε) = (0/1, 1/1), and if TF(σ) =
(a/b, c/d), then TF(σ0) = (a/b, (a+c)/(b+d)) and TF(σ1) = ((a+c)/(b+d), c/d).
The depth of a node in TF is the length of its position (with the depth of the root
node being 0).

Abusing notation slightly, we do not distinguish between the pair TF(σ) =
(a/b, c/d) and the open interval (a/b, c/d).

The (left) Stern-Brocot tree1 TSB is the infinite binary tree obtained by the
Farey pair tree where each Farey pair (a/b, c/d) has been replaced by its mediant
m(a/b, c/d) = (a + c)/(b + d).

Thus, we have, for example:

TF(0) =
(

0
1
,
1
2

)
, TF(1) =

(
1
2
,
1
1

)
, TF(10) =

(
1
2
,
2
3

)
, TF(0000) =

(
0
1
,
1
5

)

We shall later need the two following ancillary propositions which we include
without proof.

Proposition 7. Let p/q ∈ Q∩ [0, 1] be a fraction in its lowest terms. Then, p/q
is a fraction in a Farey pair at depth at most p + q − 1 in TF.

Efficient computations of the elements of the Stern-Brocot tree (and hence
also the Farey pair tree) is possible [2,19]; for our purposes, we simply need the
following result:

Proposition 8. There is a Turing machine M such that for any σ ∈ {0, 1}∗,
φM (σ) = TF(σ) and M runs in time poly(1 + |σ|).
1 “Left” because the Stern-Brocot tree originally concerns the interval (0, 2) and we

are interested only in (0, 1) which corresponds to the left child of the Stern-Brocot
tree.
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2 Representations

We now introduce a number of well-known representations of real numbers. Rep-
resentations by Dedekind cuts [4,7], Beatty sequences [3]2, and Hurwitz charac-
teristics [9]3 were known in the 19th century or earlier. The representations by
locators and general base expansions are, to our knowledge, new, but natural. In
particular, the general base expansion yields the base-b expansions of α in any
integer base b ≥ 2 on demand; it turns out that this is the key to subrecursive
equivalence with Dedekind cuts (whereas the base-b expansion for any fixed b is
not subrecursively equivalent to Dedekind cuts, see [14]).

Definition 9. A function D : Q −→ {0, 1} is the (left) Dedekind cut of the
irrational number α when D(q) = 0 iff q < α.

Definition 10. A function B : N −→ Z is the (function computing the) Beatty
sequence of the irrational number α when

B(q)
q

< α <
B(q) + 1

q

Definition 11. A function Lα : Q × Q −→ {0, 1} is the locator of the real
number α when Lα(p, q) = 0 iff α is in the interval (p, q).

Definition 12. Let (0.D1D2 . . .)b be the base-b expansion of the real number α.
We define the function Eα

b : N −→ {0, . . . , b − 1} by Eα
b (0) = 0 and Eα

b (i) = Di

(for i ≥ 1).
A general base expansion of the real number α is the function

E : (N \ {0, 1}) × N −→ {0, . . . , b − 1}

where E(b, q) = Eα
b (q).

Definition 13. The Hurwitz characteristic of the irrational number α ∈ (0, 1)
is the map H : N −→ {0, 1}∗ such that H(0),H(1),H(2), . . . is a path in the
Stern-Brocot three, and: 4

α = lim
q→∞ m(TF(H(q))) = lim

q→∞ TSB(H(q))

2 Apparently, what is now known as Beatty sequences was used earlier by Bernard
Bolzano [5], whence this representation of reals could also be called Bolzano mea-
sures.

3 Use of the Hurwitz characteristic to represent numbers rather than a stepping stone
for other material is a much younger invention [17].

4 Strictly speaking, the classic Hurwitz characteristic corresponds to a path through
the full Stern-Brocot tree (not just the “left” tree as we consider here), and hence the
classic Hurwitz characteristic H ′ of α ∈ (0, 1) is the function defined by H ′(0) = 0
and H ′(q) = 0 · H(q − 1) for q > 0. This does not change our results in any material
way.
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3 Representations Subrecursively Equivalent
to Dedekind Cuts

The remainder of the paper is devoted to proving the following theorem:

Theorem 14. For each representation R below there is a parameterized
function-oracle machine M such that, for every irrational α between 0 and 1,
M when provided with an oracle to the R-representation of α, will compute the
Dedekind cut of R, and N when provided with an oracle to the Dedekind cut of
α, will compute the R-representation of α. Let n be the largest integer in the
input (i.e., n if domain of R is N, n = max{n1, n2} if the domain of R is N×N,
max{p, q} if the domain of R is Q, and max{p1, q1, p2, q2} if the domain of R
is Q × Q). Then, M and N will produce their output in time poly(n) using at
most poly(n) oracle calls of size at most poly(n).

– the locator of α
– the Beatty sequence of α
– the general base expansion of α
– the Hurwitz characteristic of α

Furthermore, conversion between any two of the above representations (e.g., from
the locator of α to the Beatty sequence of α) can be done by function-oracle
machines producing their output using exponential (in n) time, exponential (in
n) number of oracle calls, and exponential (in n) size of oracle calls.

The proof of conversion from and to Dedekind cuts is contained in the sequence
of lemmas below that all relate the various representations to the Dedekind
cut. All lemmas assert existence of parameterized function-oracle machines that
will convert from or to the Dedekind cut of α with polynomial overhead (often
with smaller overhead, whence the result follows a fortiori). The result that we
can convert between any of the representations using exponential overhead then
follows by an application of Proposition 5.

3.1 Conversion Between General Base Expansions and Dedekind
Cuts

Lemma 15. There is a parameterized function-oracle Turing machine M such
that if D : Q −→ {0, 1} is the Dedekind cut of any irrational number α ∈ (0, 1),
then φD

M : (N \ {0, 1}) × N −→ {0, . . . , b − 1} is the general base expansion of
α. Moreover, on input (b, n) ∈ (N \ {0, 1}) × N, MD runs in time O(b2poly(n)),
and uses at most n log2 b oracle calls, each of input size at most O(n log2 b) bits.

Proof. M constructs the sequence Eα
b (1), Eα

b (2), . . . , Eα
b (n) inductively by main-

taining an open interval Ii = (vi, wi) with rational endpoints vi, wi ∈ Q for each
i ∈ {0, . . . , n − 1} such that (i) α ∈ Ii, (ii) vi is a multiple of b−i, and (iii)
wi − vi = b−i. Initially, I0 = (0, 1). For each interval Ii, M splits Ii = (vi, wi)
into b equal-sized intervals

(vi, vi + b−(i+1)), . . . , (vi + (b − 1)b−(i+1), vi + b−i) = (vi + (b − 1)b−(i+1), wi)
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Observe that, for any interval (r1, r2), if D(r1) = D(r2) = 0, then α > r2, and
if D(r1) = D(r2) = 1, then α < r1 (and the case D(r1) = 1 ∧ D(r2) = 0 is not
possible). Thus, M can use D to perform binary search on (the endpoints of) the
above set of intervals to find the (necessarily unique) interval (vi + jb−(i+1), vi +
(j+1)b−(i+1)) that contains α (observe that, for this interval, D(vi+jb−(i+1)) = 0
and D(vi+(j+1)b−(i+1)) = 1). We then set (vi+1, wi+1) = (vi+jb−(i+1), vi+(j+
1)b−(i+1)). By construction, we have Eα(b, i+1) = j. Clearly, in each step i, there
are at most log2 b oracle calls to D, and the construction of each of the b intervals
and writing on the query tape can be performed in time polynomial in the
binary representation of the numbers involved, hence in time O(polylog(bi)) =
O(poly(i)polylog(b)). Hence, the total time needed to produce E(b, n) is at most
O(bnpoly(n)polylog(b)) = O(b2poly(n)) with at most n log2 b queries to D. In
each oracle call, the rational numbers involved are all endpoints of intervals
where the endpoints are sums of negative powers of b and where the exponent of
all powers are at most n. Hence, all oracle calls can be represented by rational
numbers using at most O(n log2 b) bits. ��

Lemma 16. There is a parameterized function-oracle Turing machine M such
that if E : (N \ {0, 1}) × N −→ {0, . . . , b − 1} is the general base expansion of α,
then φE

M : Q −→ {0, 1} is the Dedekind cut of α. Moreover, on input p/q ∈ Q,
ME runs in time O(log(max{p, q})), and uses exactly 1 oracle call of input size
at most O(log(q)).

Proof. On input p/q ∈ Q, M first checks if q = 1, and outputs 0 if p ≤ 0 and
1 if p ≥ 1. Otherwise, q > 1, and M computes E(q, 1); by definition, this is an
element of {0, . . . , q − 1}. Observe that D(p/q) = 0 iff p/q < α iff p ≤ E(q, 1).
Hence, M outputs 0 if p ≤ E(q, 1), and outputs 1 otherwise. M needs to write
the (representation of the) pair (q, 1) on the oracle tape and perform a single
comparison of numbers of magnitude at most max{p, q}, hence M uses time
O(log max{p, q}) for the comparison. M uses exactly one oracle call to E with
the pair (q, 1), the representation of which uses at most O(log q) bits. ��

3.2 Conversion Between Locators and Dedekind Cuts

Lemma 17. There is a parameterized function-oracle Turing machine M such
that if D : Q −→ {0, 1} is the Dedekind cut of any irrational number α ∈
(0, 1), then φD

M : Q × Q −→ {0, 1} is the locator of α. Moreover, on input
(p1/q1, p2/q2) ∈ Q × Q, MD runs in time O(log(max{p1, q1, p2, q2})), and uses
at most 2 oracle calls, each of input size at most O(log max{p1, q1, p2, q2}).

Proof. Let L be the locator of α. Observe that for any two rational num-
bers p1/q1, p2/q2 ∈ Q, we have α ∈ (p1/q1, p2/q2) iff L(p1/q1, p2/q2) = 0 iff
(D(p1/q1) = 0∧D(p2/q2) = 1). Hence, M simply queries D (using the binary rep-
resentations of the rationals) twice, outputs 1 if (D(p1/q1) = 0 ∧ D(p2/q2) = 1),
and outputs 1 otherwise. Clearly, the time needed is the time needed to transfer
p1/q1 and p2/q2 to the query tape plus some constant independent of the size of
the input, hence M uses time O(log(max{p1, q1, p2, q2})). ��
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Lemma 18. There is a parameterized function-oracle Turing machine M such
that if L : Q × Q −→ {0, 1} is the locator of any irrational number α ∈ (0, 1),
then φL

M : Q −→ {0, 1} is the Dedekind cut of α. Moreover, on input p/q ∈ Q,
ML runs in time O(polylog(max{p, q})), and uses at most 1 oracle call of input
size at most O(log max{p, q}).

Proof. Observe that for p/q ∈ (0, 1) ∩ Q, we have D(p/q) = L(p/q, 1). Hence,
M may, on input p/q simply perform a single query to L; this requires copying
its input to the oracle tape, i.e. only linear time in the size of the represen-
tation of the input. By convention, the input p/q is representable in at most
O(log max{p, q}) bits. ��

3.3 Conversion Between Beatty Sequences and Dedekind Cuts

Lemma 19. There is a parameterized function-oracle Turing machine M such
that if D : Q −→ {0, 1} is the Dedekind cut of any irrational number α ∈ (0, 1),
then φD

M : N −→ Z is the Beatty sequence of α. Moreover, on input n ∈ N, MD

runs in time O(polylog(n)), and uses at most �log n oracle calls to D, each of
input size at most O(log n).

Proof. On input n, M finds the least i ∈ {1, . . . , n} such that D( i
n ) = 1. As

D( i
n ) = 1 and j > i implies D( j

n ) = 1, the least i can be found by binary
search, halving the search range in each step5. This can be done by maintaining
two integers l and u ranging in {1, . . . , n}, and requires a maximum of log n
halving steps. In each halving step, M finds the midpoint m between l and u,
writes its binary representation on the query tape, queries D, and records the
answer. Then, l and u are updated using basic binary arithmetic operations
on integers, represented by at most O(log n) bits—if D(m/n) = 1, u := m,
and if D(m/n) = 0, l := m. Clearly, in each step, the arithmetic and update
operations can be performed in time polynomial in the size of the representation
of the integers, hence in time polylog(n). As (i − 1)/n < α < i/n, we have
B(n) = i − 1, and MD thus returns i − 1. ��
Lemma 20. There is a parameterized function-oracle Turing machine M such
that if B : N −→ Z is the Beatty sequence of any irrational number α ∈ (0, 1),
then φB

M : Q −→ {0, 1} is the Dedekind cut of α. Moreover, on input p/q ∈ Q,
MB runs in time O(log(max{p, q})), and uses exactly one oracle call of input
size O(log q).

Proof. Observe that the Dedekind cut D of α satisfies D(p/q) = 0 if p ≤ B(q),
and D(p/q) = 1 if p > B(q). Thus, M may perform the oracle call B(q) just
once, resulting in an integer B(q) (where B(q) ∈ {0, 1 . . . , q−1}). The comparison
p ≤ B(q) can be performed bitwise using the binary representations of p and
B(q) which is clearly linear in log(max{B(q), p}) ≤ log max{p, q}. Writing q on
the oracle tape clearly also takes time linear in log q. ��
5 Observe that a brute-force search is also possible, yielding at most n oracle calls

with input size at most O(log n) and obviating the need to reason about arithmetic
operations.
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3.4 Conversion Between Hurwitz Characteristics and Dedekind
Cuts

Lemma 21. There is a parameterized function-oracle Turing machine M such
that if H : N −→ {0, 1}∗ is the Hurwitz characteristic of any irrational number
α ∈ (0, 1), then φH

M : Q −→ {0, 1} is the Dedekind cut of α. Moreover, on input
p/q ∈ Q, MH runs in time poly(max{p, q}), and uses exactly one oracle call of
input size at most O(log max{p, q}).

Proof. On input p/q ∈ Q (where we assume wlog. that p/q is reduced to lowest
terms), M computes H(p + q) (using polylog(max{p, q}) operations to compute
the binary representation of p + q, and then performing a single oracle call;
note that the result of the oracle H(p + q) is a bit string of length exactly
p + q = poly(max{p, q}). M then computes TF(H(p + q)) (by Proposition 8 this
can be done in time poly(1 + |H(p + q)|) = poly(max{p, q})) to obtain a Farey
pair (a/b, c/d) such that a/b < α < c/d. By Proposition 7, any reduced fraction
p/q occurs as one of the fractions in a Farey pair in TF at depth at most p+q−1,
and thus exactly one of (i) p/q ≤ a/b and (ii) c/d ≤ p/q must hold. Observe
that D(p/q) = 0 iff p/q ≤ a/b. Whether (i) or (ii) holds can be tested in time
O(log max{a, b, c, d, p, q}). It is an easy induction on the depth d to see that a
numerator or denominator in any fraction occurring in a Farey pair at depth
d in TF is at most 2d. Hence, max{a, b, c, d, p, q} ≤ 2p+q, and the test can thus
be performed in time O(p + q) = O(max{p, q}). Thus, M needs a total time of
poly(max{p, q}). ��

Lemma 22. There is a parameterized function-oracle Turing machine M such
that if D : Q −→ {0, 1} is the Dedekind cut of any irrational number α ∈ (0, 1),
then φD

M : N −→ {0, 1}∗ is the Hurwitz characteristic of α. Moreover, on input
n ∈ N, MD runs in time poly(n), and uses exactly n oracle calls, each of input
size at most O(n).

Proof. On input n, M constructs a path of length n in the tree TSB corresponding
to the bit string H(n) by building the corresponding path in TF. M can do
this by starting at i = 0 and incrementing i, maintaining a current Farey pair
(ai/bi, ci/di) such that α ∈ (ai/bi; ci/di) for i = 0, . . . , n as the mediant of
(ai/bi, ci/di) gives rise to the two children pL = (ai/bi, (ai + ci)/(bi + di)) and
pR = ((ai + ci)/(bi + di), ci/di) of (ai/bi, ci/di) in TF. Because α is irrational,
it must be in exactly one of the open intervals (ai/bi, (ai + ci)/(bi + di)) and
((ai + ci)/(bi + di), ci/di), and thus (ai+1/bi+1, ci+1/di+1) must be either pL or
pR. Clearly, α ∈ (ai/bi, (ai+ci)/(bi+di)) iff D(ai+ci/bi+di) = 1 iff the ith bit of
H(n) is 0. Hence, M starts with (a0/b0, c0/d0) = (0/1, 1/1), and constructs the
n intervals (ai/bi, ci/di) for i = 1, . . . , n by computing the mediant and querying
D in each step. Observe that the query in step i is the (binary representation
of the) mediant of a Farey pair at depth i − 1, thus its denominator is bounded
above by 2i and its binary representation uses at most O(log 2i) = O(i) bits.

As the numerators and denominators at depth i in TF are of size at most 2i

(hence representable by i bits), computing the mediant at step i can be done
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in time at most O(i) = O(n) by two standard schoolbook additions, and the
step i contains exactly one query to D. Hence, the total time needed for M to
construct H(n) is at most O(npoly(n)) = poly(n), with exactly n oracle calls,
each of size at most O(log 2n) = O(n). ��

4 Conclusion and Future Work

We have analyzed conversions between representations equivalent to Dedekind
cuts, and we have seen that we can convert efficiently between any two such
representations (Theorem 14) . We strongly conjecture that the same efficiency
is not possible between representations equivalent to continued fractions. Indeed,
we regard the representations equivalent to continued fractions to be the most
interesting and challenging ones from a mathematical point of view. Among these
representations we find the trace functions and the contractors (see the figure
on Page 2). A function T : Q → Q is a trace function for the irrational number
α when |α − r| > |α − T (r)|. A function F : [0, 1] → (0, 1) is a contractor if
we have |F (r1) − F (r2)| < |r1 − r2| for any rationals r1, r2 where r1 �= r2.
Both trace functions and contractors can be converted to (and from) continued
fractions without unbounded search, and converting from a contractor to a trace
function is easy as it can be proved that every contractor is a trace function.
But conversely, we believe that it is not possible to convert a trace function to
a contractor within reasonably small time or space bounds.

Conversions between representations equivalent to rapidly converging Cauchy
sequences also deserve a further study. One such representation will be base-2
expansions over the digits 0 (zero), 1 (one) and 1 (minus one). In this represen-
tation, the rational number 1/4 can be written as 0.01, but also as 0.11. Another
interesting representation are the fuzzy Dedekind cuts. A fuzzy Dedekind cut for
an irrational number α is a function D : Z×N → {0, 1} satisfying (i) D(p, q) = 0
implies α < (p + 1)/q and (ii) D(p, q) = 1 implies (p − 1)/q < α. Thus, each
irrational α will have (infinitely) many fuzzy Dedekind cuts. If D is a fuzzy cut
for α and we know that D(3, 8) = 0, then we know that α lies below 4/8 (but we
do not know if α lies below 3/8). Moreover, if we also know that D(6, 16) = 1,
then we know that α lies in the interval (3/8 − 1/16, 3/8 + 1/8) (but we do not
know if α lies below or above 3/8).

Finally, some well-known representations are not subrecursively equivalent
to any of the three representations above, for example the base-b representation
for any integer base b ≥ 2. It is possible to convert a Dedekind cut to a base-b
expansion and a base-b expansion into a Cauchy sequence without unbounded
search, but not the other way around [14,21]. It is interesting to investigate the
set of representations subrecursively equivalent to such expansions.

Acknowledgment. We are grateful for the meticulous comments of one of the refer-
ees; these have helped to significantly improve the paper.
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Abstract. An iterated uniform finite-state transducer (iufst) operates
the same length-preserving transduction, starting with a sweep on the
input string and then iteratively sweeping on the output of the previ-
ous sweep. The iufst accepts or rejects the input string by halting in an
accepting or rejecting state along its sweeps. We consider both the deter-
ministic (iufst) and nondeterministic (niufst) version of this device. We
show that constant sweep bounded iufsts and niufsts accept all and
only regular languages. We study the size cost of removing nondeter-
minism as well as sweeps on constant sweep bounded niufsts, and the
descriptional power of constant sweep bounded iufsts and niufsts with
respect to classical models of finite-state automata. Finally, we focus on
non-constant sweep bounded devices, proving the existence of a proper
infinite nonregular language hierarchy depending on the sweep complex-
ity both in the deterministic and nondeterministic case. Also, we show
that the nondeterministic devices are always more powerful than their
deterministic variant if at least a logarithmic number of sweeps is given.

Keywords: Iterated transducers · State complexity · Sweep
complexity · Language hierarchies

1 Introduction

The notion of an iterated uniform finite-state transducer (iufst) has been intro-
duced in [13] and can be described as a finite transducer that iteratively sweeps
from left to right over the input tape while performing the same length-preserving
transduction at each sweep. In particular, the output of the previous sweep is
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taken as input for every new transduction sweep. (Throughout the paper, the
attribute “uniform” indicates that the transduction is identical at each sweep:
the transduction always starts from the same initial state on the leftmost tape
symbol, and operates the same transduction rules at each computation step.)
This model is motivated by typical applications of transducers or cascades of
transducers, where the output of one transducer is used as the input for the next
transducer. For example, finite-state transducers are used for the lexical anal-
ysis of computer programs and the produced output is subsequently processed
by pushdown automata for the syntactical analysis. In [7], cascades of finite-
state transducers are used in natural language processing. Another example is
the Krohn-Rhodes decomposition theorem which shows that every regular lan-
guage is representable as the cascade of several finite-state transducers, each one
having a “simple” algebraic structure [8,10]. Finally, it is shown in [6] that cas-
cades of deterministic pushdown transducers lead to a proper infinite hierarchy
in between the deterministic context-free and the deterministic context-sensitive
languages with respect to the number of transducers involved.

In contrast to all these examples and other works in the literature (see, e.g.,
[5,16,18]), where the subsequently applied transducers are in principle different
and not necessarily length-preserving, the model of iufsts introduced in [13]
requires that the same transducer is applied in every sweep and that the trans-
duction is deterministic and length-preserving. More precisely, an iufst works
in several sweeps on a tape which initially contains the input string concate-
nated with a right endmarker. In every sweep, the finite-state transducer starts
in its initial state at the first tape cell, is applied to the tape, and prints its
output on the tape. The input is accepted or rejected, if the transducer halts
in an accepting or rejecting state. In [13], iufsts both with a constant number
and a non-constant (in the length of the input) number of sweeps are investi-
gated. In the former case, it is possible to characterize exactly the set of regular
languages. Thus, tight upper and lower bounds for converting iufsts into deter-
ministic finite automata (dfas) and vice versa are established. Furthermore, as
always done for several models (see, e.g., [1–3]), the state complexity of language
operations, that is, the costs in terms of the number of states needed for union,
intersection, complementation, and reversal, is investigated in depth. Finally, the
usually studied decidability questions such as emptiness, finiteness, equivalence,
and inclusion are proved to be NL-complete, showing that these questions have
the same computational complexity as for dfas. For the case of a non-constant
number of sweeps, the situation is quite different. It is shown that a logarith-
mic number of sweeps is sufficient to accept unary non-semilinear languages,
while with a sublogarithmic number of sweeps only regular languages can be
accepted. Moreover, the existence of a finite hierarchy with respect to the num-
ber of sweeps is obtained. Finally, all usually studied decidability questions are
shown to be undecidable and not even semidecidable for iufsts performing at
least a logarithmic number of sweeps.
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In this paper, we enhance the model of iufsts by nondeterminism, thus
obtaining their nondeterministic version (niufsts). As in [13], we are interest
in niufsts exhibiting both a constant and non-constant number of sweeps.

Constant sweep bounded niufsts are proved to accept exactly regular lan-
guages. So, their ability of representing regular languages in a very succinct
way turns out to be worth investigating, as well as comparing such an ability
with that of other more traditional models of finite-state automata. This type
of investigation, whose importance is witnessed by a well consolidated trend in
the literature, focuses on the size of formalisms for representing languages and
is usually referred to as descriptional complexity. Being able to have “small”
devices representing/accepting certain languages, leads to relevant consequences
either from a practical point of view (less hardware needed to construct such
devices, less energy absorption, less cooling problems, etc.), and from a the-
oretical point of view (higher manageability of proofs and representations for
languages, reductions of difficult problems on general computing devices to the
same problems on simpler machines, etc.). The reader is referred to, e.g., [11],
for a thoughtful survey on descriptional complexity and its consequences.

Non-constant sweep bounded niufsts are then studied for their computa-
tional power, i.e., the ability of accepting language families. In particular, such
an ability is related to the number of sweeps as a function of the input length.

After defining niufsts in Sect. 2, we discuss in detail an example that demon-
strates the size advantages of niufsts with a constant number of sweeps in com-
parison with its deterministic variant and the classical models of deterministic
and nondeterministic finite automata (nfas). Precisely, we exhibit a language
accepted by a niufst such that any equivalent iufst requires exponentially more
states and sweeps, while any equivalent nfa (resp., dfa) requires exponentially
(resp., double-exponentially) more states.

In Sect. 3, we study size advantages of niufsts with a constant number of
sweeps in more generality. By evaluating the state cost of sweep removal, we show
that any niufst featuring n states and k sweeps can be simulated by an nk-
state nfa, and hence by a 2nk

-state dfa as well. Next, we exhibit a unary (resp.,
binary) language witnessing the obtained size blow-up for turning a constant
sweep niufst into an equivalent nfa (resp., dfa) is unavoidable.

In the last two sections, we consider niufsts with a non-constant number
of sweeps. First, we establish in Sect. 4 an infinite proper hierarchy with respect
to the number of sweeps. Interestingly, this result also extends the known finite
hierarchy in the deterministic case to an infinite hierarchy.

Finally, we study in Sect. 5 the question of whether the nondeterministic
model is more powerful than the deterministic model. We get that the question
can be answered in the affirmative if at least a logarithmic number of sweeps is
provided. Moreover, we show that nondeterminism cannot be matched in power
by the deterministic paradigm even if a sublinear number of sweeps is given.
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2 Definitions and Preliminaries

We denote the set of positive integers and zero by N. Given a set S, we write 2S

for its power set and |S| for its cardinality. Let Σ∗ denote the set of all words
over the finite alphabet Σ. The empty word is denoted by λ, and Σ+ = Σ∗ \{λ}.
The length of a word w is denoted by |w|.

Roughly speaking, an iterated uniform finite-state transducer is a finite-state
transducer which processes the input in multiple passes (also sweeps). In the first
pass it reads the input word followed by an endmarker and emits an output word.
In the following passes it reads the output word of the previous pass and emits a
new output word. The number of passes taken, the sweep complexity, is given as
a function of the length of the input. Here, we are interested in weak processing
devices: we will consider length-preserving finite-state transducers, also known
as Mealy machines [17], to be iterated.

Formally, we define a nondeterministic iterated uniform finite-state trans-
ducer (niufst) as a system T = 〈Q,Σ,Δ, q0,�, δ, F+, F−〉, where Q is the set
of internal states, Σ is the set of input symbols, Δ is the set of output symbols,
q0 ∈ Q is the initial state, � ∈ Δ\Σ is the endmarker, F+ ⊆ Q is the set of accept-
ing states, F− ⊆ (Q\F+) is the set of rejecting states, and δ : Q×(Σ∪Δ) → 2Q×Δ

is the transition function, which is total on (Q \ (F+ ∪ F−)) × (Σ ∪ Δ) and such
that the endmarker is emitted only if it is read (i.e., no transition (q,�) ∈ δ(p, x)
is allowed, with x �= �). The niufst T halts whenever the transition function
is undefined (which may happen only for states from F+ ∪ F−) or T enters an
accepting or rejecting state at the end of a sweep. Since transduction is applied
in multiple passes, that is, in any but the initial pass it operates on an output of
the previous pass, the transition function depends on input symbols from Σ ∪Δ.
We denote by T (w) the set of possible outputs produced by T in a complete
sweep on input w ∈ (Σ ∪ Δ)∗.

A computation of the niufst T on input w ∈ Σ∗ consists of a sequence of
words w1, . . . , wi, wi+1, . . . ∈ (Σ ∪Δ)∗ satisfying w1 ∈ T (w�) and wi+1 ∈ T (wi)
for i ≥ 1. The computation is halting if there exists an r ≥ 1 such that T halts
on wr, thus performing r sweeps. The input word w ∈ Σ∗ is accepted by T
if all computations on w are halting and at least one computation halts in an
accepting state. The input word w ∈ Σ∗ is rejected if all computations on w
are halting and none of the computations halts in an accepting state. Indeed,
the output of the last sweep is not used. The language accepted by T is the set
L(T ) ⊆ Σ∗ defined as L(T ) = {w ∈ Σ∗ | w is accepted by T }.

A niufst is said to be deterministic (iufst) if and only if |δ(p, x)| ≤ 1,
for all p ∈ Q and x ∈ (Σ ∪ Δ). In this case, we simply write δ(p, x) = (q, y)
instead of δ(p, x) = {(q, y)} assuming that the transition function is a mapping
δ : Q × (Σ ∪ Δ) → Q × Δ.

We chose to designate our transductors as “uniform” since they perform the
same transduction at each sweep: they always start from the same initial state
on the leftmost tape symbol, operating the same transduction rules at every
computation step. Yet, we quickly observe that a niufst is clearly a restricted
version of a linear bounded automaton (see, e.g., [12]). So, any language accepted
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by a niufst is context-sensitive. We leave it as an open problem to exhibit
context-sensitive languages which cannot be accepted by any niufst.

Given a function s : N → N, a niufst is said to be of sweep complexity s(n)
whenever it accepts or rejects any word of length n in at most s(n) sweeps. In
this case, we use the notation s(n)-niufst. Note that sweep complexity requires
that any input is either accepted or rejected, that is, the niufst always halts. It
is easy to see that a 1-iufst (resp., 1-niufst) is actually a deterministic (resp.,
nondeterministic) finite automaton (dfa and nfa, respectively).

Throughout the paper, two accepting devices are said to be equivalent if and
only if they accept the same language.

2.1 Accepting Languages by Iterated Transductions: An Example

In order to clarify the notion of acceptance by iterated transduction, we propose
a language and design several accepting devices for such a language. For any
integer k ≥ 2, we define the block language

Bk = {u1#u2# · · · #um | ui ∈ {0, 1}k, m > 1, ∃i < m : ui = um }.

To accept Bk by a dfa, 22
k+1 states are necessary and sufficient. On the other

hand, an exponentially smaller nfa A may accept Bk as follows:

1. In a first phase, on each block in the input string, A stores the block in its
finite control and then nondeterministically decides whether to keep the block
or to ignore it. Along this phase, A checks the correct block structure of the
input so far scanned as well. This phase takes 2k+1 states.

2. Once A decides to keep a block, say u, in its finite control, a second phase
starts in which A scans the rest of the input checking the correct block struc-
ture and guessing another block w to be matched symbol-by-symbol against
u. If matching is successful and w is the last block, then A accepts. This phase
takes 2k+1 · (k + 1) states.

Globally, the nfa A features 2k+1 + 2k+1 · (k + 1) = 2k+1 · (k + 2) states.
Indeed, A can also be seen as a 2k+1 · (k + 1)-state 1-niufst which outputs

the scanned symbol at each step. However, paying by the number of sweeps (see,
e.g., [15]), we can build a k-niufst T for Bk with only O(k) states. Informally:

1. In a first sweep, T checks the correct block structure of the input string,
nondeterministically chooses two blocks to be matched symbol-by-symbol,
and compares the first symbol of the two blocks by storing the first symbol
of the first block in its finite control and replacing these two symbols with a
blank symbol.

2. At the ith sweep, T checks the ith symbol of the two blocks chosen in the
first sweep by storing and blank-replacing symbols as explained at the previ-
ous point. To distinguish the first sweep (where both nondeterministic block
choices and symbol comparisons take place) from the others (where only
symbol comparisons take place), a special symbol can replace the first input
symbol at the beginning of the first sweep.
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It is not hard to see that O(k) states are needed to check input formatting along
the first sweep, and that a constant number of states suffices to blank-replacing
and comparing input symbols. Indeed, after k sweeps all nondeterministically
chosen blocks symbols are compared so that T may correctly accept or reject.
This gives the claimed state and sweep bounds for T .

We remark that: (i) a 2k(k + 4)-state 2k-iufst is designed in [13] for Bk,
(ii) 22

k+1 states are necessary and sufficient to accept Bk by a dfa, and that
(iii) nk states are sufficient for a dfa to simulate an n-state k-iufst [13]. These
facts, together with above designed O(k)-states k-niufst, show that niufsts
can be exponentially more succinct than iufsts either in the number of states,
or the number of sweeps, or possibly both. Indeed, we also have that niufsts
can be exponentially more succinct than nfas and double-exponentially more
succinct than dfas.

In the next section, we approach more generally the analysis of the descrip-
tional power of niufsts with respect to their deterministic counterparts and
classical finite-state models.

3 Reducing Sweeps and Removing Nondeterminism

Let us begin by showing how to reduce sweeps from niufsts and evaluate the
state cost of reduction. We will then use this construction to reduce to one the
sweeps of constant sweep bounded niufst, thus obtaining equivalent nfas whose
number of states will be suitably bounded.

Theorem 1. Let n, k > 0 be integers. Every n-state k-niufst (resp., k-iufst)
can be converted to an equivalent ni-state �k

i -niufst (resp., �k
i -iufst).

Proof. Let T = 〈Q,Σ,Δ, q0,�, δ, F+, F−〉 be a k-niufst with |Q| = n. To
simplify the proof, we show how to transform a k-iufst into an equivalent
�k
2 -niufst T ′ with n2 states, i.e, we prove the theorem for i = 2. We sup-

pose that δ is completely defined. The opposite case is briefly discussed at the
end of the proof.

The idea is to simulate two consecutive sweeps of T in one sweep. To this
aim, the set of states of T ′ is defined as Q2, its initial state is the pair (q0, q0),
and the set of output symbols is Δ2. In order to define the transition function δ′

of T ′, we remark that: (i) the simulation of the first two sweeps takes place on
the input string in Σ∗, while (ii) the simulations for the other sweeps take place
on output strings in (Δ2)∗ but only the second component of scanned symbols
from Δ2 is to be considered for the computation in T ′. Therefore, we use σ to
denote either a symbol from Σ for situation (i) and the second component of a
symbol from Δ2 for situation (ii) and, with a slight abuse of notation, we define
δ′ : Q2 × (Σ ∪ Δ) → 2Q2×Δ2

as

δ′((s1, s2), σ) � ((t1, t2), (τ1, τ2)) ⇔ δ(s1, σ) � (t1, τ1) and δ(s2, τ1) � (t2, τ2).
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A state (f1, f2) ∈ Q2 is accepting (resp., rejecting) in T ′ whenever either f1 ∈ F+

(resp., f1 ∈ F−) or f2 ∈ F+ but f1 �∈ F− (resp, f2 ∈ F− but f1 �∈ F+). The
reader may verify that the n2-state �k

2 -niufst T ′ is equivalent to T .
In case δ of T is not completely defined (and this may happen only on states

in F+ ∪ F−), the number of states of T ′ does not increase as well. In fact,
suppose T halts in q ∈ F+ ∪ F− in the middle of the input string on the jth
sweep. We define δ′ in such a way that the simulation of the jth sweep of T
remains in q at every step and after the endmarker scanning as well.

It is not hard to see that this construction can be suitably adapted to merge
2 < i ≤ k sweeps into one, thus yielding a niufst equivalent to T featuring �k

i 
sweeps and ni states. Yet, it is also easy to see that the construction preserves
determinism. ��

The sweep reduction presented in Theorem 1 can be directly used to trans-
form constant sweep bounded niufsts into equivalent nfas:

Theorem 2. Let n, k > 0 be integers. Every n-state k-niufst can be converted
to an equivalent nfa with at most nk states.

Proof. Given an n-state k-niufst, by Theorem 1 we can obtain an equivalent
nk-state 1-niufst which is actually a nfa. ��

We obtain the optimality of the state blow-up in Theorem 2 by establishing
an optimality condition for the size cost of sweep reduction proved in Theorem 1.
To this aim, for n, k > 0, let the unary language

Ln,k = { ac·nk | c ≥ 0 }.

In [13], an n-state k-iufst for Ln,k is provided, whereas any equivalent dfa or
nfa needs at least nk states. By using Ln,k as witness language, we can show

Theorem 3. Let n, k, i > 0 be integers such that i divides k. There exists an
n-state k-niufst T such that any equivalent k

i -niufst T ′ cannot have less than
ni states.

Proof. Suppose by contradiction, we can always design T ′ with k
i sweeps and

s < ni states. By using our construction in Theorem 1, we can obtain from T ′

an equivalent 1-niufst A with s
k
i < nk states. Clearly, having a single sweep,

A is a nfa. By using this approach on the n-state k-iufst above recalled for the
language Ln,k, we could obtain an equivalent nfa featuring less than nk states,
a contradiction. ��

By Theorem 3, one may easily obtain

Corollary 4. For any integers n, k > 0, there exists an n-state k-niufst which
cannot be converted to an equivalent nfa with less than nk states.

We conclude this section by discussing the optimal size cost of turning con-
stant sweep bounded niufsts into dfas, i.e., the cost of removing both nonde-
terminism and sweeps at once:
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Theorem 5. Let n, k > 0 be integers. Every n-state k-niufst can be converted
to an equivalent dfa with at most 2nk

states.

Proof. The result follows by first converting, according to Theorem 2, the
n-state k-niufst into an equivalent nk-state nfa which, in turn, is con-
verted to an equivalent 2nk

-state dfa by the usual powerset construction (see,
e.g., [12]) ��

The optimality of the size blow-up in Theorem 5 can be proved by considering
the following language for any n, k > 1:

En,k = { vbw | v, w ∈ {a, b}∗, |w| = c · nk for c > 0 }.

Theorem 6. For any integers m > 1 and k > 0, there is an m-state k-niufst
which cannot be converted to an equivalent dfa with less than 2(m−1)k states.

Proof. As above quoted, an n-state k-niufst is given in [13], for the unary
language Ln,k = { ac·nk | c ≥ 0 }. Such a device can be trivially converted to an
n-state k-niufst T for the binary language {w ∈ {a, b}∗ | |w| = c·nk for c > 0}.
We use T as a module for designing an (n + 1)-state k-niufst T ′ accepting the
language En,k. Informally, T ′ uses a separate state to scan the input string
during the first sweep and, upon reading a symbol b, it nondeterministically
decides whether to keep on reading the input string or to call the n-state k-iufst
module T which checks whether the length of the remaining part of the input
string is a multiple of nk.

On the other hand, by suitably using pigeonhole arguments (see, e.g., [4]),
we can show that any dfa for En,k needs at least 2nk

states. In fact, suppose by
contradiction a dfa A exists, accepting En,k with less than 2nk

states. Clearly, by
counting arguments, there exist α, β ∈ {a, b}∗ such that α �= β, |α| = |β| = nk,
and the computation of A on both α and β ends up in the same (non-accepting)
state q. Since α �= β, without loss of generality, we can assume that α = xay
and β = vbw, for suitable x, y, v, w ∈ {a, b}∗ such that |x| = |v| and |y| = |w|.

Now, consider any string z ∈ {a, b}∗ satisfying |z| = nk − |y| = nk − |w|,
and let the strings α′ = α z and β′ = β z. Note that 1 ≤ |z| ≤ nk, and so
|α′| = |β′| ≤ 2 · nk. Therefore, the acceptance/rejection by A on α′ and β′ is
only due to the symbol at position |x| + 1 = |v| + 1. This clearly means that the
string α′ does not belong to En,k while β′ does. However, in the computation
on both α′ and β′, the dfa A reaches the same state q before consuming z and,
being deterministic, the same state after consuming z. Hence, either A accepts
both the two strings or rejects both of them, a contradiction. ��

4 An Infinite Sweep Hierarchy

We now consider s(n)-niufsts where s(n) is a non-constant function. In what
follows, by log n we denote the logarithm of n to base 2. In [13] it is proved
that o(log n) sweep bounded iufsts accept regular languages only, and that
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such a logarithmic sweep lower bound is tight for nonregular acceptance. Then,
a three-level proper language hierarchy is established, where O(n) sweeps are
better than O(

√
n) sweeps which, in turn, are better than O(log n) sweeps for

iufst. Here, we extend the hierarchy to infinitely many levels for both iufsts
and niufsts.

Let f : N → N be a non-decreasing function. Its inverse is defined as the
function f−1(n) = min{m ∈ N | f(m) ≥ n }. To show an infinite hierarchy
dependent on some resources, where the limits of the resources are given by
some functions in the length of the input, it is often necessary to control the
lengths of the input so that they depend on the limiting functions. Usually, this
is done by requiring that the functions are constructible in a desired sense. The
following notion of constructibility expresses the idea that the length of a word
relative to the length of a prefix is determined by a function. A non-decreasing
computable function f : N → N is said to be constructible if there exists an
s(n)-iufst T with s(n) ∈ O(f−1(n)) and an input alphabet Σ ·∪ {a}, such that

L(T ) ⊆ { amv | m ≥ 1, v ∈ Σ∗, |v| = f(m) }
and such that, for all m ≥ 1, there exists a word of the form amv in L(T ). The
s(n)-iufst T is said to be a constructor for f .

Since constructible functions describe the length of the whole word dependent
on the length of a prefix, it is obvious that each constructible function must be
greater than or equal to the identity. In order to show that the class of functions
that are constructible in this sense is sufficiently rich to witness an infinite dense
hierarchy, we next show that it is closed under addition and multiplication:

Proposition 7. Let f : N → N and g : N → N be two constructible functions.
Then the functions f + g and f · g are constructible as well.

In [13] it is shown that the unary language Luexpo = { a2k | k ≥ 0 } is accepted
by some s(n)-iufst with s(n) ∈ O(log n). The construction can straightfor-
wardly be extended to show that the function f(n) = 2n is constructible. More-
over, again from [13], we know that Leq = {u$v | u ∈ Σ∗

1 , v ∈ Σ∗
2 , and |u| = |v| }

is a language accepted by some s(n)-iufst with s(n) ∈ O(n), where Σ1 is an
alphabet not containing the symbol $ and Σ2 is an arbitrary alphabet. Even
in this case, only a tiny modification shows that the identity function is con-
structible. These facts together with Proposition 7 yield, in particular, that the
function f(n) = nx for all x ≥ 1 is constructible.

In what follows, we use the fact, proved in [13], that the copy language with
center marker {u$u | u ∈ {a, b}∗ } is accepted by some s(n)-iufst satisfying
s(n) ∈ O(n). The next theorem provides some language that separates the levels
of the hierarchy.

Theorem 8. Let f : N → N be a constructible function, Tf be a constructor
for f with input alphabet Σ ·∪ {a}, and b be a new symbol not belonging to
Σ ·∪ {a}. Then language Lf = {u$uv | u ∈ {a, b}∗, v ∈ Σ∗, a2|u|+1v ∈ L(Tf ) }
is accepted by some s(n)-iufst with s(n) ∈ O(f−1(n)).
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Proof. Since the suffix v of a word w ∈ Lf must be the suffix of some word
a2|u|+1v in L(Tf ), we have that |v| = f(2|u|+1) and |w| = 2|u|+1+f(2|u|+1).
Since s(n) is claimed to be of order O(f−1(n)), an s(n)-iufst accepting Lf may
perform at least O(2|u| + 1) many sweeps.

An s(n)-iufst T accepting Lf essentially combines in parallel the acceptors
for the copy language with center marker and the language L(Tf ). To this end, T
establishes two tracks in its output. On the first track T simulates an acceptor for
the copy language {u$u | u ∈ {a, b}∗ }, where the first symbol of Σ (i.e., the first
symbol of v) acts as endmarker. In this way, the prefix u$u is verified. The result
of the computation is written to the output track. This task takes O(2|u| + 1)
sweeps. On the second track T simulates the constructor Tf , where all symbols
up to the first symbol of Σ (i.e., all symbols of the prefix u$u) are treated as
input symbols a. In this way, T verifies that |v| = f(2|u| + 1). The result of the
computation is written to the output track. This task takes O(2|u| + 1) sweeps.

Finally, T rejects whenever one of the above simulations ends rejecting.
Instead, T accepts if it detects positive simulation results of the two tasks on
the tracks. ��

To show that the witness language Lf of Theorem 8 is not accepted by any
s(n)-niufst with s(n) ∈ o(f−1(n)), we use Kolmogorov complexity and incom-
pressibility arguments. General information on this technique can be found, for
example, in the textbook [14, Ch. 7]. Let w ∈ {a, b}∗ be an arbitrary binary
string. Its Kolmogorov complexity C(w) is defined to be the minimal size of a
binary program (Turing machine) describing w. The following key fact for using
the incompressibility method is well known: there exist binary strings w of any
length such that |w| ≤ C(w).

Theorem 9. Let f : N → N be a constructible function, Tf be a constructor
for f with input alphabet Σ ·∪ {a}, and b be a new symbol not belonging to
Σ ·∪ {a}. Then language Lf = {u$uv | u ∈ {a, b}∗, v ∈ Σ∗, a2|u|+1v ∈ L(Tf ) }
cannot be accepted by any s(n)-niufst with s(n) ∈ o(f−1(n)).

Proof. Contrarily, let us assume that Lf is accepted by some s(n)-niufst T =
〈Q,Σ ·∪ {a, b},Δ, q0,�, δ, F+, F−〉 with s(n) ∈ o(f−1(n)).

We choose a word u ∈ {a, b}∗ long enough such that C(u) ≥ |u|. Then, we
consider an accepting computation of T on u$uv, and derive a contradiction by
showing that u can be compressed via T . To this end, we describe a program P
which reconstructs u from a description of T , the length |u|, and the sequence of
the o(f−1(n)) many states q1, q2, . . . , qr entered along the accepting computation
at that moments in which T reads the first symbol after the $ along its o(f−1(n))
sweeps, n being the total length of the input.

Basically, the program P takes the length |u| and enumerates the finitely
many words u′v′ with u′ ∈ {a, b}|u|, v′ ∈ Σ∗, and |v′| = f(2|u| + 1). Then, for
each word in the list, it simulates by dovetailing all possible computations of T
on u′v′ and, in particular, it simulates o(f−1(n)) successive partial sweeps of T
on u′v′, where the ith sweep is started in state qi for 1 ≤ i ≤ r. If the simulation
ends accepting, we know that u$u′v′ belongs to Lf and, thus, u′ = u.
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Let us consider the size of P . Let |T | denote the constant size of the descrip-
tion of T , and |P | denote the constant size of the program P itself. The binary
description of the length |u| takes O(log(|u|)) bits. Each state of T can be encoded
by O(log(|Q|)) bits. So, we have

C(u) ∈ |P |+ |T |+O(log(|u|)+o(f−1(n)) ·O(log(|Q|)) = O(log(|u|))+o(f−1(n)).

Since n = 2|u| + 1 + f(2|u| + 1) and f(n) ≥ n, for all n ≥ 1, we have n ∈
Θ(f(2|u| + 1)). So, we can conclude that C(u) ∈ O(log(|u|)) + o(|u|) = o(|u|).
This contradicts our initial assumption C(u) ≥ |u|, for u long enough. Therefore,
T cannot accept Lf with sweep complexity o(f−1(n)). ��

Finally, we would like to remark that, due to our observation that all functions
f(n) = nx are constructible for x ≥ 1, it is an easy application of the above
theorems to obtain the following infinite hierarchies with regard to the number
of sweeps both in the deterministic and the nondeterministic case. Namely: For
every x ≥ 1 we have that the set of all languages that are accepted by s(n)-iufsts
(s(n)-niufsts) with s(n) ∈ O(n1/(x+1)) is properly included in the set of all
languages that are accepted by s(n)-iufsts (s(n)-niufsts) with s(n) ∈ O(n1/x).

5 Nondeterminism Beats Determinism on All Levels

We now turn to compare the computational power of iufsts and niufsts. Since
for sweep bounds of order o(log n) both variants accept regular languages only
(see [9,13]), it remains to consider sweep bounds beyond o(log n). Here, we will
show that there exist witness languages that are accepted by some nondeter-
ministic s(n)-niufst with s(n) ∈ O(log n), but cannot be accepted by any
deterministic s(n)-iufst with s(n) ∈ o(n), thus separating determinism from
nondeterminism for almost all levels of the sweep hierarchy.

For any integer k ≥ 1, let bink : {0, 1, 2, . . . , 2k−1} → {0, 1}k map any integer
in the range from 0 to 2k − 1 to its binary representation of length k, starting
from the left with the least significant bit and possibly completed with zeroes to
the right. E.g., bin4(5) = 1010 and bin4(12) = 0011. We consider the language

D = { akb2
k

bink(0)u0 bink(1)u1 · · · bink(2k − 1)u2k−1 bink(i)ui |
k ≥ 2, 1 ≤ i ≤ 2k − 1, uj ∈ {a, b}k for all 1 ≤ j ≤ 2k − 1 }.

Theorem 10. The language D can be accepted by an s(n)-niufst satisfying
s(n) ∈ O(log n).

Proof. We sketch the construction of an s(n)-niufst T that accepts D with
s(n) ∈ O(log n). The basic idea of the construction is to use two output tracks.
So, during its first sweep, T splits the input into two tracks, each one getting the
original input. In addition, T verifies if the structure of the input is correct, that
is, if the input is of the form a+b+0+{a, b}+({0, 1}+{a, b}+)+1+{a, b}+ with at
least two leading a’s. If the form is incorrect, T rejects.
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In subsequent sweeps, T behaves as follows. The original input on the first
track is kept but the symbols can be marked, while on the second track the
input is successively shifted to the right. More precisely, in any sweep the first
unmarked symbol a in the leading a-block is marked. In the following b-block,
every second unmarked symbol b is marked. In the further course of the sweep,
the leftmost unmarked symbol in any {0, 1}-block as well as in any {a, b}-block
is marked. On the second track, the input is shifted to the right by one symbol,
whereby the last symbol is deleted and some blank symbol is added at the left.

Let k ≥ 2 be the length of the leading a-block. When the last of its symbols
is marked, T checks in the further course of the sweep whether in the following b-
block exactly one symbol remains unmarked, and whether in all remaining blocks
the last symbol is being marked. Only in this case the computation continues.
In all other cases T halts rejecting.

From the construction so far, we derive that if the computation continues
then all but the second block have the same length, namely, length k. Moreover,
since in the second block every second unmarked symbol has been marked during
a sweep and one symbol is left, the length of the block is 2k.

Next, T continues to shift right the content of the second track until the
{0, 1}-blocks are aligned with their neighboring {0, 1}-blocks (except for the
last one). This takes other k sweeps. In the next sweep, T checks if the {0, 1}-
block on the second track is an integer that is one less the integer in the aligned
block on the first track. This can be done by adding one on the fly and comparing
the result with the content on the first track. Only if the check is successful, T
continues. Otherwise, it halts rejecting. In the former case, we get that the
sequence of {0, 1}-blocks are the numbers from 0 to 2k − 1 in ascending order.

In the next sweep, T guesses the {0, 1}-block that has to match the rightmost
{0, 1}-block and marks it appropriately. Finally, this block together with its
following {a, b}-block is symbolwise compared with the last {0, 1}-block together
with its following {a, b}-block in another 2k sweeps. To this end, note that T
can detect that the last block follows when it scans a {0, 1}-block consisting of
1’s only. For the comparison, the symbols can further be marked appropriately.

Now, T accepts only if the guessed {0, 1}-block together with its following
{a, b}-block match the last {0, 1}- and {a, b}-block. Otherwise T rejects. The
construction shows that for any word from D there is one accepting computation
and that only words from D are accepted. So, T accepts D.

Altogether, T performs at most 1+k +k +1+2k ∈ O(k) sweeps. The length
of the input is k + 2k + (2k + 1) · 2k = O(k2k). Since log(O(k2k)) ∈ O(k), the
niufst T obeys the sweep bound s(n) ∈ O(log n). ��

To see that the language D is not accepted by any s(n)-iufst with s(n) ∈
o(n), we use again Kolmogorov complexity and incompressibility

Theorem 11. The language D cannot be accepted by any s(n)-iufst satisfying
s(n) ∈ o(n).
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1 Introduction

Suppose we are given a collection of mathematical objects such as the class of
connected compact Polish groups or the set of all real numbers which are normal
to some base. Is there a reasonable classification of these objects (e.g. by invari-
ants)? One nice property expected from a useful classification is that it makes
the classified objects easier to handle algorithmically . Even if the general classi-
fication of a class of objects is impossible, sometimes there is a useful hierarchy
of objects in this class, e.g., the Cantor-Bendixson rank of a scattered Polish
space, the Ulm type of a reduced abelian p-group, etc. We would expect that the
algorithmic, algebraic, or topological complexity of objects increase from lower
to higher levels of a hierarchy. Can you make this intuition formal? Is it possi-
ble to formally measure the algorithmic complexity of a given classification or a
hierarchy, or perhaps show that there is no reasonable classification at all? Can
algorithmic tools help us to define useful hierarchies?

In the present article we discuss several recent works in computable analysis
which are related to classification. The main underlying theme here is applying
computability theory to a classification problem or a hierarchy; neither the prob-
lem nor the hierarchy has to be computability-theoretic. The discussed results
can be informally split into three categories:

I. Local effective classifications. Given some classical metric or Banach space
we ask which elements of the space satisfy a certain property. For example:
Which real numbers are normal? Which continuous functions are regular?
And so on.

II. Global effective classifications. How hard is it to classify, say, compact Polish
groups? What about compact Polish spaces? To answer these questions
formally we extend methods of computable structure theory to computable
separable spaces.

III. Applications of computability to hierarchies. Usually elements of higher lev-
els of a given hierarchy are expected to be more complex. Computability the-
ory can be used to make this intuition formal. Such results are clearly related
to (I), but there are also explicit connections with Weihrauch reducibility
and with theme II.
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These three themes above are closely related and no firm line can be drawn
between any two of them. We begin our discussion with the second global scheme
(II) and a certain related hierarchy. Then we discuss the local theme (I) and finish
with more on local hierarchies (III).

2 Global Effective Classifications

There has been a lot of applications of computability theoretic techniques
to classification problems in countable algebra; see [19,31]. A few years ago
Melnikov [26] proposed that methods of computable structure theory can be
extended to computable separable spaces. We will see that some of these meth-
ods can be used to measure the classification problems for classes of separable
spaces. We first look at the simpler case of Polish metric spaces, and then we
discuss Banach spaces and Polish groups.

Computable Structures. To apply methods of computable structure theory
we need to make the standard notion of a computable Polish space [5,34,37]
look more familiar to a computable algebraist. A structure on a Polish space
M = (M,d) is any map α : ω → M such that its range is a dense subset
of M. The open diagram D+(α) of a structure α : ω → M is the collection
of Gödel numbers of all elementary facts of the form d(α(i), α(j)) < r and
d(α(i), α(j)) > q which hold on M, where i, j range over ω and q, r over Q. We
say that α is computable if D+(α) is a computably enumerable set1.

We return to classification. Fix some class K of Polish spaces. First, suppose
our task is to classify computable members of K. Fix a uniformly computable
list of all partially computable structures on Polish spaces: α0, α1, α2, . . . , where
each computable structure αi is identified with its c.e. open diagram D+(αi).

Definition 1. The complexity of the classification problem for computable
members of K is measured using the following two index sets:

1. The characterisation problem for computable members of K:

I(K) = {e : αe ∈ K}.

2. The isomorphism problem for computable members of K:

E(K) = {(e, j) : e, j ∈ I(K) and cl(αe) ∼= cl(αj)},

where ∼= stands for isometric isomorphism. Computable members of a class K
of Polish metric spaces admit an effective classification (up to isometric isomor-
phim) if both I(K) and E(K) are hyperarithmetic.

1 A standard trick can be used to (computably) remove repetitions and replace α with
an injective α′; see, e.g., [20]. Thus, without loss of generality the map α : ω → M
will be assumed injective.
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Remark 2. Note that ∼= does not stand for computable isometric isomorphism. Of course, if we
wish to classify our spaces up to homeomorphism or quasi-isometry (etc.) then we should adjust the
interpretation of ∼= accordingly. Definition 1 is an adaptation of a similar method proposed in [19]
for countable discrete computable structures. Cenzer and Remmel [10] used index sets to measure
the complexity of various properties of Π0

1 -classes. Although there is not much in common between
their results and the theorems discussed in the present article, it is important that index sets had
been used in computable analysis long before us.

Relativisation. To extend these methods beyond computable Polish spaces we
use relativisation. A structure α : ω → M is computable relative to X if D+(α)
is computably enumerable relative to X. Using structures computable relative
to an oracle X, relativise the definitions of I(K) and E(K) to X; the resulting
sets will be denoted IX(K) and EX(K). Usually, when we establish that, say,
I(K) ∈ Σ0

n, we can apply relativisation to show IX(K) ∈ ΣX
n , and similarly for

EX(K). Recall this means that, for some recursive scheme R, we have

i ∈ IX(K) ⇐⇒ (∃x1) . . . (Qnxn)R(X;x1, . . . , xn, i),

where X is a set-parameter. It follows that the number of alternations of quan-
tifiers in (∃x1) . . . (Qnxn)R(X;x1, . . . , xn, i) is an invariant of the whole class.
This motivates the following:

Definition 3. We say that that K admits an effective classification if, for every
oracle X, both IX(K) and EX(K) belong to a some (fixed) level of the hyper-
arithmetical hierarchy relativised to X.

The First Results. Perhaps, the first non-trivial illustration of the proposed
approach to classification in the literature is the theorem below.

Theorem 4 (Melnikov and Nies [29]). The class Kcomp of compact Polish
metric spaces admits an effective classification.

The proof of Theorem 4 relies on ideas of of Gromov [21] and Lω1ω-
definability. The most important step of the proof is establishing that every
computable compact Polish metric space is Δ0

3-categorical ; the categoricity hier-
archy will be discussed in the next subsection. Theorem 4 contrasts with:

Theorem 5 (Nies and Solecki [33]). The characterisation problem for com-
putable locally compact Polish metric spaces is Π1

1 -complete.

It follows that for a given Polish space M, deciding if it is locally compact is as
hard as just checking the Π1

1 definition of local compactness. Thus, the class of
locally compact Polish metric spaces does not admit an effective classification.
The result formally confirms our intuition that locally compact spaces are very
hard to classify.

The Categoricity Hierarchy. We use the standard notion of a computable
map between computable Polish spaces; see, e.g., [26]. The definition below
extends the classical notion of computable categoricity [1] to Polish spaces.
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Definition 6 ([26]). A Polish space M is computably categorical if for any
two computable structures α and β on M there is an isometric isomorphism
between cl(α) and cl(β) computable with respect to α and β2.

Examples of computably categorical spaces include [26]: every Polish space
associated to a separable Hilbert space, Cantor space with the usual ultrametric,
and the Urysohn space. If we generalise Definition 6 by allowing the isomorphism
to be Δ0

α, the resulting notion of a Δ0
α-categorical space is a direct adaptation

of the classical notion of Δ0
α-categoricity from computable algebra [1].

How is this technical notion related to classification? If every member of K
is Δ0

α-categorical and I(K) is hyperarithmetical then E(K) is hyperarithmetical
too3. Our results tend to be easily relativizable to any oracle X, and thus both
IX(K) and EX(K) will usually be hyperarithmetical relative to X as well. This
approach was used by Melnikov and Nies [29] to prove Theorem 4. Clearly,
Δ0

α-categoricity induces a hierarchy, and using a transformation from graphs to
Polish spaces [20] it is not hard to show that the hierarchy is proper in general.

We will return to discussing Δ0
α-categorcity later. First we discuss another

natural relativisation of Definition 6. It reveals a connection between first-order
definability and computable categoricity of spaces, in the spirit of [1]. We say
that a computable Polish space M = cl(αi)i∈ω is relatively computably categor-
ical if any (not necessarily computable) structure (βi)i∈ω computes an isometry
from cl(βi)i∈ω onto cl(αi)i∈ω. Greenberg, Knight, Melnikov, and Turetsky [20]
showed:

Theorem 7. A computable Polish metric space M is relatively computably cat-
egorical iff for every ε ∈ Q it admits a c.e. ε-Scott family consisting of first-order
positive ∃-formulae4.

It is crucial in the proof of Theorem 7 that the positive ∃-formulae define
open sets.

Problem 8. Extend Theorem 7 to relative Δ0
α-categoricity. For that, an adequate

formal definition of relative Δ0
α-categoricity must be designed.

Banach spaces. All Banach spaces in this section are separable. What is the
most natural general approach to computability on Banach spaces? Pour El
and Richards [34] restrict themselves only to computable structures which also
compute the standard vector space operations. The well-known result of Mazur

2 Here cl stands for the completion operator. Recall that the inverse of a computable
surjective isometry is computable too, thus the notion is symmetric.

3 Since an isometric image of a complete metric space is closed, saying that a Δ0
α map

is “onto” is arithmetical.
4 This means that ε-automorphism orbits of tuples in M can be described by a (uni-

formly in ε) c.e. family of positive first-order existential positive formulae in the
language (d<r, d>r)r∈Q with finitely many “stable” parameters; a parameter is sta-
ble if there exist a ball such that any point from the ball can be used as a parameter
without changing the formula.
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and Ulam (can be found in [35]) implies that there is only one way to define
the operations consistently with a given norm so that we get a complete normed
space. Does the result of Mazur and Ulam hold computably? If the answer was
“yes” then the definition from Pour El and Richards [34] would be an overkill.
Interestingly, Melnikov and Ng [30] showed that the effective version of Mazur-
Ulam fails for the space of continuous functions on the unit interval.

Problem 9. Give an optimal effective analysis of Mazur-Ulam.

In the context of the present article, the above-mentioned result of Melnikov
and Ng justifies the use of the definition below which is of course equivalent to
the approach in Pour-El and Richards [34].

Definition 10. A separable Banach space B is computable if the associated
metric space admits a computable structure which computes the vector space
operations on B.

In the case of Banach spaces (over R) we modify Definitions 1 and 3 using
the natural enumeration of all (partially) computable countable normed spaces
B0, B1, . . .. The relativisation principle still applies to this approach. To save
space we omit the definition; see [6]. Now to the results.

Lebesgue Spaces. Suppose we are given a computable Banach space B. How
hard is it to determine whether B is a Lebesgue space? In other words, what
is the complexity of the characterisation problem (Definition 1) for Lebesgue
spaces? The crude upper bound involves searching for a (separable) measure
space Ω and a real p which makes the space look like Lp(Ω). The well-known
Kakutani–Bohnenblus characterisation of Lebesgue spaces in terms of Banach
lattices [4,22] does not seem to be of much help either. Brown, McNicholl and
Melnikov [6] have proven the following rather surprising result:

Theorem 11 (Brown et al. [6]). The characterisation problem for Lebesgue
spaces is Π0

3 .

How to reduce the unclassifiable brute-force complexity down to Π0
3? Using

a non-trivial and novel technique, McNicholl [24] proved that for a computable
real p, 
p is Δ0

2-categorical5. The proof of Theorem 11 extends these techniques
to arbitrary Lebesgue spaces and combines them with new ideas. We see that
Δ0

α-categoricity helps again, though indirectly.

Question 12 ([6]). Is the bound Π0
3 from Theorem 11 tight?

The main obstacle in simplifying the upper bound is related to:

5 In the case of Banach spaces, we of course must restrict Definition 6 to computable
structures which also compute the vector space operations. See [8,12] for further
results on categoricity of Lebesgue spaces.
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Question 13 (McNicholl). Suppose B ∼= Lp(Ω) is computable. Does p have to
be a computable real? If yes, is it uniformly computable6?

It also follows from the main results of [6] that the isomorphism problem for
computable Lebesgue spaces is arithmetical (see Remark 17). Although we do
not know if the upper bounds are tight if p is not held fixed, the results are
relativizable to any oracle. Thus, we have:

Corollary 14. Separable Lebesgue spaces are effectively classifyable.

Question 15. Estimate the complexity of the effective classification problem for:
(1) separable Hardy spaces, and (2) separable Sobolev spaces.

Question 16. For each n, is there Δ0
n+1-categorical but not Δ0

n-categorical
Banach space? Same for Polish groups7.

A Computable Characterisation of C[0,1]. Suppose we are given a descrip-
tion of a (separable) Banach space B. How hard is it to determine whether it is
isomorphic to some fixed Banach space C? Within the proposed framework, we
can set K = {C} and measure the complexity of the effective characterisation
problem {e : cl(Be) ∼= C}. For example, the separable Hilbert space 
2 admits a
low level arithmetical characterisation: use the parallelogram law and compute
a basis [34]. Also, various natural Lebesgue spaces such as 
3 admit arithmetical
characterisations, with some index sets complete at proper difference levels such
as d-Σ0

2 [6].

Remark 17. In effective algebra there are very few natural examples of index sets of structures
which are not complete at some level of the hyperarithmetical hierarchy; see, e.g., Problem 1 in [19].
Nonetheless, such estimates seem to be more common in computable analysis. For example, suppose
p ≥ 1 is a computable real other than 2. Then the isomorphism problem for the class of Lp spaces
is co-3-Σ0

3 -complete [6].

Recall that C[0, 1] is universal among all separable Banach spaces. Building
on the earlier work in [30] and [7], Franklin et al. [17] have recently announced
the following unexpected result:

Theorem 18 (Franklin et al. [17]). The Banach space C[0, 1] admits an effec-
tive (arithmetical) characterisation.

Again, the result can be relativised to any oracle, but here it is not that
important since C[0, 1] is computable. The main technical lemma in the proof
states that C[0, 1] is Δ0

5-categorical.

Question 19 Calculate optimal bounds for the characterisation problem and Δ0
n-

categoricity of C[0, 1].

6 Currently, the best known uniform upper bound is Δ0
2 [6]. McNicholl [25] has recently

announced a partial positive solution for the case when p > 2, but he also announced
that the uniformity of computing p fails. Thus, we conjecture that the upper bound
in Theorem 11 is tight.

7 Such examples exist for Polish spaces, as follows from [20].
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Polish Groups. Following Melnikov and Montalbàn [28], we say that a
(metrized) Polish group is computable if it admits a computable structure that
computes the standard · and −1 on the group8. Fix a uniform enumeration
(Ge)e∈ω of all partially computable Polish groups. The definitions of the char-
acterisation problem and the isomorphism problem (Definition 1) should be
adjusted accordingly. We note however that this approach seems best suited for
compact groups. This is because compactness and totality of a (potential) group
operation are both low-level arithmetical properties [27]. Thus, in the compact
case the index sets I(K) and E(K) will reflect the complexity of K rather than
some pathologies of coding.

Recall that compact Polish spaces admit an effective classification (Theo-
rem 4). How hard is it to classify compact Polish groups? Every compact Polish
group G contains the largest connected subgroup H which makes G/H profinite.
Thus, the classes of connected and profinite groups are central to the general
theory of Polish groups.

Theorem 20 (Melnikov [27]).

1. The characterisation problems for profinite and connected compact Polish
groups are both arithmetical.

2. The topological isomorphism problems for profinite abelian groups and for
connected compact abelian groups are both Σ1

1 -complete.

As usual, the result can be relativised to any oracle. It follows that recognising
whether a given group is profinite or connected compact is not that hard (Π0

2 -
and Π0

3 -complete, resp.), but the isomorphism problem is too hard even in the
abelian case. In contrast with the previous results, the main tool in the proof of
Thm 20 is not Δ0

α-categoricity9. Instead, Melnikov proves a computable version
of the celebrated Pontryagin duality which is then used to apply effective alge-
braic results [14,16] to topological groups. Provably, the duality is effective only
when passing from discrete to compact groups [27], but this half-effectivity was
sufficinent.

Problem 21. (1.) Study Δ0
α-categoricity of Polish groups. (2.) Measure the effec-

tive classification problem for natural subclasses of compact Polish groups. (3.)
What is the complexity of the Pontryagin dual of a computable compact con-
nected abelian group? (The profinite case is known.)

8 Computability of the metric is obviously not enough. Unlike the Banach space case,
there is nothing like the Mazur-Ulam theorem for topological groups. For example,
every separable profinite group is homeomorphic to the computable Cantor space,
but obviously not every profinite group is computable. Perhaps, computability of −1

can be dropped at least in some cases, but this has not yet been explored.
9 But there is again a tight connection with categoricity. Melnikov [27] showed that

the characterisation problem for computably categorical recursive profinite abelian
groups Π0

4 -complete; see [27] for the definitions.
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A Local Approach to Global Classification. We must emphasise that the
subdivision of the discussed results into local and global is somewhat subjec-
tive. For instance, Melnikov and Montalbán [28] have suggested an intermediate
approach. Recall that a transformation space is a Polish space together with
a smooth action of a Polish group on the space. The key observation is that
the standard S∞-transformation space of countable structures in a given finite
language is actually computable [28]. Thus, the global classification problem for
countable structures becomes a local classification problem for points in a trans-
formation space.

The use of topological groups sometimes makes proofs easier. For instance,
a technical result of Montalbán [32] characterises uniformly computably cate-
gorical structures (categorical relative to all oracles) in terms of infinitary Scott
sentences. Using transformation groups and the old result of Effros [15], the
rather tricky argument from [32] can be simplified and generalised at the same
time:

Theorem 22. Let (X,G, a) be a (not necessarily computable) transformation
group, and x ∈ X. The following are equivalent:

1. x is uniformly computably categorical on a cone;
2. the orbit of x is Π0

2.

The theorem above is an explicit link between Polish groups, the Borel hierarchy,
the categoricity hierarchy, and classification problems.

Question 23. Is it possible to extend Theorem 22 to a (computable) categoricity-
theoretic description of Σ0

3-orbits in a transformation space10?

3 Local Classifications and Hierarchies of Functions

Suppose M is a computable Polish space, such as C[0, 1] or the reals11. Fix some
property P of points in M, and consider the index set I(P ) = {e : xe satisfies P}
of P , where (xe)e∈ω is an effective enumeration of all (partially) computable
points in M. If the complexity of I(P ) is no simpler than the naive brute-
force upper bound derived from the definition of P , then we can conjecture
that members of the space having property P do not admit any reasonable
classification. Such results are usually relativisable to any oracle.

For example, Becher, Heiber, and Slaman [3] showed that the index set of
all computable real numbers normal to base 2 is Π0

3 -complete12. Their proof is
10 Melnikov and Montalbán’s initial strong conjecture was that such a characterisa-

tion in terms of non-uniform categoricity exists; alas, their proof contained an error
(spotted by Solecki).

11 We usually fix a “natural” computable structure on the space, such as the rationals
in R. For a computably categorical space (such as R) this assumption is of course
not necessary, while for spaces like C[0, 1] it is essential [30].

12 A number is said to be normal to base b if, for every positive integer n, all possible
strings n digits long have density b−n. A number is (absolutely) normal if it is normal
to base b for every integer b greater than 1. Equivalently, a sequence is normal if and
only if there is no finite-state gambler that succeeds on it [36].
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relativizable, and thus implies the earlier result of Ki and Linton [23] who showed
that the set of reals normal to base 2 is Π0

3-complete. Becher and Slaman [9] later
extended their techniques to show that the index set of numbers computable to
some base is Σ0

4 -complete, and again the result can be fully relativised to any
oracle.

Westrick [38] gives a detailed index set analysis of Kechris and Woodin’s
differentiability hierarchy for continuous functions in C[0, 1]. She showed that
the index set of rank ≤ α computable functions in C[0, 1] is Π0

2α+1-complete,
where α is any computable ordinal.

The index set I(P ) does not have to use the enumeration of all computable
members in a class. For example, we could instead start with a uniform enu-
meration of all polynomial time computable points (le)e∈ω of the space; if we
can still prove a completeness result restricted to (le)e∈ω then this means that
the property “x is polynomial time computable” does not help to characterise
when P holds on x. We illustrate this approach by a non-trivial example. Fol-
lowing [11], we call f ∈ C[0, 1] regular to base 2 if the graph of f coded as a
pair of binary strings is recognised by a Büchi automation. Regular continuous
functions are Lipschitz and also map rationals to rationals in linear time. Using
quantifier elimination one can express “f is regular” as a Σ0

2 -statement about
f . Franklin et al. [17] have recently announced:

Theorem 24. Given a linear time computable Lipschitz f : [0, 1] → R with
f(Q ∩ [0, 1]) ⊆ Q, checking whether f is regular is a Σ0

2 -complete problem.
Remark 25. Working independently, Gorman et al. [18] have announced that every continuous reg-
ular function has to be affine outside a measure 0 nowhere dense set. This property can be added to
the list of properties in the theorem above too.

It follows that none of the properties of regular functions known to date helps
to reduce the complexity of the definition of regularity.

3.1 Baire Hierarchy and Parallel Weihrauch Reducibility

So far our “local” results were restricted to continuous functions. If we want to
extend the ideas beyond continuity, we need more ideas. We might have some
hope for reasonable classes of functions such as the Baire classes. Recall that
f is Baire class 0 iff it is continuous, and f is called Baire n + 1 iff there is a
collection {fi | i ∈ N} of Baire class n functions such that f(x) = limn fn(x),
and this extends to limit ordinals in the obvious way. Baire 1 functions are pre-
cisely the derivatives of differentiable functions. Baire functions are all Lebesgue
measureable, and any Lebesgue measureable function is the same as a Baire 2
function except on a set of measure 0. Can we say more? In the below, we will
concentrate on classification for the Baire class functions.

Recall that Weihrauch reducibility [2] is defined as f ≤W g to mean there
are computable h, k such that f(x) = h(x, g(k(x))). A more general version of
this is called parallel Weihrauch reducibility. The idea is that to compute f(x)
to within 2−n we might explore g(y), yet for f(x) to within 2−m perhaps g(y′).
For this new reduction we will write f ≤T g.
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Remark 26. This is motivated as follows. It is not reasonable to expect that for a general reduction
we should have a uniform map like ≤W which takes arguments of f pointwise to arguments of
g determining the reduction. Turing reduction on sets, A ≤T B, can use many queries to B to
determine A(n). In the case of continuous functions this can be viewed as as the “parallelisation” of
g; replace g with ω many copies of g. See [13] for a clarification.

Example 27. Consider the α-th jump function, jα(x)(i) = x(α)(i), where x(α)(i)
is 0 if Φx

i (i) does not halt and 1 otherwise. Then it is possible to show that
j1(x) ≤T S0 where S0 is the step function which is 0 below 0 and 1 above.

In [13] Day, Downey and Westrick instigated an analysis of the classification
of Baire functions using ≤T . In that paper, they allowed real parameters, the
boldface version ≤T. It is easy to show that f is Baire α iff f≤Tjα. Using
recursion-theoretic techniques, Day, Downey and Westrick [13] have proved:

Theorem 28. If α is a constructive ordinal and a Baire function f is not Baire
α then jα+1≤Tf , and if f is limit, and f is not Baire β for β < α, either f≡Tjα,
or jα<Tf .

In [13], Day, Downey and Westrick refined ≤T to look at analogs of m- and
tt-reductions; we omit the definitions13.The idea being that Post’s Theorem (for
example) puts Σ0

m complete sets above the other Σ0
m sets via an m-reduction.

We state the following satisfying classification result

Theorem 29 ([13]).

1. For all Baire functions f and g, either f≤mg or g≤m−f . Hence if f is Baire
α then f≤mjα+1.

2. If f is Borel and f is not Baire α, then either jα+1≤mf or −jα+1≤mf .

These new reductions had reflections in results from classical analysis to
give computable “explanations” for classical results. In [13] Day et al. showed
(classical) Baire and Bourgain hierarchies of functions intertwine with the degree
structures above. Kihara (to appear) has recently extended the results above.

As we see the boldface version gives real insight into classical investigations,
but it might be argued that a finer classification could be obtained using no
parameters. This is still an open challenge. Lots of open problems remain, par-
ticularly what would be the correct notion for lightface versions.
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Abstract. An enumeration operator maps each set A of natural num-
bers to a set E(A) ⊆ N, in such a way that E(A) can be enumerated
uniformly from every enumeration of A. The maximum possible Turing
degree of E(A) is therefore the degree of the jump A′. It is impossible
to have E(A) ≡T A′ for all A, but possible to achieve this for all A
outside a meager set of Lebesgue measure 0. We consider the properties
of two specific enumeration operators: the HTP operator, mapping a set
W of prime numbers to the set of polynomials realizing Hilbert’s Tenth
Problem in the ring Z[W−1]; and the root operator, mapping the atomic
diagram of an algebraic field F of characteristic 0 to the set of polyno-
mials in Z[X] with roots in F . These lead to new open questions about
enumeration operators in general.

Keywords: Computability · Computable structure theory ·
Enumeration operators · Essential lowness · Hilbert’s Tenth Problem

1 Introduction

Consider enumeration operators. These are functions E mapping Cantor space
2ω into itself, in an effective way defined by a computably enumerable set E of
axioms of the form (Di, j), all with i, j ∈ ω. The intended meaning of such an
axiom is that, if A ∈ 2ω is the input to E and the finite set Di is a subset of A,
then j must lie in E(A). (Here Di is defined to be the unique finite subset of ω
with i =

∑
n∈Di

2n, as in [13, Defn. II.2.4].) Thus E(A) = {j : (∃i) [(Di, j) ∈
E & Di ⊆ A}, and so E(A) may be enumerated effectively using any enumeration
(computable or not) of A.

There is a natural analogy to Turing operators T , which allow one to decide
membership of numbers in T (A) when given a decision procedure (effective or
not) for A. Enumeration operators use only positive information about A, and
produce only positive information about E(A); whereas Turing operators use and
produce both positive and negative information. Turing operators have been
the focus of more intense study by computability theorists, but enumeration
operators need make no apology for their presence. Indeed, the fundamental
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operator used by Kurt Gödel for his Incompleteness Theorems is an enumeration
operator: the deducibility operator D, which (using a fixed Gödel coding of first-
order formulas in a fixed signature) lists the elements of the set D(A) of code
numbers of those formulas provable from the formulas with code numbers in A.
Thus A is viewed as an axiom set, and D(A) is the set of consequences of A.

Here we focus not on D, but rather on two other enumeration operators. In
Sect. 2, we will examine the Hilbert’s-Tenth-Problem operator HTP, as defined in
[3] and [11]. The results there will continue a program connecting the properties
of Hilbert’s Tenth Problem for the field Q itself with the corresponding properties
for subrings of Q. Then, in Sect. 3, we will consider the root operator for algebraic
fields, finding it to have some very pleasing properties, but also noting that
it is not a true enumeration operator, according to the definition above. Our
final section raises and describes the open question of whether an enumeration
operator, strictly as defined above, can realize the properties that make the root
operator distinctive. We view this question as being of sufficient interest that
posing it, rather than proving the results in Sects. 2 and 3, may be the most
consequential act of this article.

A set B is e–reducible to A if B = E(A) for some enumeration operator E.
Therefore it is largely trivial to compare A and E(A), or their jumps, under e-
reducibility; the more interesting comparisons involve Turing reducibility. Much
of this article concerns the property of essential lowness, which we now define.

Definition 1. An enumeration operator E is essentially low for Lebesgue mea-
sure if

μ({A ⊆ ω : (E(A))′ ≤T A′}) = 1.

Likewise E is essentially low for Baire category if this same set {A ⊆ ω :
(E(A))′ ≤T A′} is comeager, in the sense of Baire.

Thus essential lowness says that, for almost all inputs A, the output E(A) is low
relative to A. It is important to specify the context of “almost all,” as an operator
can be essentially low for Baire category without being so for Lebesgue measure,
or vice versa. This definition can apply equally well to Turing operators.

We use standard notation from [13]. For an introduction to computable fields,
[5] and [7] are both helpful.

2 Hilbert’s Tenth Problem on Subrings of Q

For a subset W of the set P of all prime numbers, we set RW = Z[W−1] to be the
subring of the rational numbers Q generated by the reciprocals of the primes in
W . The map W �→ RW is a bijection from the power set of P onto the space of all
subrings of Q. Moreover, if subrings of Q are considered in a signature with +, ·,
and a predicate I for invertibility (with I(x) defined by ∃y(x ·y = 1)), and 2P has
the usual Cantor topology, then this bijection is a computable homeomorphism
of topological spaces, in the sense of [10]. Fix a computable list g0, g1, . . . of the
polynomials in Z[ �X] = Z[X1,X2, . . .] and define the enumeration operator HTP
as follows. (We usually write HTP(RW ) instead of HTP(W ).)

W �→ HTP(RW ) = {n ∈ ω : ∃(x1, . . . , xk) ∈ (RW )<ω gn(x1, . . . , xk) = 0}.
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We recall the definition of the boundary set of subrings of Q. For any single
polynomial f ∈ Z[ �X], the boundary set is

B(f) = {W ⊆ P : f /∈ HTP(RW ) but (∀ finite S0 ⊆ W ) f ∈ HTP(R(P−S0))}.

This says that, although f = 0 has no solution in RW , there is no finitary
reason for it to lack a solution: no finite set S0 of primes omitted from W has
the property that every solution requires the inversion of some prime from S0.
Examples and explanation appear in [3,8]. Topologically B(f) is the boundary
of the (open) set A(f) of subrings in which f = 0 has a solution. More generally,
the boundary set of subrings of Q is the union of these:

B =
⋃

f∈Z[X0,X1,...]

B(f).

In Baire category, it is known that B is meager, i.e., small in the sense given by
Baire; see [8]. In Lebesgue measure, on the other hand, it remains open whether
this same class B is small, i.e. of measure 0, or not. This distinction leads us to
state Theorems 1 and 2 separately, for these two notions of smallness, as it is
essential for the boundary set to be small. Theorem 1 arises very naturally as a
kind of extension of [8, Corollary 1], which stated that an arbitrary set C satisfies
C ≤T HTP(RW ) for a non-meager class of sets W if and only if C ≤T HTP(Q).
Here lowness (relative to W ) replaces the property of computing C.

Theorem 1. The set HTP(Q) has low Turing degree if and only if the operator
HTP is essentially low for Baire category.

If HTP is not essentially low, then by this theorem HTP(Q) must be unde-
cidable. Essential lowness of HTP would not yield any consequences about the
decidability of HTP(Q) (as the degree 0 of the computable sets is considered to
be low, along with every other degree d satisfying d′ = 0′), but it would imply a
different important result: the existential undefinability of Z within the field Q.

Proof. One direction is readily seen. Essential lowness of HTP means that all
W in a co-meager subclass of 2P satisfy (HTP(RW ))′ ≤T W ′. The intersection
of this subclass with the co-meager class {W : W ′ ≤T ∅′ ⊕W} is also co-meager.
By [1, Cor. 5.2], all W have HTP(Q) ≤T HTP(RW ), so these comeager-many
W all also satisfy

(HTP(Q))′ ≤T (HTP(RW ))′ ≤T W ′ ≤T ∅′ ⊕ W.

But this implies (HTP(Q))′ ≤T ∅′, by a standard result (see [8, Lemma 2].)
For the forwards direction, recall that HTP(RW ) ≤T (W ⊕ HTP(Q)) uni-

formly for all HTP-generic W . The procedure is as follows. For each f , HTP-
genericity means, by definition, that W ∈ A(f) ∪ C(f), where

A(f) = {W ⊆ P : f ∈ HTP(RW )}.

C(f) = {W ⊆ P : (∃ finite S0)[S0 ∩ W = ∅ & f /∈ HTP(R(P−S0))]}.
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So, to decide whether f ∈ HTP(RW ), we simply search for either a solution
to f = 0 in RW (using the W -oracle to enumerate RW ), or a finite subset
S0 ⊆ (P−W ) such that f /∈ HTP(RP−S0). (The latter is decidable from HTP(Q),
uniformly in S0; see [1, Prop. 5.4] or [8, Prop. 1].) Therefore, for HTP-generic
sets W , we have (HTP(RW ))′ ≤T (W ⊕HTP(Q))′ (indeed via a 1-reduction, by
the Jump Theorem [13, III.2.3]). But with HTP(Q) assumed low, the class of W
for which

(W ⊕ HTP(Q))′ ≤T W ′ ⊕ (HTP(Q))′ ≡T W ′ ⊕ ∅′ ≡T W ′

is comeager, as is the class of HTP-generic sets W , so we have shown that
{W : (HTP(RW ))′ ≤T W ′} is comeager. ��
Theorem 2. If the operator HTP is essentially low in the sense of Lebesgue
measure, then the set HTP(Q) has low Turing degree. As a partial converse, If
HTP(Q) has low Turing degree and the set B of all boundary rings has Lebesgue
measure 0, then HTP is essentially low for Lebesgue measure.

Proof. The forward direction has much the same proof as in Theorem1:
measure-1-many sets W satisfy

(HTP(Q))′ ≤T (HTP(RW ))′ ≤T W ′ ≤T ∅′ ⊕ W.

Consequently (HTP(Q))′ ≤T ∅′; see Lemmas 2.1 and 2.3 of [9] for details.
The reverse direction requires more care. Notice that with an HTP(Q)-oracle,

we can enumerate the finite binary strings σ such that a given f does not lie in
HTP(R(P−σ−1(0))). (Again this follows from [1, Prop. 5.4] or [8, Prop. 1].) This in
turn allows us to approximate, from below, the measure of the set C(f). On the
other hand, with no oracle at all, we can approximate from below the measure
of the set A(f). By assumption μ(A(f)) + μ(C(f)) = 1, since the rings lying
in neither A(f) nor C(f) are by definition boundary rings of f . Therefore, we
can approximate μ(A(f)) = 1 − μ(C(f)) from above as well, using the HTP(Q)-
oracle.

Given any ε > 0, and any fi in an enumeration f0, f1, . . . of Z[ �X], the
HTP(Q)-oracle now allows us to approximate the measure μ(A(fi)) to arbitrary
precision. Suppose this approximation places μ(A(fi)) within an open interval
(ai, bi) of length < ε

2i+1 . We then enumerate solutions to fi = 0 in Q until we
have found finitely many solutions such that the total measure of the set of sub-
rings containing any of those solutions is > ai. Among the subrings R that do
not contain any of those finitely many solutions, the set of those that do contain
some solution to fi = 0 has measure < ε

2i+1 . Therefore, for any n and any η ∈ 2n,
we can produce a finite set Sη,ε of binary strings σ such that, among subsets
W ⊆ P, the equivalence

η ⊂ HTP(RW ) ⇐⇒ (∃σ ∈ Sη,ε)σ ⊂ W

holds for all W outside a set of measure <
∑n

i=0
ε

2i+1 < ε.
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Our other hypothesis, for the reverse direction, is that HTP(Q) is low, mean-
ing that (HTP(Q))′ ≤T ∅′. It follows that

(W ⊕ HTP(Q))′ ≤T W ′ ⊕ (HTP(Q))′ ≤T W ′ ⊕ ∅′ ≡T W ′

uniformly for all W outside a set of measure ≤ ε
2 . Using this, we can now give

a procedure that (uniformly in the given ε), computes (HTP(RW ))′ from W ′

correctly on a set of measure ≥ 1 − ε. Given a number e, we wish to determine
whether e ∈ HTP(RW ), which is to say, whether Φ

HTP(RW )
e (e) halts. The oracle

(W ⊕ HTP(Q))′ will decide whether

(∃s)(∃η ∈ 2<ω)(∃σ ∈ Sη, ε

2e+2
) [σ ⊂ W & Φη

e(e) halts in ≤ s steps],

since the quantifier-free subformula is decidable from (W ⊕ HTP(Q)), as seen
above. Thus, outside a set of measure < ε

2e+2 , the (W ⊕ HTP(Q))′-oracle has
decided correctly whether

(∃s)(∃η ∈ 2<ω) [η ⊂ HTP(RW ) & Φη
e(e) halts in ≤ s steps],

which is to say, whether Φ
HTP(RW )
e (e) halts. Outside a set of measure <∑

e
ε

2e+2 = ε
2 , this computation will be correct for every e, and since the com-

putation of (W ⊕ HTP(Q))′ from W ′ was also correct outside a set of measure
< ε

2 , we have proven the theorem. ��

3 Algebraic Fields and the Root Operator

Let Δ(F ) be the atomic diagram – viewed as a subset of ω, using Gödel coding
– of a field F of characteristic 0, in the pure language of rings. Given Δ(F ), the
root operator Θ enumerates the subset WF ⊆ ω called the index of F :

WF = {i ∈ ω : (∃x ∈ F ) fi(x) = 0},

using a fixed computable enumeration f0, f1, . . . of Z[X]. (Here all polynomials
have just one variable X, as opposed to Sect. 2.) It is clear that WF can be
enumerated uniformly this way if one has an oracle for the atomic diagram,
but of course we mean Θ to be given only an (arbitrary) enumeration of that
atomic diagram. Fortunately, these are equivalent. To decide whether a + b = c
in the field F , just enumerate Δ(F ) until a formula of the form a + b = d (for
some d) appears, and check whether this d is the element c or not; similarly for
multiplication. So, given any enumeration of the atomic diagram Δ(F ) of any
presentation of a field F of characteristic 0, Θ will indeed enumerate WF . Our
specific interest is in algebraic fields, i.e., algebraic extensions of Q.

Algebraic fields of characteristic 0 may be viewed in much the same context as
subrings of Q. In both cases, the collection of all isomorphism types belonging to
the class forms a topological space computably homeomorphic to Cantor space.
Also, in both cases, one natural definable predicate must be adjoined to the
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signature in order for the homeomorphism to exist. In both cases, the original
signature is that of rings, with addition and multiplication symbols. For subrings
of Q, in the preceding section, we required an invertibility predicate I in the
signature, defined by I(x) ⇐⇒ (∃y) x · y = 1: with this predicate it becomes
possible to compute the index W = {p ∈ P : 1

p ∈ R} of an arbitrary subring R
of Q uniformly from the atomic diagram of each presentation of R.

For our algebraic fields – which, since we restrict to characteristic 0, may
be viewed as precisely the class of all subfields of the algebraic closure Q –
we likewise require some additional information to compute the index of an
arbitrary member of the class. The usual strategy is to adjoin root predicates:
either a single finitary predicate R, or else a d-ary predicate Rd for each d > 1.
These are defined by

Rd(a0, . . . , ad−1) ⇐⇒ (∃x) xd + ad−1x
d−1 + · · · + a1x + a0 = 0.

(If a single R is used, it is simply the union of all these Rd.) Given the atomic
diagram of a subfield F of Q, in the signature with these predicates, one can
readily compute the index WF of F as defined above. Clearly WF = WE when-
ever E ∼= F , and the converse also holds (cf. [12, Cor. 3.9], with Q as the ground
field). That is, the subfields of Q may be classified up to isomorphism by their
indices. On the other hand, it should be noted that not every subset of ω is the
index of an algebraic field under this definition: if (X4 − 2) has a root in F , for
example, then (X2 − 2) cannot fail to have one. Nevertheless, the indices used
here do yield a computable homeomorphism from the space of all subfields of
Q onto Cantor space. It is decidable uniformly for each σ ∈ 2<ω whether there
exists an algebraic field F for which σ is an initial segment of WF , and the col-
lection of σ for which such a field does exist is thus a computable subtree T of
2ω, with no terminal nodes and no isolated paths. The desired homeomorphism
then maps the class of isomorphism types of algebraic fields bijectively onto the
space of all paths through T , which in turn is computably homeomorphic to 2ω.

One should note that this homeomorphism is not canonical: it depends heav-
ily on the choice of the computable enumeration of Z[X] used to define the indices
WF . Using Lebesgue measure on this space is possible but not recommended:
different enumerations of Z[X] will give distinct measures on the space of (iso-
morphism types of) subfields of Q. A better option is to use the Haar-compatible
measure μ defined in [10], which has the property that, for every normal field
extension K ⊇ Q with finite vector-space dimension [K : Q],

μ({F ⊆ Q : K ⊆ F}) =
1

[K : Q]
,

independently of the enumeration of Z[X]. (In [10] the index is chosen differently,
but this property remains true in both cases.) In fact, though, the sets of Haar-
compatible measure 0 are soon seen to be the same sets that have Lebesgue
measure 0 for some computable enumeration of Z[X] – indeed, for all reasonable
ones. So it is unnecessary to fuss over the exact choice of the measure to be used.

With this background, we can proceed to consider the root operator Θ, map-
ping Δ(F ) to WF . There do exist (isomorphism types of) fields such that every
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presentation F of the field satisfies WF ≤T Δ(F ). The most obvious exam-
ples are fields for which WF itself is computable, but other examples exist. For
instance, if F = Q[

√
pn : n /∈ ∅′], then WF is co-c.e., and so every presentation

of F can compute WF , by enumerating WF and simultaneously enumerating the
c.e. set that is the complement of WF . (Even more generally, this holds whenever
the complement WF is enumeration-reducible to the Σ1-theory of F .)

However, the isomorphism types F of fields such that all presentations of F
compute WF are rare: they form a meager set of Haar-compatible measure 0
within the class of all subfields of Q. To see this, notice first that the ability to
enumerate WF is equivalent to the ability to compute (or enumerate) a presen-
tation of the field F : whenever a polynomial in Z[X] is found to have a root in
F , we first check whether we have already put such a root into our presentation,
then consider the possible ways that such a root (if not already present) could
sit over the finitely-generated subfield we have built so far, and enumerate WF

further until the minimal polynomial of a primitive generator of one of these
possibilities appears in WF , at which point it is safe to extend our field to be
isomorphic to that possibility. All of this is effective, by Kronecker’s Theorem
(see [6, Thm. 2.2]), allowing us to state our next theorem.

Theorem 3. Let L be the set of indices W such that, for some presentation F
of the field with W = WF , the set W = ΘΔ(F ) is not Δ(F )-computable. Then
L has measure 1 as a subset of 2ω, under the Haar-compatible measure, and is
also co-meager in 2ω. (By analogy to Definition 1, we say that Θ is essentially
noncomputable.)

Proof. By results of Jockusch [2] and Kurtz [4], there is a co-meager, measure-1
class of sets W ∈ 2ω each having the property that there exists some V ∈ 2ω

for which W is V -computably enumerable but not V -computable. Whenever W
has this property, we can find a presentation of the field F with W = WF that
is computable from such a set V . For this presentation, Δ(F ) fails to compute
WF = ΘΔ(F ), although it can enumerate it. ��

We note that, for each index W in the measure-1 co-meager set described by
the theorem, the presentations F that do have WF ≤T Δ(F ) are (of course) those
in the upper cone above W ; whereas every set that computes V can compute a
presentation of this field. Thus the presentations of F that succeed in computing
WF may be viewed as a small subset of the set of all presentations of F , as every
upper cone that is a proper subset of another upper cone has measure 0 within
the larger upper cone. Hence Theorem 3 may be viewed as saying that for almost
all isomorphism types of algebraic fields, almost all presentations of that field
fail to compute the index of the isomorphism type.

Nevertheless, the indices are almost never too far away from the presentation.
Of course, since Δ(F ) can enumerate WF , it is immediate that we always have
WF ≤T (Δ(F ))′. In certain cases the two are Turing-equivalent – e.g., when F
is a computable presentation of the field Q[

√
pn : n ∈ ∅′], whose WF has degree

0′. However, our next two theorems say that in almost all cases, this fails, and
indeed WF is almost always low relative to Δ(F ) – by which we mean that their
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jumps satisfy (WF )′ ≤T (Δ(F ))′. (From here on we will mostly write F and F ′

when we actually mean Δ(F ) and (Δ(F ))′.)

Theorem 4. Let L be the set of indices W such that, for every presentation F of
the field with index W , W is low relative to the presentation F , i.e., W ′ ≤T F ′.
Then L is comeager as a subset of 2ω, and there is a uniform procedure that, for
comeager-many W ∈ 2ω (in particular, for all 1-generic W ), computes W ′ from
F ′ for all F with WF = W .

Proof. We describe the uniform procedure. Let F be a field with WF = W .
Our procedure is given an F ′-oracle, from which it can compute both W and
∅′, uniformly. To decide whether e ∈ W ′, it begins running ΦW

e (e), and if this
computation ever halts, then it outputs 1, knowing this to be correct. Simulta-
neously, it tests each initial segment σ ⊆ W , using ∅′ to decide whether

∀τ ⊇ σ∀t Φτ
e,t(e)↑ .

If the procedure ever finds a σ ⊆ W for which this holds, then it outputs 0, since
no extension of this σ (including W itself) can ever cause Φe to halt on input e.

Now if W is 1-generic, then for every e there must exist some finite initial
segment σ ⊆ W for which either Φσ

e (e)↓ or else no τ ⊇ σ ever gives convergence.
The procedure eventually discovers such a σ and outputs the correct answer
about whether e ∈ W ′. (It is clear that it nevers gives an answer except when it
has found such a σ.) Thus W ′ ≤T F ′, uniformly in F , for all 1-generic W . The
theorem now follows from the co-meagerness of the 1-generic sets in 2ω. ��

The situation for Lebesgue measure is similar but not quite as nice. It remains
true that W is almost always low relative to all presentations of the field with
index W : in particular, this holds outside a set of measure 0. However, no single
uniform procedure can establish this for all W outside a set of measure 0. Instead,
we must argue up to sets of arbitrarily small measure. (Notice that in Baire
category, there is no natural analogue of “up to arbitrarily small measure”: the
only divisions are meager-or-not and comeager-or-not. It is fortunate that we
had a uniform procedure there!)

Theorem 5. For each ε > 0, there is a uniform procedure that, for all W in a
set of Haar-compatible measure > 1 − ε, computes W ′ from F ′ for all fields F
with WF = W . Hence, for all W outside a set of measure 0, every presentation
F of that field satisfies W ′ ≤T F ′.

Proof. We fix a rational ε > 0 and give a uniform procedure that computes W ′

from F ′ on a set of measure > 1 − ε. For each W in this set, each presentation
F of the field with index W , and each e, the procedure will determine whether
ΦW

e (e) halts.
The procedure goes through each pair 〈r, n〉 with r ∈ [0, 1] rational and with

n ∈ ω in turn, asking its F ′ oracle whether both of the following hold:

(∃k, s)
(
∃τ0, . . . , τk ∈ 2nof total measure > r − ε

2e+1

)
(∀i ≤ k) Φτi

e,s(e)↓
¬(∃k, s)(∃τ0, . . . , τk ∈ 2nof total measure > r)(∀i ≤ k)Φτi

e,s(e)↓
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Here “total measure” means the Haar-compatible measure of the set {A ∈ 2ω :
(∃i ≤ k)τi ⊆ A}, which is readily computed (making sure to avoid doublecount-
ing overlaps!). The first sentence is considered to hold vacuously if r < ε

2e+1 .
Also, with τi ∈ 2n, we interpret “convergence” of Φτi⊕F

e,s (e) to mean that the
procedure halts without ever asking whether any number ≥ n lies in τi. These
sentences are existential, hence decidable from the F ′-oracle.

Eventually our procedure must find a pair 〈r, n〉 for which both answers from
F ′ are positive. It then stops asking such questions, and searches until it finds
the promised τ0, . . . , τk ∈ 2n of total measure > r − ε

2e+1 for which all Φτi
e,s(e)↓.

As soon as it has found such strings, it checks whether any of the (finitely many)
τi it has found is an initial segment of W . (Here is where the full F ′-oracle is
needed: it can compute W . For the first step, a ∅′-oracle would have sufficed.) If
so, then it outputs that ΦW

e (e)↓, knowing this answer to be correct. If not, then
it outputs that ΦW

e (e) ↑. The latter answer is not guaranteed to be correct, of
course, but it can fail only for those W within a set of measure < ε

2e+1 , and so
the set of W for which our procedure fails to compute W ′ correctly has measure
≤ ∑

e
ε

2e+1 = ε, as required. ��

4 Non-coding Enumeration Operators

A careful reading of Sect. 3 will reveal that we avoided ever actually calling the
root operator Θ an enumeration operator. Indeed, it was intended specifically to
operate on (enumerations of) atomic diagrams of algebraic fields, rather than on
(enumerations of) arbitrary subsets of ω. One could run it with an enumeration
of an arbitrary A ⊆ ω, but with high probability the result would be that every
f ∈ Z[X] would be deemed to have a root, as the configuration describing this
would appear sooner or later. Even worse, the output would not be independent
of the enumeration of A, since for most A the ternary relations + and · described
by A would not be functions: a+b would be deemed to equal the first c for which
the code number of the statement “a + b = c” appeared in A. So this Θ does
not satisfy the definition given in Sect. 1: it functions as such an operator only
on a specific domain within 2ω, and that domain is meager with measure 0.

The basic question, therefore, asks whether the pleasing results about Θ can
hold of a true enumeration operator. When E satisfies the full definition, can
E be essentially low and essentially noncomputable, as Θ was on its domain?
The answer to this first question is immediate and positive. To find an essentially
noncomputable enumeration operator, one need look no further than the map
A �→ (A⊕∅′), whose output is Turing-equivalent to A′ for a comeager measure-1
collection of sets A. To add essential lowness for Lebesgue measure, we adjust
the operator to map A to (A ⊕ L), where L is a fixed c.e. set of low (nonzero)
Turing degree. It is known that, for such an L,

μ({A ⊆ ω : (A ⊕ L)′ ≡T A ⊕ L′}) = 1,

and since L′ ≡T ∅′, this implies that (A ⊕ L) is low relative to A for almost all
sets A. Moreover, every A that is 1-generic relative to L lies in this set, so the set
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is comeager. On the other hand, A computes (A ⊕ L) only if A ≥T L, and since
L is noncomputable, the upper cone of sets ≥T L has measure 0 and is meager.
(All measure-theoretic results used here were proven by Stillwell in [14].)

In brief, one can accomplish the same goals achieved by Θ, simply by coding
an appropriate c.e. set into the output of the enumeration operator. However, Θ
accomplished the goal by different means: it produced an output ΘΔ(F ) >T Δ(F )
(in almost all cases) simply because the problem of determining existence of roots
of polynomials in a field seems to be inherently noncomputable. The following
lemma makes this more specific.

Lemma 1. Fix a noncomputable subset C ⊆ ω, and let L be the set of indices
W such that, for every F with WF = W , C �≤T ΘΔ(F ). Then L is comeager of
measure 1.

Proof. ΘΔ(F ) is just WF itself, and since C is noncomputable, only a comeager
measure-0 collection of sets W satisfy C ≤T W . ��

The simplicity of the proof exposes the overstatement of this lemma, which
really just says that upper cones above noncomputable sets are meager of mea-
sure 0, as has been long known. Part of the difficulty of working with Θ is that,
since its domain is only a small subset of 2ω, we used different means to measure
what it did. In particular, for a subset S of the domain, we measured the image
of S under the operator, rather than measuring S itself. Since the image of Θ
(on its intended domain: atomic diagrams of algebraic fields) is all of 2ω, this
was reasonable, but it makes Lemma 1 trivial.

Nevertheless, Lemma 1 was stated this way for a reason: it introduces the
notion of a non-coding operator.

Definition 2. An enumeration operator E is non-coding for Lebesgue measure
if, for every noncomputable C ⊆ ω,

μ({A ⊆ ω : C ≤T E(A)}) = 0.

Likewise, E is non-coding for Baire category if this set is meager whenever
C >T ∅.
Thus this is the same idea we noted above for Θ, but now defined using measure
and category on the domain 2ω of E, rather than on the image of a specific
smaller domain.

All operators of the form A �→ A ⊕ C (with C noncomputable) clearly fail
this definition. Indeed, any enumeration operator E for which A′ ≤T E(A) holds
on a set of positive measure must fail the definition, as ∅′ ≤T A′ always holds.
So a noncoding operator must avoid producing the jump of its input, at least in
almost all cases. This brings us to our main open questions, which can be seen
as a sort of uniform version of Post’s Problem for enumeration operators.

Question 1. Does there exist a non-coding enumeration operator E for which

μ({A ⊆ ω : E(A) ≤T A}) = 0?

Indeed, does there exist such an operator for which this set has measure < 1?
Likewise, can this set be meager? Or at least, can it fail to be co-meager?
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We point out the following operator. Let R,S be two noncomputable c.e. sets
that form a minimal pair (as in [13, §IX.1], e.g.), and define the enumeration
operator E by the union of the following c.e. sets of enumeration axioms:

{(∅, 2x) : x ∈ R} ∪ {({5}, 2x) : x ∈ ω} ∪ {({5}, 2x + 1) : x ∈ S}.

Thus, if 5 ∈ A, then E(A) ≡T ω⊕S, while otherwise E(A) ≡T R⊕∅. Therefore,
in almost all cases we have E(A) �≤T A. However, if C ≤T E(A) on a co-meager
or measure-1 collection of sets A, then C must be computable, as it would be
computed by both R and S. So it is readily possible to answer Question 1 if one
relaxes the definition of non-coding enumeration operators to require only that
{A ⊆ ω : C ≤T E(A)} have measure < 1, or that it not be co-meager. In fact,
Definition 2 requires that these sets be small (as opposed to “not-large”).

A significant part of the difficulty in answering Question 1 is that enumeration
operators E must enumerate the same set E(A) for all enumerations of the
set A. This precludes the use of many of the techniques employed in studying
the theory of the c.e. degrees, such as the Friedberg-Muchnik method, or the
strategy for the Sacks Density Theorem. The latter, for example, starts with
two c.e. sets C <T D, and immediately fixes computable enumerations of each.
Its strategy succeeds in enumerating a set strictly between C and D, but if
different computable enumerations were used, it would generally enumerate a
different set in that interval. Therefore that method would require significant
refinement – a kind of uniformization – to succeed in answering Question 1.

Our last proposition illustrates the importance of Question 1.

Proposition 1. Suppose that the answer to the strong form of Question 1 is
negative for Baire category. (That is, assume that for all non-coding enumeration
operators E, {A ⊆ ω : E(A) ≤T A} is not meager.) Then the existence of a co-
meager collection of subsets W ⊆ P satisfying HTP(RW ) �≤T W is equivalent to
the undecidability of HTP(Q).

Likewise, if the answer to the weak form of Question 1 for Baire category is
negative, then the existence of a non-meager collection of subsets W satisfying
HTP(RW ) �≤T W , is equivalent to the undecidability of HTP(Q).

Proof. First of all, every W ⊆ P satisfies HTP(Q) ≤T HTP(RW ). Therefore,
every W outside the upper cone above HTP(Q) satisfies HTP(RW ) �≤ W . If
HTP(Q) were undecidable, then the upper cone above it would be meager, so
the backwards direction in each paragraph of the proposition holds even without
knowing any answers to Question 1.

The forwards direction is where Question 1 comes into play. In each para-
graph, the hypotheses imply that the HTP-operator cannot be non-coding for
Baire category. Therefore there is some non-meager subset S ⊆ 2P on which it
codes some noncomputable information: some C >T ∅ satisfies

(∀W ∈ S) C ≤T HTP(RW ).

But then it follows from Corollary 1 in [8] that C ≤T HTP(Q). ��
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A negative answer to one of the two alternative forms of Question 1 essentially
says that if HTP(RW ) �≤T W holds for a non-meager (alternatively, co-meager)
class of sets W , then there must be some specific non-computable information
that HTP is coding into those sets. The result [8, Corollary 1] then shows that
this specific information can be derived from just HTP(Q). Similar statements
would hold for Lebesgue measure if the boundary set B defined earlier has mea-
sure 0, but this remains an open question.
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Abstract. The present paper surveys some results from the inductive
inference of recursive functions, which are related to the characterization
of inferrible function classes in terms of complexity theory, and in terms
of recursive numberings. Some new results and open problems are also
included.

1 Introduction

Inductive inference of recursive functions goes back to Gold [11], who considered
learning in the limit, and has attracted a large amount of interest ever since.
In learning in the limit an inference strategy S is successively fed the graph
f(0), f(1), . . . of a recursive function in natural order and on every initial segment
of it, the strategy has to output a hypothesis, which is a natural number. These
numbers are interpreted as programs in a fixed Gödel numbering ϕ of all partial
recursive functions over the natural numbers. The sequence of all hypotheses
output on f has then to stabilize on a number i such that ϕi = f . A strategy
infers a class U of recursive functions, if it infers every function from U .

One of the most influential papers has been Blum and Blum [6], who intro-
duced two types of characterizations of learnable function classes in terms of
computational complexity. The gist behind such characterizations is that classes
U of recursive functions are learnable with respect to a given learning criterion if
and only if all functions in U possess a particular complexity theoretic property.

The learning criterion considered is reliable inference on the set R, where R
denotes the set of all recursive functions. We denote the family of all classes
U which are reliably inferable by R-REL. Here reliability means the learner
converges on any function f from R iff it learns f in the limit. In the first
version, operator honesty classes are used. If O is a total effective operator then
a function f is said to be O-honest if O(f) is an upper bound for the complexity
Φi for all but finitely many arguments of ϕi, where ϕi = f . Then Blum and
Blum [6] showed that a class U is in R-REL iff there is a total effective operator
O such that every function f ∈ U is O-honest. Operator honest characterizations
are also called a priori characterizations.
c© Springer Nature Switzerland AG 2020
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In the second version, one considers functions which possess a fastest program
modulo a general recursive operator O (called O-compression index). Now, the a
posteriori characterization is as follows: A class U is in R-REL iff there is a gen-
eral recursive operator O such that every function from U has an O-compression
index.

Combining these two characterizations yields that the family of operator
honesty classes coincides with the family of the operator compressed classes.

While operator honesty characterizations have been obtained for many learn-
ing criterions (cf. [29] and the references therein), the situation concerning a
posteriori characterizations is much less satisfactory. Some results were shown
in [27], but many problems remain open. In particular, it would be quite inter-
esting to have an a posteriori characterization for T-REL. The learning criterion
T-REL is defined as R-REL, but reliability is required on the set T of all total
functions. Note that T-REL ⊂ R-REL. Also, we shall present an a posteriori
characterization for the function classes which are T -consistently learnable with
δ-delay (cf. [1] for a formal definition). Intuitively speaking, a T -consistent δ-
delayed learning strategy correctly reflects all inputs seen so far except the last δ
ones, where δ is a natural number.

Note that there are also prominent examples of learning criterions for which
even a priori characterizations are missing. These include the behaviorally correct
learnable functions classes (cf. [8,9] for more information). So in both cases we
also point to the open problem whether or not one can show the non-existence
of such desired characterizations.

Moreover, in Blum and Blum [6] the a posteriori characterization of R-REL
has been used to show that some interesting function classes are in R-REL,
e.g., the class of approximations of the halting problem. Stephan and Zeug-
mann [22] extended these results to several classes based on approximations
to non-recursive functions. Besides these results, our knowledge concerning the
learnability of interesting function classes is severely limited, except the recur-
sively enumerable functions classes (or subsets thereof), and with respect to
function classes used to achieve separations.

Finally, the problem of suitable hypothesis spaces is considered. That is,
instead of Gödel numberings one is interested in numberings having learner-
friendly properties. Again, we survey some illustrative results, present some new
ones, and outline open problems. Note that one can also combine the results
obtained in this setting with the results mentioned above, i.e., one can derive
some complexity theoretic properties of such numberings.

2 Preliminaries

Unspecified notations follow Rogers [21]. By N = {0, 1, 2, . . .} we denote the
set of all natural numbers. The set of all finite sequences of natural numbers is
denoted by N

∗. For a, b ∈ N we define a .− b to be a−b if a ≥ b and 0, otherwise.
The cardinality of a set S is denoted by |S|. We write ℘(S) for the power

set of set S. Let ∅, ∈, ⊂, ⊆, ⊃, ⊇, and # denote the empty set, element of,
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proper subset, subset, proper superset, superset, and incomparability of sets,
respectively.

By P and T we denote the set of all partial and total functions of one variable
over N, respectively. The classes of all partial recursive and recursive functions of
one, and two arguments over N are denoted by P, P2, R, and R2, respectively.
Furthermore, for any f ∈ P we use dom(f) to denote the domain of the function
f , i.e., dom(f) =df {x | x ∈ N, f(x) is defined}. Additionally, by range(f) we
denote the range of f , i.e., range(f) =df {f(x) | x ∈ dom(f)}. Let f, g ∈ P
be any partial functions. We write f ⊆ g if for all x ∈ dom(f) the condition
f(x) = g(x) is satisfied. By R0,1 and Rmon we denote the set of all {0, 1}-
valued recursive functions (recursive predicates) and of all monotone recursive
functions, respectively.

Every function ψ ∈ P2 is said to be a numbering. Let ψ ∈ P2, then we write ψi

instead of λx.ψ(i, x), set Pψ = {ψi | i ∈ N} and Rψ = Pψ ∩ R. Consequently, if
f ∈ Pψ, then there is a number i such that f = ψi. If f ∈ P and i ∈ N are such
that ψi = f , then i is called a ψ-program for f . Let ψ be any numbering, and let
i ∈ N; if ψi(x) is defined (abbr. ψi(x)↓ ) then we also say that ψi(x) converges.
Otherwise, ψi(x) is said to diverge (abbr. ψi(x) ↑ ).

A numbering ϕ ∈ P2 is called a Gödel numbering (cf. Rogers [21]) if Pϕ = P,
and for every numbering ψ ∈ P2, there is a c ∈ R such that ψi = ϕc(i) for all i ∈
N. Göd denotes the set of all Gödel numberings. Furthermore, we write (ϕ,Φ) to
denote any complexity measure as defined in Blum [7]. That is, ϕ ∈ Göd, Φ ∈ P2

and (1) dom(ϕi) = dom(Φi) for all i ∈ N and (2) the predicate “Φi(x) = y” is
uniformly recursive for all i, x, y ∈ N.

Moreover, let NUM = {U | ∃ψ[ψ ∈ R2 ∧ U ⊆ Pψ]} denote the family of all
subsets of all recursively enumerable classes of recursive functions.

Furthermore, using a fixed encoding 〈. . .〉 of N∗ onto N we write fn instead
of 〈(f(0), . . . , f(n))〉, for any n ∈ N, f ∈ R.

The quantifier ∀∞ stands for “almost everywhere” and means “all but finitely
many.” Finally, a sequence (jn)j∈N of natural numbers is said to converge to the
number j if all but finitely many numbers of it are equal to j. Next we define
some concepts of learning.

Definition 1 (Gold [11,12]). Let U ⊆ R and let ψ ∈ P2. The class U is said
to be learnable in the limit with respect to ψ if there is a strategy S ∈ P such
that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,
(2) there is a j ∈ N such that ψj = f and the sequence (S(fn))n∈N converges to j.

If a class U is learnable in the limit with respect to ψ by a strategy S, then we
write U ∈ LIMψ(S). Let LIMψ = {U | U is learnable in the limit w.r.t. ψ}, and
define LIM =

⋃
ψ∈P2 LIMψ.

As far as the semantics of the hypotheses output by a strategy S is con-
cerned, whenever S is defined on input fn, then we always interpret the number
S(fn) as a ψ–number. This convention is adopted to all the definitions below.
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Furthermore, note that LIMϕ = LIM for any ϕ ∈ Göd. In the above definition
LIM stands for “limit.”

Looking at Definition 1 one may be tempted to think that it is too general.
Maybe we should add some requirements that seem very natural. Since it may be
hard for a strategy to know which inputs may occur, it could be very convenient
to require S ∈ R. Furthermore, if the strategy outputs a program i such that
ϕi /∈ R, then this output cannot be correct. Hence, it seems natural to require the
strategy to output exclusively hypotheses describing recursive functions. These
demands directly yield the following definition:

Definition 2 (Wiehagen [23]). Let U ⊆ R and let ψ ∈ P2. The class U is
said to be R–totally learnable with respect to ψ if there is a strategy S ∈ R such
that

(1) ψS(n) ∈ R for all n ∈ N,
(2) for each f ∈ U there is a j ∈ N such that ψj = f , and (S(fn))n∈N converges

to j.

R-TOTALψ(S), R-TOTALψ, and R-TOTAL are defined in analogy to the
above.

However, now it is not difficult to show that R-TOTAL = NUM (cf. Zeug-
mann and Zilles [29, Theorem 2]). This is the first characterization of a learning
type in terms of recursive numberings. This characterization shows how R-total
learning can be achieved, i.e., by using the well-known identification by enumer-
ation technique.

Next, we recall the definition of reliable learning introduced by Blum and
Blum [6] and Minicozzi [19]. Intuitively, a learner M is reliable provided it con-
verges if and only if it learns.

Definition 3 (Blum and Blum [6], Minicozzi [19]). Let U ⊆ R, M ⊆ T
and let ϕ ∈ Göd. The class U is said to be reliably learnable on M if there is a
strategy S ∈ R such that

(1) U ∈ LIMϕ(S), and
(2) for all functions f ∈ M, if the sequence (S(fn))n∈N converges, say to j,

then ϕj = f .

Let M-REL denote the family of all classes U that are reliably learnable on M.

Note that neither in Definition 1 nor in Definition 3 a requirement is made
concerning the intermediate hypotheses output by the strategy S. The follow-
ing definition is obtained from Definition 1 by adding the requirement that S
correctly reflects all but the last δ data seen so far.

Definition 4 (Akama and Zeugmann [1]). Let U ⊆ R, let ψ ∈ P2 and let
δ ∈ N. The class U is called consistently learnable in the limit with δ-delay with
respect to ψ if there is a strategy S ∈ P such that
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(1) U ∈ LIMψ(S),
(2) ψS(fn)(x) = f(x) for all f ∈ U , n ∈ N and all x such that x + δ ≤ n.

We define CONSδ
ψ(S),CONSδ

ψ, and CONSδ analogously to the above.

We note that for δ = 0 Barzdin’s [4] original definition of CONS is obtained.
We therefore usually omit the upper index δ if δ = 0. This is also done for the
other version of consistent learning defined below. We use the term δ-delay, since
a consistent strategy with δ-delay correctly reflects all but at most the last δ data
seen so far. If a strategy S learns a function class U in the sense of Definition 4,
then we refer to S as a δ-delayed consistent strategy.

In Definition 4 consistency with δ-delay is only demanded for inputs that
correspond to some function f from the target class U . Note that for δ = 0 the
following definition incorporates Wiehagen and Liepe’s [24] requirement on a
strategy to work consistently on all inputs.

Definition 5 (Akama and Zeugmann [1]). Let U ⊆ R, let ψ ∈ P2 and let
δ ∈ N. The class U is called T –consistently learnable in the limit with δ-delay
with respect to ψ if there is a strategy S ∈ R such that

(1) U ∈ CONSδ
ψ(S),

(2) ψS(fn)(x) = f(x) for all f ∈ R, n ∈ N and all x such that x + δ ≤ n.

We define T -CONSδ
ψ(S), T -CONSδ

ψ, and T -CONSδ analogously to the above.

We note that for all δ ∈ N and all learning types LT ∈ {CONSδ, T -CONSδ}
we have LTϕ = LT for every ϕ ∈ Göd.

Finally, we look at another mode of convergence which goes back to Feld-
man [9], who called it matching in the limit and considered it in the setting of
learning languages. The difference to the mode of convergence used in Defini-
tion 1, which is actually syntactic convergence, is to relax the requirement that
the sequence of hypotheses has to converge to a correct program, by seman-
tic convergence. Here by semantic convergence we mean that after some point
all hypotheses are correct but not necessarily identical. Nowadays, the resulting
learning model is usually referred to as behaviorally correct learning. This term
was coined by Case and Smith [8]. As far as learning of recursive functions is
concerned, behaviorally correct learning was formalized by Barzdin [2,3].

Definition 6 (Barzdin [2,3]). Let U ⊆ R and let ψ ∈ P2. The class U is said
to be behaviorally correctly learnable with respect to ψ if there is a strategy
S ∈ P such that for each function f ∈ U ,

(1) for all n ∈ N, S(fn) is defined,
(2) ψS(fn) = f for all but finitely many n ∈ N.

If U is behaviorally correctly learnable with respect to ψ by a strategy S, we write
U ∈ BCψ(S). BCψ and BC are defined analogously to the above above.
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3 Characterizations in Terms of Complexity

We continue with characterizations in terms of computational complexity. Char-
acterizations are a useful tool to get a better understanding of what different
learning types have in common and where the differences are. They may also help
to overcome difficulties that arise in the design of powerful learning algorithms.

Let us recall the needed definitions of several types of computable operators.
Let (Fx)x∈N be the canonical enumeration of all finite functions.

Definition 7 (Rogers [21]). A mapping O : P �→ P from partial functions to
partial functions is called a partial recursive operator if there is a recursively
enumerable set W ⊂ N

3 such that for any y, z ∈ N it holds that O(f)(y) = z if
there is x ∈ N such that (x, y, z) ∈ W and f extends the finite function Fx.

Furthermore, O is said to be a general recursive operator if T ⊆ dom(O),
and f ∈ T implies O(f) ∈ T.

A mapping O : P �→ P is called an effective operator if there is a function
g ∈ R such that O(ϕi) = ϕg(i) for all i ∈ N. An effective operator O is said to
be total effective provided that R ⊆ dom(O), and ϕi ∈ R implies O(ϕi) ∈ R.

For more information about general recursive operators and effective opera-
tors we refer the reader to [14,20,28]. If O is an operator which maps functions
to functions, we write O(f, x) to denote the value of the function O(f) at the
argument x.

Definition 8. A partial recursive operator O : P �→ P is said to be monotone
if for all functions f, g ∈ dom(O) the following condition is satisfied:

If ∀∞x[f(x) ≤ g(x)] then ∀∞x[O(f, x) ≤ O(g, x)].

Let O be any arbitrarily fixed operator and let M ⊆ P. Then the abbreviation
“O(M) ⊆ M” stands for “M ⊆ dom(O) and f ∈ M implies that O(f) ∈ M .”

Any computable operator can be realized by a 3-tape Turing machine T which
works as follows: If for an arbitrary function f ∈ dom(O), all pairs (x, f(x)),
x ∈ dom(f) are written down on the input tape of T (repetitions are allowed),
then T will write exactly all pairs (x,O(f, x)) on the output tape of T (under
unlimited working time).

Let O be a partial recursive operator, a general recursive operator or a total
effective operator. Then, for f ∈ dom(O), m ∈ N we set: ΔO(f,m) = “the least
n such that, for all x ≤ n, f(x) is defined and, for the computation of O(f,m),
the Turing machine T only uses the pairs (x, f(x)) with x ≤ n; if such an n does
not exist, we set ΔO(f,m) = ∞.”

For any function u ∈ R we define Ωu to be the set of all partial recursive
operators O satisfying ΔO(f,m) ≤ u(m) for all f ∈ dom(O). For the sake of
notation, below we shall use id + δ, δ ∈ N, to denote the function u(x) = x + δ
for all x ∈ N.

Blum and Blum [6] initiated the characterization of learning types in terms
of computational complexity. Here they distinguished between a priori char-
acterizations and a posteriori characterizations. In order to obtain an a priori
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characterization one starts from classes of operator honesty complexity classes,
which are defined as follows: Let O be a computable operator. Then we define

CO =df {f | ∃i[ϕi = f ∧ ∀∞x[Φi(x) ≤ O(f, x)]]} ∩ R. (1)

That is, every function in CO possesses a program i such that the complexity
of program i is in a computable way bounded by its function values, namely
by O(f, x) almost everywhere. So let LT be any learning type, e.g., learning in
the limit. Then the general form of an a priori characterization of LT looks as
follows:

Theorem 1. Let U ⊆ R be any class. Then we have U ∈ LT if and only if there
is a computable operator O such that U ⊆ CO, where the operator O has to fulfill
some additional properties.

Example 1. Consider the set of all operators which can be defined as follows:
For any t ∈ R we define O(f, x) =df t(x) for every f ∈ R and x ∈ N. Then the
complexity classes defined in (1) have the form

Ct = {f | ∃i[ϕi = f ∧ ∀∞x[Φi(x) ≤ t(x)]]} ∩ R. (2)

and Theorem 1 yields the following a priori characterization of R-TOTAL:
Let U ⊆ R be any class. Then we have U ∈ R-TOTAL if and only if there is

a recursive function t ∈ R such that U ⊆ Ct.
Since this theorem holds obviously also in case that U = Ct, we can directly

use the fact that R-TOTAL = NUM and conclude that Ct ∈ NUM for every
t ∈ R. Thus, using the a priori characterization of R-TOTAL we could easily
reprove Ct ∈ NUM, which was originally shown by McCreight and Meyer [17].

Example 2. Note that for every general recursive operator O there is a monotone
general recursive operator M such that O(f, x) ≤ M(f, x) for every function f ∈
T and almost all x ∈ N (cf. Meyer and Fischer [18]). Furthermore, Grabowski [13]
proved the following a priori characterization of T-REL:

Let U ⊆ R be any class. Then we have U ∈ T-REL if and only if there exists
a general recursive operator O such that U ⊆ CO.

Using that every function f ∈ R0,1 satisfies f(x) ≤ 1 for all x ∈ N we directly
see by an easy application of Meyer and Fischer’s [18] result that

T-REL ∩℘ (R0,1) = R-TOTAL ∩℘ (R0,1) = NUM∩℘ (R0,1) ; (3)

i.e., reliable learning on the total functions restricted to classes of recursive pred-
icates is exactly as powerful as R-total learning restricted to classes of recursive
predicates. On the other hand, R-TOTAL ⊂ T-REL (cf. Grabowski [13]).

Moreover, Stephan and Zeugmann [22] showed that

NUM∩℘ (R0,1) ⊂ R-REL ∩℘ (R0,1) . (4)

The latter result was already published in Grabowski [13], but the new proof
is much easier. It uses the class of approximations to the halting problem that
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has been considered in [6]. This class is defined as follows: Let (ϕ,Φ) be any
complexity measure, and let τ ∈ R be such that for all i ∈ N

ϕτ(i)(x) =df

⎧
⎨

⎩

1, if Φi(x)↓ and Φx(x) ≤ Φi(x);
0, if Φi(x)↓ and ¬[Φx(x) ≤ Φi(x)];
↑ , otherwise.

Now, we set B = {ϕτ(i) | i ∈ N and Φi ∈ Rmon}. Then in [22, Theorems 2 and 3]
both results were proved B /∈ NUM and B ∈ R-REL yielding (4). We shall come
back to this class.

Now, one can combine this with the a priori characterization of R-REL
obtained by Blum and Blum [6], which is as follows:

Let U ⊆ R be any class. Then we have U ∈ R-REL if and only if there exists
a total effective operator O such that U ⊆ CO.

Note that the difference between the a priori characterization of T-REL and
R-REL is that the operator O is general recursive and total effective, respec-
tively.

Putting this all together, we directly see that Meyer and Fischer’s [18] bound-
ability theorem cannot be strengthened by replacing “general recursive operator”
by “total effective operator.” And it also allows to show that there is an operator
honesty complexity class CO generated by a total effective operator O such that
CO �⊆ C

˜O for every general recursive operator Õ. For an explicit construction of
such an operator O we refer the reader to [14,28].

Furthermore, Theorem 1 can be precisely stated for LIM, CONSδ, and
T -CONSδ by using techniques from Blum and Blum [6], Wiehagen [23] and
Akama and Zeugmann [1]. The proofs can be found in [29, Theorems 37, 35, 34].

Let U ⊆ R, then we have Let U ⊆ R, then we have U ∈ LIM if and only if
there exists an effective operator O such that O(U) ⊆ R and U ⊆ CO.

Let U ⊆ R and let δ ∈ N; then we have

(1) U ∈ CONSδ if and only if there exists an effective operator O ∈ Ωid+δ such
that O(U) ⊆ R and U ⊆ CO.

(2) U ∈ T -CONSδ if and only if there is a general recursive operator O ∈ Ωid+δ

such that U ⊆ CO.

These a priori characterizations shed also additional light to the fact that
the learning types T-REL, R-REL, and T -CONSδ are closed under union, while
LIM and CONSδ are not. In the former the operator O maps R to R, and in
the latter we only have O(U) ⊆ R.

As we have seen, operator honesty characterizations have been found for
many learning types, but some important ones are missing. These include BC,
TOTAL, and conform learning. The learning criterion TOTAL is obtained from
Definition 2 by replacing S ∈ R by S ∈ P and adding S(fn) ∈ R for all f ∈ U
and all n ∈ N. Conform learning is a modification of consistent learning, where
the requirement to correctly reflect all the functions values seen so far is replaced
by the demand that the hypothesis output does never convergently contradict
inputs already seen (cf. [29, Definition 22]).
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Blum and Blum [6] also initiated the study of a posteriori characterizations
of learning types. In particular they showed that any class U ∈ R-REL can be
characterized in a way such that there exists a general recursive operator O for
which every function from U is everywhere O-compressed.

For the sake of completeness we include here the definition of everywhere
O-compressed.

Definition 9 (Blum and Blum [6]). Let (ϕ,Φ) be a complexity measure, let
f ∈ R, and let O be a general recursive operator. Then a program i ∈ N is said
to be an O-compression index of f (relative to (ϕ,Φ)) if

(1) ϕi = f ,
(2) ∀j[ϕj = f → ∀x Φi(x) ≤ O(Φj ,max {i, j, x})].

In this case we also say that the function f is everywhere O-compressed.

We note that Definition 9 formalizes the concept of a fastest program (mod-
ulo an operator O) in a useful way. The O-compression index i satisfies the
condition Φi(x) ≤ O(Φj , x) for all but finitely many x ∈ N and all programs j
computing the same function as program i does. Additionally, it also provides
an upper bound for the least argument n such that Φi ≤ O(Φj , x) for all x > n,
i.e., max {j, i}, and a computable majorante for those values m ≤ n for which
possibly Φi(m) > O(Φj ,m); i.e., the value O(Φj ,max {i, j}.

Of course, one can also consider the notion of everywhere O-compressed
functions for total effective operators or any other type of computable operator O
provided that all considered complexity functions Φj are in dom(O).

Theorem 2 (Blum and Blum [6]). For every class U ⊆ R we have the fol-
lowing: U ∈ R-REL if and only if there is a general recursive operator O such
that every function from U is everywhere O-compressed.

However, in [6] it remained open whether or not one can also reliably learn
on R an O-compression index for every function f in the target class U . We were
able to show (cf. [26]) that this is not always the case, when using the algorithm
described in [6]. Furthermore, in [27] we provided a suitable modification of
Definition 9 resulting in a reliable O-compression index, and then showed that
such reliable O-compression indices are reliable learnable on R.

On the other hand, Blum and Blum [6, Section 8] used Theorem 2 to show
that several interesting functions classes are contained in R-REL including the
class B of approximations to the halting problem. Using different techniques, this
result was extend in [22]. Conversely, one can also consider any particular gen-
eral recursive operator op and ask for the resulting function class of everywhere
op-compressed functions, which are, via Theorem 2, known to be in R-REL.
Unfortunately, almost nothing is known in this area. Therefore, we would like
to encourage research along these two lines, i.e., considering interesting function
classes and figuring out to which learning type they belong, or to study special
general recursive operators with respect to the learning power they generate.

In order to characterize the learning type T -CONSδ, the following modifica-
tion of Definition 9 turned out to be suitable:
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Definition 10. Let (ϕ,Φ) be a complexity measure, let f ∈ R, and let O be
a general recursive operator. Then a program i ∈ N is said to be an absolute
O-compression index of f (relative to (ϕ,Φ)) if

(1) ϕi = f ,
(2) ∀j∀x[ϕj(y) = f(y) for all y ≤ ΔO(Φj ,max{i, x})

→ Φi(x) ≤ O(Φj ,max{i, x})].

In this case we also say that the function f is absolutely O-compressed.

To show the following lemma we have to restrict the class of complexity
measures a bit. We shall say that a complexity measure (ϕ,Φ) satisfies Property
(+) if for all i, x ∈ N such that Φi(x) is defined the condition Φi(x) ≥ ϕi(x) is
satisfied.

Note that Property (+) is not very restrictive, since various “natural” com-
plexity measures satisfy it.

Lemma 1. Let (ϕ,Φ) be a complexity measure satisfying Property (+), and let
δ ∈ N be arbitrarily fixed. Furthermore, let U ∈ T -CONSδ. Then there is a gen-
eral recursive operator O ∈ Ωid+δ such that every function from U is absolutely
O-compressed.

The following lemma shows that the condition presented in Lemma 1 is also
sufficient. Furthermore, this lemma holds for all complexity measures.

Lemma 2. Let (ϕ,Φ) be any complexity measure, let δ ∈ N be arbitrarily fixed,
let O ∈ Ωid+δ, and let U ⊆ R such that every function from U is absolutely
O-compressed. Then there is a strategy S ∈ R such that

(1) U ∈ T -CONSδ
ϕ(S),

(2) for every f ∈ U the sequence (S(fn))n∈N converges to an absolute O-
compression index of f .

Furthermore, Lemmata 1 and 2 directly allow for the following theorem:

Theorem 3. Let (ϕ,Φ) be a complexity measure satisfying Property (+), let
δ ∈ N be arbitrarily fixed, and let U ⊆ R. Then we have

U ∈ T -CONSδ
ϕ(S) if and only if there is an operator O ∈ Ωid+δ such that

every function f from U is absolutely O-compressed. Furthermore, for every
f ∈ U the sequence (S(fn))n∈N converges to an absolute O-compression index
of f .

Though we succeeded to show an a posteriori characterization for the learning
type T -CONSδ, it is not completely satisfactory, since it restricts the class of
admissible complexity measures. Can this restriction be removed?

Nevertheless, combining the a priori characterization of T -CONSδ with the
a posteriori characterization provided in Theorem 3 shows that the family of
operator honesty classes coincides for every δ ∈ N with the family of absolutely
operator compressed classes.

In this regard, it would be very nice to have also an a posteriori characteri-
zation of T-REL.
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4 Characterizations in Terms of Computable Numberings

The reader may be curious why our definitions of learning types include a num-
bering ψ with respect to which we aim to learn. After all, if one can learn a class
U with respect to some numbering ψ, then one can also infer U with respect
to any Gödel numbering ϕ. However, ψ may possess properties which facilitate
learning. For example, since R-TOTAL = NUM, for every class U ∈ R-TOTAL
there is numbering ψ ∈ R2 such that U ⊆ Rψ, and so the identification by
enumeration technique over ψ always succeeds.

Next, one may consider measurable numberings, which are defined as follows:
A numbering ψ ∈ P2 is said to be measurable if the predicate “ψi(x) = y” is uni-
formly recursive in i, x, y (cf. Blum [7]). So, if ψ ∈ P2 is a measurable numbering
and U ⊆ R is such that U ⊆ Pψ, then the identification by enumeration tech-
nique is still applicable. A prominent example is the class U = {Φi | i ∈ N} ∩ R,
where (ϕ,Φ) is a complexity measure. Note that the halting problem for the
numbering Φ ∈ P2 is undecidable (cf. [25, Lemma 3]).

Blum and Blum [6] also considered P-REL and P-REL (cf. Definition 3
for M = P and M = P, respectively) and showed that P-REL = P-REL.
Furthermore, they proved that a class U ⊆ R is in P-REL if and only if there
is measurable numbering ψ such that U ⊆ Pψ. Furthermore, they reliably on
P learnable function classes are characterized as the h-honesty function classes,
i.e., U ⊆ Ch, where the operator O is defined as O(f, n) = h(n, f(n)) (for a more
detailed proof see [29, Theorems 12, 27]).

Note that these results also allow for a first answer of how inductive inference
strategies discover their errors. This problem was studied in detail in Freivalds,
Kinber, and Wiehagen [10]. The results obtained clearly show the importance of
characterizations in terms of computable numberings and related techniques.

One such technique is the amalgamation technique, which is given implicitly
in Barzdin and Podnieks [5] and then formalized in Wiehagen [23]. It was also
independently discovered by Case and Smith [8], who gave it its name. Let amal
be a recursive function mapping any finite set I of ψ-programs to a ϕ-program
such that for any x ∈ N, ϕamal(I)(x) is defined by running ϕi(x) for every i ∈ I
in parallel and taking the first value obtained, if any.

In order to have a further example, let us take a closer look at R-REL. Here
we have the additional problem that the strategy S has to diverge on input ini-
tially growing finite segments of any function f it cannot learn. We are interested
in learning of how this can be achieved. We need the following notation: For every
f ∈ R and n ∈ N we write f [n] to denote the tuple (f(0), · · · , f(n)). Moreover,
for any f ∈ R, d ∈ R, and ψ ∈ P2 we define Hf = {i | i ∈ N, f [d(i)] ⊆ ψi}. In
[15, Theorem 44] the following was shown:

Let U ⊆ R be any function class. Then U ∈ R-REL if and only if there is a
numbering ψ ∈ P2 and a function d ∈ R such that

(1) for every f ∈ R, if Hf is finite, then Hf contains a ψ-program of the func-
tion f , and

(2) for every f ∈ U , the set Hf is finite.



On the Interplay Between Inductive Inference 135

The proof of this theorem instructively answers where the ability to infer a
class U reliably on R may be come from. On the one hand, it comes from a well
chosen hypothesis space ψ. For any function f ∈ U there are only finitely many
“candidates” in the set Hf including a ψ-program of f . So, in this case, the
amalgamation technique succeeds. On the other hand, the infinity of this set Hf

for every function which is not learned, then ensures that the strategy provided in
the proof has to diverge. This is also guaranteed by the amalgamation technique,
since the sets of “candidates” forms a proper chain of finite sets and so arbitrary
large hypotheses are output on every function f ∈ R with Hf being infinite.

There are many more characterization theorems in terms of computable num-
berings including some for LIM and BC (cf., e.g., [29, Section 8] and the refer-
ences therein), and consistent learning with δ-delay (cf. [1, Section 3.2]).

However, there are also many open problems. For example, Kinber and Zeug-
mann [16] generalized reliable learning in the limit as defined in this paper to
reliable behaviorally correct learning and reliable frequency inference. All these
learning types share the useful properties of reliable learning such as closure
under recursively enumerable unions and finite invariance (cf. Minicozzi [19]).
But we are not aware of any characterization of reliable behaviorally correct
learning and reliable frequency inference in terms of computable numberings or
in terms of computational complexity.
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Abstract. We present an interactive proof system dedicated to program
extraction from proofs. In a previous paper [5] the underlying theory
IFP (Intuitionistic Fixed Point Logic) was presented and its soundness
proven. The present contribution describes a prototype implementation
and explains its use through several case studies. The system benefits
from an improvement of the theory which makes it possible to extract
programs from proofs using unrestricted strictly positive inductive and
coinductive definitions, thus removing the previous admissibility restric-
tions.

1 Introduction

One of the salient features of constructive proofs is the fact that they carry
computational content which can be extracted by a simple automatic proce-
dure. Examples of formal systems providing constructive proofs are intuitionis-
tic (Heyting) arithmetic or (varieties of) constructive type theory. There exist
several computer implementations of these systems, which support program
extraction based on Curry-Howard correspondence (e.g. Minlog [4], Nuprl [8,10],
Coq [7,9], Isabelle [1], Agda [2]). However, none of them has program extraction
as their main raison d’être.

In [5] the system IFP (Intuitionistic Fixed Point Logic) was introduced whose
primary goal is program extraction. IFP is first-order logic extended with least
and greatest fixed points of strictly positive predicate transformers. Program
extraction in IFP is based on a refined realizability interpretation that permits
arbitrary classically true disjunction-free formulas as axioms and ignores the
(trivial) computational content of proofs of Harrop formulas thus leading to pro-
grams without formal garbage. The main purpose of [5] was to show soundness
of this realizability interpretation, that is, the correctness of extracted programs.

In the present paper we present Prawf1, the first prototype of an implemen-
tation of IFP as an interactive proof system with program extraction feature.
Prawf is based on a (compared with [5]) simplified notion of program and

1 ‘Prawf’ (pronounced /prau
“
v/) is Welsh for ‘Proof’.
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an improved Soundness Theorem that admits least and greatest fixed points
of arbitrary strictly positive predicate transformers, removing the admissibility
restriction in [5].

The paper is structured as follows: In Sect. 2 we briefly recap IFP and pro-
gram extraction in IFP, explaining in some detail the above mentioned changes
and improvements. In Sect. 3 we describe Prawf and its basic use through
some simple examples involving real and natural numbers. Section 4 contains an
advanced case study about exact real number representations: The well-known
signed digit representation and infinite Gray-code [12] are represented by coin-
ductive predicates and inclusion between the predicates is proven in Prawf thus
enabling the extraction of a program transforming the signed digit representa-
tion into infinite Gray-code. In the conclusion we reflect on what we achieved
and compare our work with related approaches.

2 Program Extraction in IFP

We briefly summarize the system IFP and its associated program extraction
procedure. For full details we refer to [5].

assumption

Pair proj proj

Lt Rt

case

cl cocl

ind
rec

coind
rec

Fig. 1. Proofs and their extracted programs

IFP Syntax and Proofs. The syntax of IFP has terms, formulas, predicates
and operators, the latter describing strictly positive (s.p.) and hence monotone
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predicate transformers. For every s.p. operator Φ there are predicates μΦ and
νΦ denoting the predicates defined inductively resp. coinductively from Φ:

Terms � r, s, t ::= x (variables) | f (t1, . . . , tn) ( f function constant)
Formulas � A, B ::= P(�t) (P not an abstraction, �t arity(P)-many terms)

| A ∧ B | A ∨ B | A → B | ∀x A | ∃x A

Predicates � P,Q ::= X (predicate variables) | P (predicate constants)
| λ �x A | μΦ | νΦ
(arity(λ �x A) = | �x |, arity(μΦ) = arity(νΦ) = arity(Φ))

Operators � Φ,Ψ ::= λX P (P s.p. in X, arity(λX P) = arity(X) = arity(P))

where P is s.p. in X if every free occurrence of X in P is at a s.p. position, i.e.
not in the premise of an implication.

The proof rules of IFP are the usual rules of intuitionistic first-order logic
with equality (regarding equality as binary predicate constant) augmented by
rules stating that μΦ and νΦ are the least and greatest fixed points of Φ (see
Fig. 1, ignoring for the moment the expressions to the left of the colon).

Programs. The programs extracted from proofs are terms in an untyped λ-
calculus enriched by constructors for pattern matching and recursion.

Programs � p, q ::= a, b (program variables)
| Nil | Lt(p) | Rt(p) | Pair(p, q)

| case p of {Cl1; . . . ;Cln}
| λa p

| p q

| rec p

where in the case-construct each Cli is a clause of the form C(a1, . . . , ak) → q
in which C is a constructor, i.e. one of Nil,Lt,Rt,Pair, and the ai are pairwise
different program variables binding the free occurrences of the ai in q. rec p
computes the (least) fixed point of p, hence p rec(p) = rec(p). It is well-known
that an essentially equivalent calculus can be defined within the pure untyped
λ-calculus, however, the enriched version is more convenient to work with. For
the sake of readability we slightly simplify our notion of program compared to
the one in [5] by no longer distinguishing between programs and functions.

Program Extraction. In its raw form the extracted program of a proof is simply
obtained by replacing the proof rules by corresponding program constructs fol-
lowing the Curry-Howard correspondence. This is summarized in Fig. 1 where
p : A means that p is the program extracted from a proof of A. In the assump-
tion rule and the rule →

+, ‘a : A �’indicates that the assumption A in the proof
has been assigned the program variable a. In the rule ∧

−

L, projL(p) stands for
the program case p of {Pair(a, b) → a}. Similarly for ∧

−

R. The rules ∀+ and ∃−
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are subject to the usual provisos. In the rules ind and coind the program mΦ

realizes (in a sense explained below) the monotonicity of Φ, that is the formula
X ⊆ Y →Φ(X) ⊆ Φ(Y ) (with fresh predicate variables X,Y).

The correctness of programs is expressed through a realizability relation p r A
between programs p and formulas A which is defined by recursion on formulas
(see [5]). Formally, realizability is defined as a family of unary predicates R(A)
on a Scott domain D of ‘potential realizers’. p r A means that the denotation
of p in D satisfies the predicate R(A). The Soundness Theorem [5] shows that
if p is extracted from a proof of A, then p realizes A. The Soundness Theorem
is formalised in a theory RIFP that extends IFP by a sort of realizers and
axioms that describe the behaviour of programs. The denotational semantics
of programs is linked to the operational one through the Adequacy Theorem,
stating that programs with non-⊥ value terminate and reduce to that value [6].

Refinements. Program extraction in its raw form (as sketched above) produces
correct programs which, however, contain a lot of garbage and are therefore prac-
tically useless. This is due to programs extracted from sub proofs of Harrop for-
mulas, that is, formulas which do not contain a disjunction at a strictly positive
position. These programs contain no useful information and should therefore be
contracted to a trivial program, say Nil. In a refined realizability interpretation,
which was presented in [5] and which is implemented in Prawf, this contrac-
tion is carried out. It is based on a refined notion of realizability and a refined
program extraction procedure. The proof of the soundness theorem becomes con-
siderably more complicated and could only be accomplished in [5] by subjecting
induction and coinduction to a certain admissibility condition. In [6] a sound-
ness proof without this restriction is given. It uses an intermediate system IFP′

whose induction and coinduction rules require as additional premise a proof of
the monotonicity of Φ, e.g.,

p :Φ(P) ⊆ P m : X ⊆ Y →Φ(X) ⊆ Φ(Y )
ind ′

rec(λ f (p ◦ m f )) : μ(Φ) ⊆ P

Soundness is then proven for IFP′ and transferred to IFP via an embedding
of IFP into IFP′. Minlog [4] has a similar refined realizability interpretation
but treats disjunction-free formulas and Harrop formulas in the same way. This
simplifies program extraction but seems to restrict the validity of the Soundness
Theorem to a constructive framework (see also the remarks in Sect. 5).

Axioms. For a proof with assumptions the soundness theorem states that the
extracted program computes a realizer of the proven formula from realizers of
the assumptions. If the assumptions contain no disjunctions at all - we call such
assumptions non-computational (nc) - then they are Harrop formulas and hence
their realizers are trivial but, even more, they are equivalent to their realizability
interpretations. This fact is extremely useful since it implies that a program
extracted from a proof that uses nc-assumptions (regarded as axioms specifying
a class of structures) will not depend on realizers of these axioms and will be
correct in any model of the axioms. For example, in a proof about real numbers
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(see Sect. 3) the arithmetic operations may be given abstractly and specified by
nc-axioms (e.g. ∀x (x + 0 = x) and ∀x (x � 0 → ∃y (x ∗ y = 1))).

Computation vs. Equational Reasoning. In the systems Nuprl, Coq, Agda, and
Minlog computation is built into the notion of proof by considering terms, for-
mulas or types up to normal form with respect to certain rewrite rules. As a con-
sequence, each of these systems has various (decidable or undecidable) notions
of equality, which may make proof checking (deciding the correctness of a proof)
algorithmically hard if not undecidable. The motivations for interweaving logic
and computation are partly philosophical and partly practical since in this way a
fair amount of (otherwise laborious) equational reasoning can be automatized. In
contrast, the system IFP strictly separates computation from reasoning. Its proof
calculus is free of computation and there is only one notion of equality obeying
the usual rules of equational logic. This makes proof checking a nearly trivial task.
Equational reasoning can be to a large extent (or even completely) externalised
by stating the required equations (which are nc-formulas) as axioms which can
be proven elsewhere (or believed). Computation is confined to programs and is
given through rewrite rules which enjoy an Adequacy Theorem stating that the
operational and the denotational semantics of programs match [3,6].

3 Prawf

Prawf [11] is a prototype implementation in Haskell, which allows users to write
IFP proofs and extract executable programs from them. It follows pretty closely
the theory of IFP sketched in the previous section but extends it in several
respects:

– the logical language of Prawf is many-sorted;
– names for predicates and operators can be introduced through declarations;
– induction and coinduction come in three variations, the original ones

presented in Sect. 2, and two strengthenings (half-strong and strong
(co)induction) which are explained and motivated below.

The software has two modes: a prover mode and an execution mode. The prover
mode enables users to create a proof environment, consisting of a language, a
context, declarations and axioms.

The proof rules in Prawf correspond to those of IFP and include the usual
natural deduction rules for predicate logic, rules for (co)induction, half-strong
(co)induction and strong (co)induction, as well as the equality rules such as
symmetry, reflexivity and congruence.

A theorem can be proven by applying these rules step by step or by using a
tactic. A tactic consists of a sequence of proof commands that allows users to
re-run a proof either partially or fully. Once proven, a theorem can be saved in
a theory and used as a part of another proof.

The execution mode allows running extracted programs. In this mode a user
can take advantage of the standard Prelude commands as well as special func-
tions for running and showing programs.
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An Introductory Example: Natural Numbers and Addition. We explain the work-
ing of Prawf by means of a simple example based on the language of real
numbers with the constants 0 and 1 and the operations + and − for addition
and subtraction. We first give the idea in ordinary mathematical language and
then show how to do it in Prawf. We define the natural numbers as the least
subset (predicate) of the reals that contains 0 and that contains x whenever it
contains x − 1:

N
Def
= μ(Φ), where Φ Def

= λXλx(x = 0 ∨ X(x − 1))

We prove that N is closed under addition:

∀x(N(x) → ∀y(N(y) → N(x + y)))

Hence assume N(x). We have to show ∀y(N(y) → N(x + y)), that is N ⊆ P where
P

Def
= λyN(x + y). By the induction rule it suffices to show Φ(P) ⊆ P, that is,

∀y ((y = 0 ∨N(x + (y − 1)) → N(x + y))

If y = 0 then N(x + y) holds since x + 0 = x (using an axiom) and N(x) holds by
assumption. If N(x + (y − 1)), then N((x + y) − 1) since x + (y − 1) = x + (y − 1)
(using an axiom) and hence N(x + y) by the closure rule.

In order to carry out this example in Prawf one first needs to define the
language. This can be done by creating in the directory batches a subdirectory
real (the name can be freely chosen), and in that directory the text file lang.txt
(the name is prescribed) with the contents

<sorts>
R
<end sorts>

<constants>
0,1:R
<end constants>

<functions>
+ : (R,R) -> R;
- : (R,R) -> R;
<end functions>

<predicates>
= : (R,R);
<end predicates>

Note that we do not need to give definitions of + and -. For the proofs it is
sufficient to know their properties that are expressed through axioms.

In the same subdirectory one creates the file decls.txt (name prescribed)
containing the definition of N:
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Phi:(R) = lambda Y:(R) lambda (z:R) (z=0 v Y(z-1))
N:(R) = Mu(Phi)

Finally, one creates (again in the directory real) the file axi.txt (name pre-
scribed) containing the axioms one wishes to use. The axioms must be nc-
formulas that is, not contain any disjunctions (for example the predicate N
must not occur since its definition contains ∨ as part of the definition of Φ).

ax1 . all x:R x+0 = x
ax2 . all x:R all y:R (x+y)-1 = x+(y-1)

Now we are set to start our proof. We load the Haskell file Mode.hs, execute
main, load our batch by typing real (after which the contents of the files we
created will be displayed) and type at the prompt our goal formula

Enter goal formula> all x:R (N(x) -> all y:R (N(y) -> N(x+y)))

Proving in Prawf proceeds in the usual goal-directed backwards reasoning
style. In our example the first two steps are easy: alli (for ∀-introduction back-
wards), then impi v1 (for →-introduction backwards creating the assumption
v1 : N(x)). After these two steps one arrives at

Assumptions:
v1 : N(x)

Context of the goal:
variables: x: R

Current goal:
|- ?2 : all (y:R) (N(y) -> N(x+y))

at which point we use induction by typing ind. This brings us to the premise of
induction

Assumptions:
v1 : N(x)

Context of the goal:
variables: x: R

Current goal:
|- ?3 : all (y:R) (Phi(lambda (y:R) N(x+y))(y) -> N(x+y))

The command unfold Phi yields

Assumptions:
v1 : N(x)

Context of the goal:
variables: x: R

Current goal:
|- ?3 : all (y:R) ((y=0 v N(x+(y-1))) -> N(x+y))

which easily follows from our axioms and some equality reasoning. The necessary
steps in Prawf (and much more) can be found in a tutorial on the Prawf
website.



144 U. Berger et al.

Program Extraction. After completing the proof above one can extract a program
by typing extract addition (addition is a name we chose). This will write
the extracted program into the file progs.txt:

addition . ProgAbst "v1" (ProgRec (ProgAbst "f_mu"
(ProgAbst "a_comp" (ProgCase (ProgVar "a_comp")
[(Lt,["a_ore"],ProgVar "v1"),(Rt,["b_ore"],ProgCon
Rt [ProgApp (ProgVar "f_mu") (ProgVar "b_ore")])]))))

The program transforms realizers of N(x) and N(y) into a realizer of N(x + y).
By the inductive definition of the predicate N its elements are realized in unary
notation where Lt( ) plays the role of 0 and Rt plays the role of the successor
function. The extracted program can be rewritten in more readable form as
follows (using Haskell notation):

addition v1 a_comp = case a_comp of
{

Lt _ -> v1 ;
Rt b_ore -> Rt (addition v1 b_ore)

}

which clearly is the usual algorithm for addition of unary natural numbers. How
to run this program is described in detail in the tutorial.

Half-Strong and Strong Induction. The premise of the induction rule for the
predicate N is logically equivalent to the conjunction of the induction base, P(0),
and the induction step, ∀x (P(x − 1) → P(x)). The induction step slightly differs
from the usual induction step since it lacks the additional assumption N(x).
This discrepancy disappears in the following rule of half-strong induction and
its associated extracted program

p : μ(Φ) ∩Φ(P) ⊆ P

hsind
rec(λ f (p ◦ 〈id,mΦ f 〉) : μ(Φ) ⊆ P

where 〈 f , g〉
Def
= λaPair( f a, g a) and id

Def
= λa a. In the following example, half-

strong induction appears to be needed to extract a good program. We aim to
prove that the distance of two natural numbers is a natural number

∀x(N(x) → ∀y(N(y) → N(x − y) ∨N(y − x)))

It is possible to prove this by (ordinary) induction on N(x), however, the proof is
complicated and the extracted program contrived and inefficient. On the other
hand, with half-strong induction (command hsind) the goal reduces to proving
∀y(N(y) → N(x− y)∨N(y− x)) from the assumptions N(x) and x = 0∨∀y(N(y) →

N((x − 1) − y) ∨ N(y − (x − 1))) which, because of the extra assumption N(x), is
relatively straightforward. Moreover, the extracted program is the expected one
which removes successors from (realizers of) x and y until one of the two becomes
0 after which what remains of the other one is returned as result. The interested
reader is invited to try this example on their own.
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Strong induction is similar to half-strong induction, however, the intersection
with μ(Φ) is taken ‘inside’ Φ:

p :Φ(μ(Φ) ∩ P) ⊆ P

sind
rec(λ f (p ◦ mΦ 〈id, f 〉) : μ(Φ) ⊆ P

For the case of the natural numbers its effect is that the step becomes logically
equivalent to ∀x (N(x) ∧ P(x) → P(x + 1)), that is, precisely the step in Peano
induction. The extracted program corresponds exactly to primitive recursion.

Half-strong and strong coinduction will be discussed in Sect. 4.

4 Case Study: Exact Real Number Representations

As a rather large example, we formalize the existence of various exact represen-
tations of real numbers and prove the existence of conversions between them in
Prawf.

We continue to work in the theory of real numbers implemented in Prawf
through the batch real introduced in the previous section, but extend language,
declarations and axioms as needed.

The structure of real numbers represented by the sort R and various constants
and functions does not support any kind of computation on real numbers. For
computation, we need representations. These can be provided in IFP through
suitable predicates and their realizability interpretation, in a similar style as
we represented unary natural numbers through the predicate N. In general, a
representation is provided by defining a predicate P such that a realizer of P(x)
is a representation of x.

Exact representations of real numbers are typically infinite sequences or
streams which are naturally expressed through coinductively defined predicates.
For example, the predicate S(x) meaning the existence of the signed digit rep-
resentation of x, which is one of the standard representations of real numbers
for computation, is expressed as follows. To give an impression how this looks
in Prawf we use in the following machine notation where v stands for ∨, ex for
∃, m is a constant for −1, * is multiplication, and <= means ‘less or equal’.

SD:(R) = lambda (x:R) ((x = m v x = 1) v x = 0)
PhiS:(R) = lambda X:(R) lambda (x:R) ex (d:R)

(SD(d) and (abs(2*x-d)<= 1) and X(2*x-d))
S:(R) = Nu(PhiS)

This defines S as the largest predicate on the reals satisfying S = PhiS(S). A
realizer of S(x) is an infinite stream of signed digits where a digit is a realizer
of a formula of the form SD(y) that is either Lt(Lt(Nil)) or Lt(Rt(Nil)) or
R(Nil) (representing −1, 0, 1). Streams are given as infinitely nested pairs, e.g.
(writing a:b for Pair(a,b)) Lt(Lt(Nil)) : Rt(Nil) : Rt(Nil) : ... (that
is, −1 : 0 : 0 : . . .) which represents the real number −0.5.

Another representation, called infinite Gray-code [12], is defined through a
coinductive predicate G(x) defined in Prawf by
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B:(R) = lambda (x:R) (x <= 0 v 0 <= x)
D:(R) = lambda (x:R) (not (x = 0)) -> B(x)
PhiG:(R) = lambda X:(R) lambda (x:R)

(m <= x and x <= 1) and (D(x) and X(t(x)))
G:(R) = Nu(PhiG)

Here, t:(R)->R is the tent function defined as t(x)=1-2*abs(x). An interesting
and challenging aspects of the infinite Gray-code is the fact that it is partial, more
precisely, a realizer of G(x) is a stream that may have one undefined element.
This is due to the premise not (x = 0) in the definition of D which, if false
(that is, x=0), will admit as realizer a program whose value is undefined (e.g. a
program that loops infinitely).

Following [6], we proved in Prawf

Theorem . all (x:R) (S(x) -> G(x))

The proof is rather involved in that it consists of two coinductions, half-strong
coinduction, and Archimedean induction, which is a special form of induction
suitable for proving predicates with a premise x � 0 like D (see below). Due to
space restrictions we can only highlight the most interesting aspects of the proof.
The main parts of the proof are

Claim1 . all x:R (S(x) -> D(x))
Claim2 . all x:R (S(x) -> S(t(x)))

which immediately implies the Theorem by coinduction.
The proof of Claim1 uses the inductive predicate Accp defined by

PhiAccp:(R) = lambda X:(R) lambda (x:R) (all y:R y << x -> X(y))
Accp:(R) = Mu(PhiAccp)

where x << y is defined as 2*abs(x) <= 1 and y = 2*x. Accp is the accessible
or wellfounded part of the relation <<. Using Brouwer’s Thesis, which states that
induction on a well-founded relation is valid, and the Archimedean property of
the reals (see [6]) one can show that Accp(x) holds for all nonzero x. Therefore,
induction on Accp(x) turns into an induction principle for nonzero real numbers
which in [6] is dubbed Archimedean induction. It is logically equivalent to the
rule

∀x � 0 ((|x | ≤ 1/2 → P(2x)) → P(x))
AI∀x � 0P(x)

Archimedean induction is used to prove all x:R (S(x) -> B(x)) which is the
essential step in the proof of Claim1.

The proof of Claim2 uses half-strong coinduction which is the rule

p : P ⊆ ν(Φ) ∪Φ(P)

hscoind
rec(λ f ([id + mΦ f ] ◦ p)) : P ⊆ ν(Φ)

where [ f + g]
Def
= λa case a of {Lt(b) → f b; Rt(c) → g c}. Similarly, strong coin-

duction is the rule
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p : P ⊆ Φ(ν(Φ) ∪ P)

scoind
rec(λ f (mΦ [id + f ] ◦ p)) : P ⊆ ν(Φ)

This rule can be used to give a short proof of G(-x) -> G(x) and extract a
simple program which negates the head of the input stream and leaves its tail
untouched (instead of recursively reproducing the tail, which would happen with
ordinary coinduction).

5 Conclusion

We presented Prawf, a first prototype implementation of the logical system
IFP and its associated program extraction procedure. The successful formaliza-
tion in Prawf of exact real number representations and formal proofs of their
relationships guarantee the correctness of the proofs in [6]. This advanced case
study also gives us evidence that our approach scales to substantial nontrivial
problems.

The examples also demonstrate the enormous advantage gained from the pos-
sibility of describing different data representation in an abstract setting using
only first-order logic, and postulating arbitrary true nc-axioms. In the formaliza-
tion of infinite Gray-code it was also essential that our method is able to produce
partial extracted programs.

We would like to point out that the Soundness Theorem, that is, the correct-
ness proof for extracted programs, though constructive, is valid with respect to a
classical semantics. This is in line with the attitude in constructive mathematics
to produce only results that are constructively and classically valid, which is not
necessary the case in other approaches to program extraction.

Despite its successful maiden voyage Prawf has some loose ends that need
to be tied up. The most urgent one is an implementation of the soundness proof,
that is, the enhancement of program extraction so that not only extracted pro-
grams but also their correctness proofs are created automatically. Currently,
correctness relies on soundness as a meta theorem that has not been formal-
ized yet. Other necessary improvements concern support for schematic theorems
(Π 1

1 -theorems, essentially), advanced proof tactics and interpretations between
different languages.

We also plan to extend Prawf by sequent calculus rules and rules that per-
mit the extraction of concurrent programs. The latter will be needed to prove,
conversely, that G (infinite Gray-code) is included in S (signed digit represen-
tation). We know from [12] that the extracted translation program has to be
concurrent and nondeterministic.
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Abstract. Amalgamation SNP (ASNP) is a fragment of existential
second-order logic that strictly contains binary connected MMSNP of
Feder and Vardi and binary connected guarded monotone SNP of Bien-
venu, ten Cate, Lutz, and Wolter; it is a promising candidate for an
expressive subclass of NP that exhibits a complexity dichotomy. We
show that ASNP has a complexity dichotomy if and only if the infinite-
domain dichotomy conjecture holds for constraint satisfaction problems
for first-order reducts of binary finitely bounded homogeneous struc-
tures. For such CSPs, powerful universal-algebraic hardness conditions
are known that are conjectured to describe the border between NP-
hard and polynomial-time tractable CSPs. The connection to CSPs also
implies that every ASNP sentence can be evaluated in polynomial time
on classes of finite structures of bounded treewidth. We show that the
syntax of ASNP is decidable. The proof relies on the fact that for classes
of finite binary structures given by finitely many forbidden substructures,
the amalgamation property is decidable.

1 Introduction

Feder and Vardi in their groundbreaking work [15] formulated the famous
dichotomy conjecture for finite-domain constraint satisfaction problems, which
has recently been resolved [11,26]. Their motivation to study finite-domain CSPs
was the question which fragments of existential second-order logic might exhibit
a complexity dichotomy in the sense that every problem that can be expressed
in the fragment is either in P or NP-complete. Existential second-order logic
without any restriction is known to capture NP [14] and hence does not have a
complexity dichotomy by an old result of Ladner [24]. Feder and Vardi proved
that even the fragments of monadic SNP and monotone SNP do not have a
complexity dichotomy since every problem in NP is polynomial-time equivalent
to a problem that can be expressed in these fragments. However, the dichotomy
for finite-domain CSPs implies that monotone monadic SNP (MMSNP) has a
dichotomy, too [15,23].
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MMSNP is also known to have a tight connection to a certain class of infinite-
domain CSPs [7]: an MMSNP sentence is equivalent to a connected MMSNP
sentence if and only if it describes an infinite-domain CSP. Moreover, every
problem in MMSNP is equivalent to a finite disjunction of connected MMSNP
sentences. The infinite structures that appear in this connection are tame from a
model-theoretic perspective: they are reducts of finitely bounded homogeneous
structures (see Sect. 4.1). CSPs for such structures are believed to have a com-
plexity dichotomy, too; there is even a known hardness condition such that all
other CSPs in the class are conjectured to be in P [8]. The hardness condition
can be expressed in several equivalent forms [1,2].

In this paper we investigate another candidate for an expressive logic that
has a complexity dichotomy. Our minimum requirement for what constitutes a
logic is relatively liberal: we require that the syntax of the logic should be decid-
able. The same requirement has been made for the question whether there exists
a logic that captures the class of polynomial-time solvable decision problems
(see, e.g., [19,20]). The idea of our logic is to modify monotone SNP so that
only CSPs for model-theoretically tame structures can be expressed in the logic;
the challenge is to come up with a definition of such a logic which has a decid-
able syntax. We would like to require that the (universal) first-order part of a
monotone SNP sentence describes an amalgamation class. We mention that the
Joint Embedding Property (JEP), which follows from the Amalgamation Prop-
erty (AP), has recently been shown to be undecidable [10]. In contrast, we use
the fact that the AP for binary signatures is decidable (Sect. 5). We call our
new logic Amalgamation SNP (ASNP). This logic contains binary connected
MMSNP; it also contains the more expressive logic of binary connected guarded
monotone SNP. Guarded monotone SNP (GMSNP) has been introduced in the
context of knowledge representation [3] (see Sect. 6). We show that ASNP has
a complexity dichotomy if and only if the infinite-domain dichotomy conjec-
ture holds for constraint satisfaction problems for first-order reducts of binary
finitely bounded homogeneous structures. In particular, every problem that can
be expressed in ASNP is a CSP for some countably infinite ω-categorical struc-
ture B. In Sect. 7 we present an example application of this fact: every problem
that can be expressed in one of these logics can be solved in polynomial time on
instances of bounded treewidth.

2 Constraint Satisfaction Problems

Let A,B be structures with a finite relational signature τ ; each symbol R ∈ τ
is equipped with an arity ar(R) ∈ N. A function h : A → B is called a homo-
morphism from A to B if for every R ∈ τ and (a1, . . . , aar(R)) ∈ RA we have
(h(a1), . . . , h(aar(R))) ∈ RB; in this case we write A → B. We write CSP(B) for
the class of all finite τ -structures A such that A → B.

Example 1. If B = K3 is the 3-clique, i.e., the complete undirected graph with
three vertices, then CSP(B) is the graph 3-colouring problem, which is NP-
complete [18].
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Example 2. If B = (Q;<) then CSP(B) is the digraph acyclicity problem, which
is in P.

Example 3. If B = (Q; Betw) for Betw := {(x, y, z) | x < y < z ∨ z < y < x}
then CSP(B) is the Betweenness problem, which is NP-complete [18].

A homomorphism h from A to B is called an embedding of A into B if h is
injective and for every R ∈ τ and a1, . . . , aar(R) ∈ A we have (a1, . . . , aar(R)) ∈
RA if and only if (h(a1), . . . , h(aar(R))) ∈ RB; in this case we write A ↪→ B.
The union of two τ -structures A,B is the τ -structure A∪B with domain A∪B
and the relation RA∪B := RA ∪ RB for every R ∈ τ . The intersection A ∩ B
is defined analogously. A disjoint union of A and B is the union of isomorphic
copies of A and B with disjoint domains. As disjoint unions are unique up to
isomorphism, we usually speak of the disjoint union of A and B, and denote it
by A�B. A structure is connected if it cannot be written as a disjoint union of
at least two structures with non-empty domain. A class of structures C is closed
under inverse homomorphisms if whenever B ∈ C and A homomorphically maps
to B we have A ∈ C. If τ is a finite relational signature, then it is well-known
and easy to see [5] that C = CSP(B) for a countably infinite τ -structure B if
and only if C is closed under inverse homomorphisms and disjoint unions.

3 Monotone SNP

Let τ be a finite relational signature, i.e., τ is a set of relation symbols R,
each equipped with an arity ar(R) ∈ N. An SNP (τ -) sentence is an existential
second-order (τ -) sentence with a universal first-order part, i.e., a sentence of
the form

∃R1, . . . , Rk ∀x1, . . . , xn : φ

where φ is a quantifier-free formula over the signature τ ∪{R1, . . . , Rk}. We make
the additional convention that the equality symbol, which is usually allowed in
first-order logic, is not allowed in φ (see [15]). We write [[Φ]] for the class of all
finite models of Φ.

Example 4. CSP(Q;<) = [[Φ]] for the SNP {<}-sentence Φ given below.

∃T ∀x, y, z
(
(¬(x < y) ∨ T (x, y))

∧(¬T (x, y) ∨ ¬T (y, z) ∨ T (x, z)
) ∧ ¬T (x, x)

)

A class C of finite τ -structures is said to be in SNP if there exists an SNP
τ -sentence Φ such that [[Φ]] = C; we use analogous definitions for all logics con-
sidered in this paper. We may assume that the quantifier-free part of SNP sen-
tences is written in conjunctive normal form, and then use the usual terminology
(clauses, literals, etc).

Definition 1. An SNP τ -sentence Φ with quantifier-free part φ and existentially
quantified relation symbols σ is called
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– monotone if each literal of φ with a symbol from τ is negative, i.e., of the
form ¬R(x̄) for R ∈ τ .

– monadic if all the existentially quantified relations are unary.
– connected if each clause of φ is connected, i.e., the following τ ∪σ-structure C

is connected: the domain of C is the set of variables of the clause, and t ∈ RC

if and only if ¬R(t) is a disjunct of the clause.

The SNP sentence from Example 4 is monotone, but not monadic, and it can be
shown that there does not exist an equivalent MMSNP sentence [4].

Theorem 1 ([5]). Every sentence in connected monotone SNP describes a
problem of the form CSP(B) for some relational structure B. Conversely, for
every structure B, if CSP(B) is in SNP then it is also in connected monotone
SNP.

4 Amalgamation SNP

In this section we define the new logic Amalgamation SNP (ASNP). We first
revisit some basic concepts from model theory.

4.1 The Amalgamation Property

Let τ be a finite relational signature and let C be a class of τ -structures. We say
that C is finitely bounded if there exists a finite set of finite τ -structures F such
that A ∈ C if and only if no structure in F embeds into A; in this case we also
write C = Forb(A). Note that C is finitely bounded if and only if there exists a
universal τ -sentence φ (which might involve the equality symbol) such that for
every finite τ -structure A we have A |= φ if and only if A ∈ C. We say that C has

– the Joint Embedding Property (JEP) if for all structures B1,B2 ∈ C there
exists a structure C ∈ C that embeds both B1 and B2.

– the Amalgamation Property (AP) if for any two structures B1,B2 ∈ C
such that B1 ∩ B2 induce the same substructure in B1 and in B2 (a so-
called amalgamation diagram) there exists a structure C ∈ C and embeddings
e1 : B1 ↪→ C and e2 : B2 ↪→ C such that e1(a) = e2(a) for all a ∈ B1 ∩ B2.

Note that since τ is relational, the AP implies the JEP. A class of finite τ -
structures which has the AP and is closed under induced substructures and
isomorphisms is called an amalgamation class.

The age of B is the class of all finite τ -structures that embed into B. We say
that B is finitely bounded if Age(B) is finitely bounded. A relational τ -structure
B is called homogeneous if every isomorphism between finite substructures of B
can be extended to an automorphism of B. Fräıssé’s theorem implies that for
every amalgamation class C there exists a countable homogeneous τ -structure B
with Age(B) = C; the structure B is unique up to isomorphism, also called the
Fräıssé-limit of C. Conversely, it is easy to see that the age of a homogeneous τ -
structure is an amalgamation class. A structure A is called a reduct of a structure
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B if A is obtained from B by restricting the signature. It is called a first-order
reduct of B if A is obtained from B by first expanding by all first-order definable
relations, and then restricting the signature. An example of a first-order reduct
of (Q;<) is the structure (Q; Betw) from Example 3.

4.2 Defining Amalgamation SNP

As we have mentioned in the introduction, the idea of our logic is to require
that a certain class of finite structures associated to the first-order part of an
SNP sentence is an amalgamation class. We then use the fact that for binary
signatures, the amalgamation property is decidable (Sect. 5).

Definition 2. Let τ be a finite relational signature. An Amalgamation SNP
τ -sentence is an SNP sentence Φ of the form ∃R1, . . . , Rk ∀x1, . . . , xn : φ where

– R1, . . . , Rk are binary;
– φ is a conjunction of {R1, . . . , Rk}-formulas and of conjuncts of the form

S(x1, . . . , xk) ⇒ ψ(x1, . . . , xk) where S ∈ τ and ψ is a {R1, . . . , Rk}-formula;
– the class of {R1, . . . , Rk}-reducts of the finite models of φ is an amalgamation

class.

Note that ASNP inherits from SNP the restriction that equality symbols are not
allowed. Also note that Amalgamation SNP sentences are necessarily monotone.
This implies in particular that the class of {R1, . . . , Rk}-reducts of the finite
models of φ is precisely the class of finite {R1, . . . , Rk}-structures that satisfy
the conjuncts of φ that are {R1, . . . , Rk}-formulas (i.e., that do not contain any
symbol from τ).

Example 5. The monotone SNP sentence from Example 4 describing CSP(Q;<)
is in ASNP. The problem CSP(Q; Betw) from Example 3 can be expressed by
the ASNP sentence

∃T ∀x, y, z
(
(Betw(x, y, z) ⇒ ((T (x, y) ∧ T (y, z)) ∨ (T (z, y) ∧ T (y, x)))

∧(
(T (x, y) ∧ T (y, z)) ⇒ T (x, z)

) ∧ ¬T (x, x)
)
.

Note that every finite-domain CSP can be expressed in ASNP; this can be seen
similarly as in the argument of Feder and Vardi that finite-domain CSPs can be
expressed in MMSNP [15].

Then the class of finite models of the first-order part of Φ has the JEP, and
since equality is not allowed in SNP the class is even closed under disjoint unions;
it follows that also Φ is closed under disjoint unions. It can be shown as in the
proof of Theorem 1 that every Amalgamation SNP sentence can be rewritten
into an equivalent connected Amalgamation SNP sentence.
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4.3 ASNP and CSPs

We present the link between ASNP and infinite-domain CSPs.

Theorem 2. For every ASNP τ -sentence Φ there exists a first-order reduct C
of a binary finitely bounded homogeneous structure such that CSP(C) = [[Φ]].

Proof. Let ρ be the set of existentially quantified relation symbols of Φ. Let
φ = ∀x1, . . . , xn : ψ, for a quantifier-free formula ψ in conjunctive normal form,
be the first-order part of Φ. Let C be the class of ρ-reducts of the finite models of
φ; by assumption, C is an amalgamation class. Moreover, C is finitely bounded
because it is the class of models of a universal ρ-sentence. Let B be the Fräıssé-
limit of C; then B is a finitely bounded homogeneous structure. Let C be the
τ -structure which is the first-order reduct of the structure B where the relation
SC for S ∈ τ is defined as follows: if φ1, . . . , φs are all the ρ-formulas such that ψ
contains the conjunct S(x1, . . . , xk) ⇒ φi(x1, . . . , xk) for all i ∈ {1, . . . , s}, then
the first-order definition of S is given by S(x1, . . . , xk) ⇔ (φ1 ∧ · · · ∧ φs).

Claim 1. If A is a finite τ -structure such that A → C, then A |= Φ.

Let h : A → C be a homomorphism. Let A′ be the (τ ∪ ρ)-expansion of A where
R ∈ ρ of arity l denotes {(a1, . . . , al) | (h(a1), . . . , h(al)) ∈ RB}. Then A′ satisfies
φ: to see this, let a1, . . . , an ∈ A and let ψ′ be a conjunct of ψ. Since C |=
∀x1, . . . , xn : ψ we have in particular that C |= ψ′(h(a1), . . . , h(an)) and so there
must be a disjunct ψ′′ of ψ′ such that C |= ψ′′(h(a1), . . . , h(an)). Then one of
the following cases applies.

– ψ′′ is a τ -literal and hence must be negative since Φ is a monotone SNP
sentence. In this case C |= ψ′′(h(a1), . . . , h(an)) implies A′ |= ψ′′(a1, . . . , an)
since h is a homomorphism.

– ψ′′ is a ρ-literal. Then by the definition of A′ we have that A′ |= ψ′′(a1, . . . , an)
if and only if C |= ψ′′(h(a1), . . . , h(an)).

Hence, A′ |= ψ′(a1, . . . , an). Since the conjunct ψ′ of ψ and a1, . . . , an ∈ A were
arbitrarily chosen, we have that A′ |= ∀x1, . . . , xn : ψ. Hence, A satisfies Φ.

Claim 2. If A is a finite τ -structure such that A |= Φ, then A → C.

If A has a (τ ∪ ρ)-expansion A′ that satisfies φ, then there exists an embedding
from the ρ-reduct A′′ of A′ into B by the definition of B. This embedding is in
particular a homomorphism from A to C. �
Theorem 3. Let C be a first-order reduct of a binary finitely bounded homoge-
neous structure B. Then CSP(C) can be expressed in ASNP.
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Proof. Let σ be the signature of B and τ the signature of C. We may assume
without loss of generality that B contains a binary relation E that denotes the
equality relation; it is easy to see that an expansion by the equality relation
preserves finite boundedness. Consider the structure B∗ with the domain B ×N

where

RB∗
:= {((b1, n1), . . . , (bk, nk)) | n1, . . . , nk ∈ N, (b1, . . . , bk) ∈ RB}.

To show that B∗ is homogeneous, let h be an isomorphism between finite sub-
structures of B∗. Let T ⊆ B be the set of all first entries of elements of the first
structure. Define g : T → B by picking for b ∈ T an element of the form (b, n) ∈ S
and defining by g(b) := h(b, n)1. This is well-defined: if h is defined on (b, n1)
and on (b, n2), then ((b, n1), (b, n2)) ∈ EB∗

, and hence h(b, n1)1 = h(b, n2)1. The
same consideration for h−1 shows that g is a bijection, and in fact an isomor-
phism between finite substructures of B. By the homogeneity of B there exists
an extension g∗ ∈ Aut(B) of g. For each b ∈ B pick a permutation fb of N that
extends the bijection given by n �→ h(b, n)2. Then the map h∗ : B∗ → B∗ given
by h(b, n) := (g∗(b), fb(n)) is an automorphism of B∗ that extends h. Since B is
finitely bounded, there exists a universal σ-formula φ such that Age(B) = [[φ]].
Note that φ might contain the equality symbol (which we do not allow in SNP
sentences). Let φ∗ be the formula obtained from φ by

– replacing each occurrence of the equality symbol by the symbol E ∈ σ;
– joining conjuncts that imply that E denotes an equivalence relation;
– joining for every R ∈ σ of arity n the conjunct

∀x1, . . . , xn, y1, . . . , yn

(
R(x1, . . . , xn) ∨ ¬R(y1, . . . , yn) ∨

∨

i≤n

¬E(xi, yi)
)

(implementing indiscernibility of identicals for the relation E).

We claim that Age(B∗) = [[φ∗]]. To see this, let A∗ be a finite σ-structure. If
A∗ satisfies φ∗, then every induced substructure A of A∗ with the property that
(x, y) ∈ EA implies that at most one of x and y is an element of A, satisfies φ,
and hence is a substructure of B. This in turn means that A∗ is in Age(B∗).
The implications in this statement can be reversed which shows the claim.

Let φ′ be the formula obtained from φ∗ as follows. For each S ∈ τ let χS be
the first-order definition of SC in B; since B is homogeneous we may assume
that χS is quantifier-free [21]. Furthermore, we may assume that χS is given in
conjunctive normal form. Let k be the arity of S. We then add for each conjunct
χ′

S of χS the conjunct

∀x1, . . . , xk

(
S(x1, . . . , xk) ⇒ χ′

S(x1, . . . , xk)
)

By construction, the sentence Φ obtained from φ′ by quantifying all relation
symbols of σ is an ASNP τ -sentence. �
Corollary 1. ASNP has a complexity dichotomy if and only if the infinite-
domain dichotomy conjecture is true for first-order reducts of binary finitely
bounded homogeneous structures.
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5 Deciding Amalgamation

In this section we show how to algorithmically decide whether a given existential
second-order sentence is in ASNP. The following is a known fact in the model
theory of homogeneous structures (the first author has learned the fact from
Gregory Cherlin), but we are not aware of any published proof in the literature.

Theorem 4. Let F be a finite set of finite binary relational τ -structures. There
is an algorithm that decides whether Forb(F) has the amalgamation property.

Proof. Let m be the maximal size of a structure in F , and let � be the number of
isomorphism types of two-element structures in C := Forb(F). It is well-known
and easy to prove that C has the amalgamation property if and only if it has
the so-called 1-point amalgamation property, i.e., the amalgamation property
restricted to diagrams (B1,B2) where |B1| = |B2| = |B1 ∩B2|+1. Suppose that
(B1,B2) is such an amalgamation diagram without amalgam. Let B0 := B1∩B2.
Let B1 \ B0 = {p} and B2 \ B0 = {q}. Let D be a τ -structure D with domain
B1 ∪ B2 such that B1 and B2 are substructures of D. Since D by assumption is
not an amalgam for (B1,B2), there must exist A = {a1, . . . , am−2} ∈ B0 such
that the substructure of D induced by {a1, . . . , am−2, p, q} embeds a structure
from F .

Note that the number of such τ -structures D is bounded by � since they only
differ by the substructure induced by p and q. So let A1, . . . , A� ⊆ B0 be a list
of sets witnessing that all of these structures D embed a structure from F . Let
C1 be the substructure of B1 induced by {p} ∪ A1 ∪ · · · ∪ A� and C2 be the
substructure of B2 induced by {q} ∪ A1 ∪ · · · ∪ A�. Suppose for contradiction
that (C1,C2) has an amalgam C; we may assume that this amalgam is of size at
most (m−2) · �. Depending on the two-element structure induced by {p, q} in C,
there exists an i ≤ � such that the structure induced by {p, q} ∪ Ai in C embeds
a structure from F , a contradiction. �
Corollary 2. There is an algorithm that decides for a given existential second-
order sentence Φ whether it is in ASNP.

Proof. Let k be the maximal number of variables per clause in the first-order part
φ of Φ, and let F be the set of all structures at most the elements {1, . . . , k} that
do not satisfy φ. Then Forb(F) = [[φ]] and the result follows from Theorem 2. �

6 Guarded Monotone SNP

In this section we revisit an expressive generalisation of MMSNP introduced
by Bienvenu, ten Cate, Lutz, and Wolter [3] in the context of ontology-based
data access, called guarded monotone SNP (GMSNP). It is equally expressive
as the logic MMSNP2 introduced by Madelaine [25]1. We will see that every
GMSNP sentence is equivalent to a finite disjunction of connected GMSNP sen-
tences (Proposition 1), each of which lies in ASNP if the signature is binary
(Theorem 5).
1 MMSNP2 relates to MMSNP as Courcelle’s MSO2 relates to MSO [13].
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Definition 3. A monotone SNP τ -sentence Φ with existentially quantified rela-
tions ρ is called guarded if each conjunct of Φ can be written in the form

α1 ∧ · · · ∧ αn ⇒ β1 ∨ · · · ∨ βm, where

– α1, . . . , αn are atomic (τ ∪ ρ)-formulas, called body atoms,
– β1, . . . , βm are atomic ρ-formulas, called head atoms,
– for every head atom βi there is a body atom αj such that αj contains all

variables from βi (such clauses are called guarded).

We do allow the case that m = 0, i.e., the case where the head consists of the
empty disjunction, which is equivalent to ⊥ (false).

The next proposition extends a well-known fact for MMSNP to guarded SNP.

Proposition 1. Every GMSNP sentence Φ is equivalent to a finite disjunction
Φ1 ∨ · · · ∨ Φk of connected GMSNP sentences.

Proof. We prove Proposition 1. Let Φ be a guarded SNP sentence. Suppose
that the quantifier-free part of Φ has a disconnected clause ψ (Definition 1).
By definition the variable set can be partitioned into non-empty variable sets
X1 and X2 such that for every negative literal ¬R(x1, . . . , xr) of the clause either
{x1, . . . , xr} ⊆ X1 or {x1, . . . , xr} ⊆ X2. The same is true for every positive lit-
eral, since otherwise the definition of guarded clauses would imply a negative
literal on a set that contains {x1, . . . , xr}, contradicting the property above.
Hence, ψ can be written as ψ1(x̄) ∨ ψ2(ȳ) for non-empty disjoint tuples of vari-
ables x̄ and ȳ. Let φ1 be the formula obtained from φ by replacing ψ by ψ1, and
let φ2 be the formula obtained from φ by replacing ψ by ψ2.

Let P1, . . . , Pk be the existential predicates in Φ, and let τ be the input
signature of Φ. It suffices to show that for every (τ ∪{P1, . . . , Pk})-expansion A′

of A we have that A′ satisfies φ if and only if A′ satisfies φ1 or φ2. If A′ falsifies a
clause of φ, there is nothing to show since then A′ satisfies neither φ1 nor φ2. If
A′ satisfies all clauses of φ, it in particular satisfies a literal from ψ; depending
on whether this literal lies in ψ1 or in ψ2, we obtain that A′ satisfies ψ1 or ψ2,
and hence φ1 or φ2. Iterating this process for each disconnected clause of φ, we
eventually arrive at a finite disjunction of connected guarded SNP sentences. �

It is well-known and easy to see [17] that each of Φ1, . . . , Φk can be reduced
to Φ in polynomial time. Conversely, if each of Φ1, . . . , Φk is in P, then Φ is
in P, too. It follows in particular that if connected GMSNP has a complexity
dichotomy into P and NP-complete, then so has GMSNP.

Theorem 5. For every sentence Φ in connected GMSNP there exists a reduct
C of a finitely bounded homogeneous structures such that [[Φ]] = CSP(C). If all
existentially quantified relation symbols in Φ are binary then it is equivalent to
an ASNP sentence.
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In the proof of Theorem5 we use a result of Cherlin, Shelah, and Shi [12] in a
strengthened form due to Hubička and Nešetřil [22], namely that for every finite
set F of finite σ-structures, for some finite relational signature σ, there exists a
finitely bounded homogeneous (σ ∪ ρ)-structure B such that a finite σ-structure
A homomorphically maps to B if none of the structures in F homomorphically
maps to B. We now prove Theorem 5.

Proof. Let Φ be a τ -sentence in connected guarded monotone SNP with exis-
tentially quantified relation symbols {E1, . . . , Ek}. Let σ be the signature which
contains for every relation symbol R ∈ {E1, . . . , Ek} two new relation symbols
R+ and R− of the same arity and for every relation symbol R ∈ τ a new relation
symbol R′. Let φ be the first-order part of Φ, written in conjunctive normal form,
and let n be the number of variables in the largest clause of φ. Let φ′ be the
sentence obtained from φ by replacing each occurrence of R ∈ {E1, . . . , Ek} by
R+ and each occurrence of ¬R by R−, and finally each occurrence of R ∈ τ by
R′. Let F be the (finite) class of all finite σ-structures with at most n elements
that do not satisfy φ′. We apply the mentioned theorem of Hubička and Nešetřil
to F , and obtain a finitely bounded homogeneous σ ∪ ρ-structure B such that
the age of the σ-reduct C of B equals Forb(N ). We say that S ⊆ B is correctly
labelled if for every R ∈ {E1, . . . , Ek} of arity m and s1, . . . , sm ∈ S we have
R−(s1, . . . , sm) if and only if ¬R(s1, . . . , sm). Let B′ the τ ∪ σ ∪ ρ-expansion of
B where R ∈ τ of arity m denotes

{(t1, . . . , tm) ∈ (R′)B | {t1, . . . , tm} is correctly labelled}.

Since B is finitely bounded homogeneous, B′ is finitely bounded homogeneous,
too. Let C be the τ -reduct of B′. We claim that [[Φ]] = CSP(C). First suppose that
A is a finite τ -structure that satisfies Φ. Then it has an {E1, . . . , Ek}-expansion
A′ that satisfies φ. Let A′′ be the σ-structure with the same domain as A′ where

– R′ denotes RA′
for each R ∈ τ ;

– R+ denotes RA′
for each R ∈ {E1, . . . , Ek};

– R− denotes ¬RA′
for each R ∈ {E1, . . . , Ek}.

Then A′′ satisfies φ′, and hence embeds into B. This embedding is a homomor-
phism from A to C since the image of the embedding is correctly labelled by the
construction of A′′.

Conversely, suppose that A has a homomorphism h to C. Let A′ be the
τ ∪ {E1, . . . , Ek}-expansion of A by defining (a1, . . . , an) ∈ RA if and only if
(h(a1), . . . , h(an)) ∈ RB′

, for every n-ary R ∈ {E1, . . . , Ek}. Then each clause of
φ is satisfied, because each clause of φ is guarded: let x1, . . . , xm be the variables
of some clause of φ. If a1, . . . , am ∈ A satisfy the body of this clause, and
ψ(ai1 , . . . , ail) is a head atom of such a clause, then the set {h(ai1), . . . , h(ail)}
is correctly labelled. This implies that some of the head atoms of the clause
must be true in A′ because B′ satisfies φ′. The second statement follows from
Theorem 3. �

The following example shows that GMSNP does not contain ASNP.
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Example 6. CSP(Q;<) is in ASNP (see Example 5) but not in GMSNP. Indeed,
suppose that Φ is a GMSNP sentence which is true on all finite directed paths.
We assume that the quantifier-free part φ of Φ is in conjunctive normal form.
Let ρ be the existentially quantified relation symbols of Φ, let k := |ρ|, and let l
be the number of variables in Φ. Every directed path, viewed as a {<}-structure,
satisfies Φ, and therefore has an {<} ∪ ρ-expansion A that satisfies φ. Note that
there are finitely many different {<} ∪ ρ-expansions of a path of length l ∈ N;
let p ∈ N be this number. Hence, for a path of length L := (p + 1)l, there
must be i, j ∈ {0, . . . , p} with i < j such that the substructures of A induced by
il+1, il+2, . . . , il+l and by jl+1, jl+2, . . . , jl+l are isomorphic. We then claim
that the directed cycle (i + 1)l + 1, (i + 1)l + 2, . . . , jl + 1, . . . , jl + l, (i + 1)l + 1
satisfies Φ: this is witnessed by the {<} ∪ ρ-expansion inherited from A which
satisfies φ since each clause in φ is guarded. Hence, Φ does not express digraph
acyclicity.

7 Application: Instances of Bounded Treewidth

If a computational problem can be formulated in ASNP or in GMSNP, then
this has remarkable consequences besides a potential complexity dichotomy. In
this section we show that every problem that can be formulated in ASNP or in
GMSNP is in P when restricted to instances of bounded treewidth. The corre-
sponding result for Monadic Second-Order Logic (MSO) instead of ASNP is a
famous theorem of Courcelle [13]. We strongly believe that ASNP is not con-
tained in MSO (consider for instance the Betweenness Problem from Example 3),
so our result appears to be incomparable to Courcelle’s.

In the proof of our result, we need the following concepts from model theory.
A first-order theory T is called ω-categorical if all countable models of T are
isomorphic [21]. A structure B is called ω-categorical if its first-order theory
(i.e., the set of first-order sentences that hold in B) is ω-categorical. Note that
with this definition, finite structures are ω-categorical. Another classic example
is the structure (Q;<). The definition of treewidth can be treated as a black box
in our proof, and we refer the reader to [6].

Theorem 6. Let Φ be an ASNP or a connected GMSNP τ -sentence and let k ∈
N. Then the problem to decide whether a given finite τ -structure A of treewidth
at most k satisfies Φ can be decided in polynomial time with a Datalog program
(of width k).

Proof. Since structures that are homogeneous in a finite relational lan-
guage are ω-categorical [21] and first-order reducts of ω-categorical struc-
tures are ω-categorical [21], Theorem 2 and Theorem 5 imply that the prob-
lem to decide whether a finite τ -structure satisfies φ can be formulated as
CSP(B) for an ω-categorical structure B. Then the statement follows from
Corollary 1 in [6]. �
Remark 1. In Theorem 6 it actually suffices to assume that the core of A has
treewidth at most k.
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Corollary 3. Let Φ be a GMSNP τ -sentence and let k ∈ N. Then there is a
polynomial-time algorithm that decides whether a given τ -structure of treewidth
at most k satisfies Φ.

Proof. Immediate from Theorem 1 and Theorem 6. �

8 Conclusion and Open Problems

ASNP is a candidate for an expressive logic with a complexity dichotomy: every
problem in ASNP is NP-complete or in P if and only if the infinite-domain
dichotomy conjecture for first-order reducts of binary finitely bounded homoge-
neous structures holds. See Fig. 1 for the relation to other candidate logics that
are known to have a dichotomy, might have a complexity, or provably do not
have a dichotomy.

Finite-domain 
CSPs

MMSNP
connected
MMSNP

binary connected 
guarded MSNP

connected 
monotone SNP

CSPs in NP

guarded MSNP

MSNP

SNP

NP = ESO

ASNP

Dichotomy
(unless P=NP)

Probably 
Dichotomy

No Dichotomy

connected 
guarded MSNP

Fig. 1. Fragments of existential second-order logic and complexity dichotomies.

We presented an application of ASNP concerning the evaluation of compu-
tational problems on classes of structures of bounded treewidth. We also proved
that the syntax of ASNP is algorithmically decidable. The following problems
concerning ASNP are open.

1. Is the Amalgamation Property decidable for (not necessarily binary) classes
given by finitely many forbidden substructures?

2. Is every binary CSP in Monadic Second-Order Logic (MSO) also in ASNP?
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3. Is every problem in NP polynomial-time equivalent to a problem in Amalga-
mation SNP if we drop the monotonicity assumption?

4. Is there a natural logic (which in particular has an effective syntax) that
contains both ASNP and connected GMSNP and which describes CSPs for
reducts of finitely bounded homogeneous structures?
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Abstract. The original Goodstein process proceeds by writing natural
numbers in nested exponential k-normal form, then successively raising
the base to k+1 and subtracting one from the end result. Such sequences
always reach zero, but this fact is unprovable in Peano arithmetic. In this
paper we instead consider notations for natural numbers based on the
Ackermann function. We define two new Goodstein processes, obtaining
new independence results for ACA′

0 and ACA+
0 , theories of second order

arithmetic related to the existence of Turing jumps.

Keywords: Goodstein sequences · Independence proofs · Ordinal
notation systems

1 Introduction

Goodstein’s principle [6] is arguably the oldest example of a purely number-
theoretic statement known to be independent of PA, as it does not require the
coding of metamathematical notions such as Gödel’s provability predicate [4].
The proof proceeds by transfinite induction up to the ordinal ε0 [5]. PA does not
prove such transfinite induction, and indeed Kirby and Paris later showed that
Goodstein’s principle is unprovable in PA [8].

Goodstein’s original principle involves the termination of certain sequences
of numbers. Say that m is in nested (exponential) base-k normal form if it is
written in standard exponential base k, with each exponent written in turn in
base k. Thus for example, 20 would become 22

2
+22 in nested base-2 normal form.

Then, define a sequence (gk(0))m∈N by setting g0(m) = m and defining gk+1(m)
recursively by writing gk(m) in nested base-(k +2) normal form, replacing every
occurrence of k + 2 by k + 3, then subtracting one (unless gk(m) = 0, in which
case gk+1(m) = 0).

In the case that m = 20, we obtain

g0(20) = 20 = 22
2
+ 22

g1(20) = 33
3
+ 33 − 1 = 33

3
+ 32 · 2 + 3 · 2 + 2

g2(20) = 44
4
+ 42 · 2 + 4 · 2 + 2 − 1 = 44

4
+ 42 · 2 + 4 · 2 + 1,
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and so forth. At first glance, these numbers seem to grow superexponentially. It
should thus be a surprise that, as Goodstein showed, for every m there is k∗ for
which gk∗(m) = 0.

By coding finite Goodstein sequences as natural numbers in a standard way,
Goodstein’s principle can be formalized in the language of arithmetic, but this
formalized statement is unprovable in PA. Independence can be shown by proving
that the Goodstein process takes at least as long as stepping down the fundamen-
tal sequences below ε0; these are canonical sequences (ξ[n])n<ω such that ξ[n] < ξ
for all ξ and for limit ξ, ξ[n] → ξ as n → ∞. For standard fundamental sequences
below ε0, PA does not prove that the sequence ξ > ξ[1] > ξ[1][2] > ξ[1][2][3] . . .
is finite.

Exponential notation is not suitable for writing very big numbers (e.g. Gra-
ham’s number [7]), in which case it may be convenient to use systems of notation
which employ faster-growing functions. In [2], T. Arai, S. Wainer and the authors
have shown that the Ackermann function may be used to write natural numbers,
giving rise to a new Goodstein process which is independent of the theory ATR0

of arithmetical transfinite recursion; this is a theory in the language of second
order arithmetic which is much more powerful than PA. The main axiom of ATR0

states that for any set X and ordinal α, the α-Turing jump of X exists; we refer
the reader to [13] for details.

The idea is, for each k ≥ 2, to define a notion of Ackermannian normal
form for each m ∈ N. Having done this, we can define Ackermannian Goodstein
sequences analogously to Goodstein’s original version. The normal forms used in
[2] are defined using an elaborate ‘sandwiching’ procedure first introduced in [14],
approximating a number m by successive branches of the Ackermann function. In
this paper, we consider simpler, and arguably more intuitive, normal forms, also
based on the Ackermann function. We show that these give rise to two different
Goodstein-like processes, independent of ACA′

0 and ACA+
0 , respectively. As was

the case for ATR0, these are theories of second order arithmetic which state that
certain Turing jumps exist. ACA′

0 asserts that, for all n ∈ N and X ⊆ N, the n-
Turing jump of X exists, while ACA+

0 asserts that its ω-jump exists; see [13] for
details. The proof-theoretic ordinal of ACA′

0 is εω [1], and that of ACA+
0 is ϕ2(0)

[9]; we will briefly review these ordinals later in the text, but refer the reader to
standard texts such as [10,12] for a more detailed treatment of proof-theoretic
ordinals.

2 Basic Definitions

Let us fix k ≥ 2 and agree on the following version of the Ackermann function.

Definition 1. For a, b ∈ N we define Aa(k, b) by the following recursion.

1. A0(k, b) := kb,
2. Aa+1(k, 0) := Ak

a(k, ·)(0),
3. Aa+1(k, b + 1) := Ak

a(k, ·)(Aa+1(k, b)).
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Here, the notation Ak
a(k, ·) refers to the k-fold composition of the function x �→

Aa(k, x). It is well known that for every fixed a, the function b �→ Aa(k, b) is
primitive recursive and the function a �→ Aa(k, 0) is not primitive recursive. We
use the Ackermann function to define k normal forms for natural numbers. These
normal forms emerged from discussions with Toshiyasu Arai and Stan Wainer,
which finally led to the definition of a more powerful normal form defined in [14]
and used to prove termination in [2].

Lemma 1. Let k ≥ 2. For all c > 0, there exist unique a, b,m, n ∈ N such that

1. c = Aa(k, b) · m + n,
2. Aa(k, 0) ≤ c < Aa+1(k, 0),

3. Aa(k, b) ≤ c < Aa(k, b + 1), and
4. n < Aa(k, b).

We write c =nf Aa(k, b) · m + n in this case. This means that we have in
mind an underlying context fixed by k and that for the number c we have
uniquely associated the numbers a, b,m, n. Note that it could be possible that
Aa+1(k, 0) = Aa(k, b), so that we have to choose the right representation for the
context; in this case, item 2 guarantees that a is chosen to take the maximal
possible value.

By rewriting iteratively b and n in such a normal form, we arrive at the
Ackermann k-normal form of c. If we also rewrite a iteratively, we arrive at the
nested Ackermann k-normal form of c. The following properties of normal forms
are not hard to prove from the definitions.

Lemma 2. 1. A�
a(k, 0) is in k-normal form for every � such that 0 < � < k.

2. if Aa(k, b) is in k-normal form, then for every � < b, the number Aa(k, �) is
also in k-normal form.

In the sequel we work with standard notations for ordinals. We use the func-
tion ξ �→ εξ to enumerate the fixed points of ξ �→ ωξ. With α, β �→ ϕα(β) we
denote the binary Veblen function, where β �→ ϕα(β) enumerates the common
fixed points of all ϕα′ with α′ < α. We often omit parentheses and simply write
ϕαβ. Then ϕ0ξ = ωξ, ϕ1ξ = εξ, ϕ20 is the first fixed point of the function
ξ �→ ϕ1ξ, ϕω0 is the first common fixed point of the function ξ �→ ϕnξ, and Γ0

is the first ordinal closed under α, β �→ ϕαβ. In fact, not much ordinal theory is
presumed in this article; we almost exclusively work with ordinals less than ϕ20,
which can be written in terms of addition and the functions ξ �→ ωξ, ξ �→ εξ.
For more details, we refer the reader to standard texts such as [10,12].

3 Goodstein Sequences for ACA′
0

In this section we define a Goodstein process that is independent of ACA′
0. We do

so by working with unnested Ackermannian normal forms. Such normal forms
give rise to the following notion of base change.

Definition 2. Given k ≥ 2 and c ∈ N, define c[k←k + 1] by:
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1. 0[k←k + 1] := 0.
2. c[k←k+1] := Aa(k+1, b[k←k+1]) ·m+n[k←k+1] if c =nf Aa(k, b) ·m+n.

With this, we may define a new Goodstein process, based on unnested Ack-
ermannian normal forms.

Definition 3. Let � < ω. Put b0(�) := �. Assume recursively that bk(�) is defined
and bk(�) > 0. Then bk+1(�) = bk(�)[k + 2←k + 3] − 1. If bk(�) = 0, then
bk+1(�) := 0.

We will show that for every � there is i with bi(�) = 0. In order to prove this,
we first establish some natural properties of the base-change operation.

Lemma 3. Fix k ≥ 2 and let c, d ∈ N. Then:

1. c ≤ c[k←k + 1].
2. If c < d, then c[k←k + 1] < d[k←k + 1].

Proof. The first assertion is proved by induction on c. It clearly holds for c = 0.
If c =nf Aa(k, b)·m+n then the induction hypothesis yields c = Aa(k, b)·m+n ≤
Aa(k, b[k←k + 1]) · m + n[k←k + 1] = c[k←k + 1].

The second assertion is harder to prove. The proof is by induction on d with a
subsidiary induction on c. The assertion is clear if c = 0. Let c =nf Aa(k, b)·m+n
and d =nf Aa′(k, b′) · m′ + n′. We distinguish cases according to the position of
a relative to a′, the position of b relative to b′, etc.

Case 1 (a < a′). We sub-divide into two cases.
Case 1.1 (Aa+1(k, 0) < d). Then, the induction hypothesis applied to c <
Aa+1(k, 0) yields c[k←k + 1] < Aa+1(k + 1, 0) < Aa′(k + 1, b′[k←k + 1]) · m′ +
n′[k←k + 1] = d[k←k + 1].
Case 1.2 (Aa+1(k, 0) = d). In this case, a + 1 = a′, b′ = 0, m′ = 1, and
n′ = 0. We have Aa(k, b) ≤ c < Aa+1(k, 0) = Aa(k,Ak−1

a (k, ·)(0)). For � < k
we have that A�

a(k, 0) is in k-normal form by Lemma2. Thus the induction
hypothesis yields b[k←k + 1] < Ak−1

a (k + 1, ·)(0). The number Aa(k, b) is in
k-normal form and so the induction hypothesis applied to n < Aa(k, b) yields
n[k←k + 1] < Aa(k + 1, b[k←k + 1]). Moreover we have that m < Aa+1(k, 0).
This yields

c[k←k + 1] = Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1]

≤ Aa(k + 1, Ak−1
a (k + 1, ·)(0)) · Aa+1(k, 0) + Aa(k + 1, Ak−1

a (k + 1, ·)(0))
≤ (Ak

a(k + 1, ·)(0))2 + Ak
a(k + 1, ·)(0)

≤ Aa(k + 1, Ak
a(k + 1, ·)(0)) = Aa+1(k + 1, 0),

where the second inequality follows from

Aa+1(k, 0) = Ak
a(k, ·)(0) ≤ Ak

a(k + 1, ·)(0)

and the last from

Aa(k + 1, x) ≥ A0(k + 1, x) ≥ 3x ≥ x2 + x. (1)
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Case 2 (a′ < a). This case does not occur since then d < Aa′+1(k, 0) ≤
Aa(k, 0) ≤ c.
Case 3 (a = a′ and b < b′). The induction hypothesis yields b[k←k + 1] <
b′[k←k + 1] and n[k←k + 1] < Aa(k + 1, b[k←k + 1]). Now, consider two sub-
cases.
Case 3.1 (Aa(k, b+1) < d). Since d is in k-normal form and b+1 ≤ b′ we see that
Aa(k, b + 1) is in k-normal form by Lemma2. Then, the induction hypothesis
yields c[k←k + 1] < Aa(k + 1, (b + 1)[k←k + 1]) ≤ Aa(k + 1, b′[k←k + 1]) ≤
d[k←k + 1].
Case 3.2 (Aa(k, b+1) = d). We know that c = Aa(k, b)·m+n < Aa(k, b+1) = d.
Consider two further sub-cases.
Case 3.2.1 (a = 0). This means that c = kb · m + n < kb+1 = d, m < k,
and n < kb, where d has k-normal form kb+1. The induction hypothesis yields
b[k←k + 1] < (b + 1)[k←k + 1] and n[k←k + 1] < (k + 1)b[k←k+1]. We then
have that c[k←k + 1] = (k + 1)b[k←k+1] · m + n[k←k + 1] < (k + 1)b[k←k+1]+1 ≤
(k + 1)(b+1)[k←k+1] = d.
Case 3.2.2 (a > 0). Then,

c[k←k + 1] = Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1]

≤ Aa(k + 1, b[k←k + 1])) · Aa(k, b + 1) + Aa(k + 1, b[k←k + 1])

≤ (Ak
a−1(k + 1, ·)(Aa(k + 1, b[k←k + 1])))2

+ Ak
a−1(k + 1, ·)(Aa(k + 1, b[k←k + 1]))

< Aa(k + 1, b′[k←k + 1]) by (1),

where the second inequality uses

Aa(k, b+1) = Ak
a−1(k, ·)(Aa(k, b)) ≤ Ak

a−1(k+1, ·)(Aa(k+1, b[k←k+1])).

Case 4 (a = a′ and b′ < b). This case does not appear since otherwise d ≤
Aa(k, b′ + 1) ≤ c.
Case 5 (a = a′ and b′ = b and m < m′). Then the induction hypothesis yields

c[k←k + 1] = Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1]
< Aa(k + 1, b[k←k + 1])) · m + Aa(k + 1, b[k←k + 1])
≤ Aa(k + 1, b[k←k + 1])) · m′ ≤ d[k←k + 1].

Case 6 (a = a′ and b′ = b and m′ < m). This case is not possible given the
assumptions.
Case 7 (a = a′ and b′ = b and m′ = m). Then n < n′ and the induction
hypothesis yields

c[k←k + 1] = Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1]
< Aa(k + 1, b[k←k + 1]) · m + n′[k←k + 1] = d[k←k + 1].

Thus, the base-change operation is monotone. Next we see that it also pre-
serves normal forms.
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Lemma 4. If c = Aa(k, b) · m + n is in k-normal form, then c[k←k + 1] =
Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1] is in k + 1 normal form.

Proof. Assume that c =nf Aa(k, b)·m+n. Then, c < Aa+1(k, 0), c < Aa(k, b+1),
and n < Aa(k, b). Clearly, Aa(k + 1, 0) ≤ c[k←k + 1]. By Lemma 2, Aa+1(k, 0)
is in k-normal form, so that by Lemma 3, c < Aa+1(k, 0) yields c[k←k + 1] <
Aa+1(k +1, 0). Since Aa(k, b) is in k-normal form, Lemma 3 yields n[k←k +1] <
Aa(k + 1, b[k←k + 1]). It remains to check that we also have c[k←k + 1] <
Aa(k + 1, b[k←k + 1] + 1).

If a = 0, then c =nf Aa(k, b) · m + n means that c = kb · m + n with
m < k and n < kb. Then, m < k + 1 and n[k←k + 1] < (k + 1)b[k←k+1]. Thus
c[k←k + 1] = (k + 1)b[k←k+1] · m + n[k←k + 1] < (k + 1)b[k←k+1]+1 and thus
c[k←k +1] =nf (k +1)b[k←k+1] ·m+n[k←k +1]. In the remaining case, we have
for a > 0 that

c[k←k + 1] = Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1]
< Aa(k + 1, b[k←k + 1]) · Aa(k, b + 1) + Aa(k + 1, b[k←k + 1])
≤ Aa(k + 1, b[k←k + 1]) · Aa(k, b[k←k + 1] + 1) + Aa(k + 1, b[k←k + 1])

≤ (Ak
a−1(k, ·)Aa(k + 1, b[k←k + 1]))2 + Ak

a−1(k, ·)Aa(k + 1, b[k←k + 1])

< Ak+1
a−1(k + 1, ·)Aa(k + 1, b[k←k + 1]) by (1)

= Aa(k + 1, b[k←k + 1] + 1).

So Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1] is in k + 1-normal form.

These Ackermannian normal forms give rise to a new Goodstein process. In
order to prove that this process is terminating, we must assign ordinals to natural
numbers, in such a way that the process gives rise to a decreasing (hence finite)
sequence. For each k, we define a function ψk : N → Λ, where Λ is a suitable
ordinal, in such a way that ψkm is computed from the k-normal form of m.
Unnested Ackermannian normal forms correspond to ordinals below Λ = εω, as
the following map shows.

Definition 4. For k ≥ 2, define ψk : N → εω as follows:

1. ψk0 := 0.
2. ψkc := ωεa+ψkb · m + ψkn if c =nf Aa(k, b) · m + n.

Lemma 5. If c < d < ω then ψkc < ψkd.

Proof. Proof by induction on d with subsidiary induction on c. The assertion
is clear if c = 0. Let c =nf Aa(k, b) · m + n and d =nf Aa′(k, b′) · m′ + n′. We
distinguish cases according to the position of a relative to a′, the position of b
relative to b′, etc.

Case 1 (a < a′). We have n < c < Aa+1(k, 0) ≤ Aa′(k, 0) and, since Aa′(k, 0) ≤
d, the induction hypothesis yields ψkn < ωεa′+ψk0 = εa′ . We have b < c <
Aa+1(k, 0) ≤ Aa′(k, 0) and the induction hypothesis yields ψkb < ωεa′+ψk0 = εa′ .
It follows that εa + ψkb < εa′ , hence ψkc = ωεa+ψkb · m + ψkn < εa′ ≤ ψkd.
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Case 2 (a > a′). This case is not possible since this would imply that d <
Aa′+1(k, 0) ≤ Aa(k, 0) ≤ c < d.
Case 3 (a = a′). We consider several sub-cases.
Case 3.1 (b < b′). The induction hypothesis yields ψkb < ψkb′. Hence ωεa+ψkb <
ωεa+ψkb′

. We have n < Aa(k, b), and the subsidiary induction hypothesis yields
ψkn < ωεa+ψkb < ωεa+ψkb′

. Putting things together we see ψkc = ωεa+ψkb · m +
ψkn < ωεa+ψkb′ ≤ ψkd.
Case 3.2 (b > b′). This case is not possible since this would imply d < Aa(k, b′+
1) ≤ Aa(k, b) ≤ c < d.
Case 3.3 (b = b′). This case is divided into further sub-cases.
Case 3.3.1 (m < m′). We have n < Aa(k, b) and the subsidiary induction
hypothesis yields ψkn < ωεa+ψkb. Hence ψkc = ωεa+ψkb · m + ψkn < ωεa+ψkb′ ·
m′ ≤ ψkd.
Case 3.3.2 (m > m′). This case is not possible since this would imply d =
Aa(k, b) · m′ + n′ ≤ Aa(k, b) · m ≤ c < d.
Case 3.3.3 (m = m′). The inequality c < d yields n < n′ and the induction
hypothesis yields ψkn < ψkn′. Hence ψkc = ωεa+ψkb · m + ψkn < ωεa+ψkb · m +
ψkn′ = ψkd.

Our ordinal assignment is invariant under base change, in the following sense.

Lemma 6. ψk+1(c[k←k + 1]) = ψkc.

Proof. Proof by induction on c. The assertion is clear for c = 0. Let c =nf

Aa(k, b) · m + n. Then, c[k←k + 1] =nf Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1],
and the induction hypothesis yields

ψk+1(c[k←k + 1]) = ψk+1(Aa(k + 1, b[k←k + 1]) · m + n[k←k + 1])
= ωεa+ψk+1(b[k←k+1]) · m + ψk+1(n[k←k + 1])
= ωεa+ψkb · m + ψkn = ψkc.

It is well-known that the so-called slow-growing hierarchy at level ϕω0
matches up with the Ackermann function, so one might expect that the cor-
responding Goodstein process can be proved terminating in PA+ TI(ϕω0). This
is true but, somewhat surprisingly, much less is needed here. We can lower ϕω0
to εω = ϕ1ω.

Theorem 1. For all � < ω, there exists a k < ω such that bk(�) = 0. This is
provable in PA + TI(εω).

Proof. Define o(�, k) := ψk+2bk(�). If bk(�) > 0, then, by the previous lemmata,

o(�, k + 1) = ψk+3bk+1(�) = ψk+3(bk(�)[k←k + 1] − 1)
< ψk+3(bk(�)[k←k + 1]) = ψk+2(bk(�)) = o(�, k).

Since (o(�, k))k<ω cannot be an infinite decreasing sequence of ordinals, there
must be some k with o(�, k) = 0, yielding bk(�) = 0.
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Now we are going to show that for every α < εω, PA+TI(α) 
� ∀�∃k bk(�) = 0.
This will require some work with fundamental sequences.

Definition 1. Let Λ be an ordinal. A system of fundamental sequences on Λ is
a function ·[·] : Λ×N → Λ such that α[n] ≤ α with equality holding if and only if
α = 0, and α[n] ≤ α[m] whenever n ≤ m. The system of fundamental sequences
is convergent if λ = limn→∞ λ[n] whenever λ is a limit, and has the Bachmann
property if whenever α[n] < β < α, it follows that α[n] ≤ β[1].

It is clear that if Λ is an ordinal then for every α < Λ there is n such that
α[1][2] . . . [n] = 0, but this fact is not always provable in weak theories. The
Bachmann property that will be useful due to the following.

Proposition 1. Let Λ be an ordinal with a system of fundamental sequences
satisfying the Bachmann property, and let (ξn)n∈N be a sequence of elements of
Λ such that, for all n, ξn[n+1] ≤ ξn+1 ≤ ξn. Then, for all n, ξn ≥ ξ0[1][2] . . . [n].

Proof. Let �k be the reflexive transitive closure of {(α[k], α) : α < ϕ2(0)}. We
need a few properties of these orderings. Clearly, if α �k β, then α ≤ β. It can be
checked by a simple induction and the Bachmann property that, if α[n] ≤ β < α,
then α[n] �1 β. Moreover, �k is monotone in the sense that if α �k β, then
α �k+1 β, and if α �k β, then α[k] �k β[k] (see, e.g., [11] for details).

We claim that for all n, ξn �n ξ0[1] . . . [n], from which the desired inequal-
ity immediately follows. For the base case, we use the fact that �0 is transi-
tive by definition. For the successor, note that the induction hypothesis yields
ξ0[1] . . . [n] �n ξn, hence ξ0[1] . . . [n + 1] �n+1 ξn[n + 1]. Then, consider three
cases.

Case 1 (ξn+1 = ξn). By transitivity and monotonicity, ξ0[1] . . . [n + 1] �n+1

ξ0[1] . . . [n] �n ξn = ξn+1 yields ξ0[1] . . . [n + 1] �n+1 ξn+1.
Case 2 (ξn+1 = ξn[n + 1]). Then, ξ0[1] . . . [n + 1] �n+1 ξn[n + 1] = ξn+1.
Case 3 (ξn[n + 1] < ξn+1 < ξn). The Bachmann property yields ξn[n + 1] �1

ξn+1, and since ξ0[1] . . . [n+1] �n+1 ξn[n+1], monotinicity and transitivity yield
ξ0[1] . . . [n + 1] �n+1 ξn+1.

Let ω0(α) := α and ωk+1(α) = ωωk(α). Let us define the standard fundamen-
tal sequences for ordinals less than ϕ20 as follows.

1. If α = ωβ + γ with 0 < γ < α, then α[k] := ωβ + γ[k].
2. If α = ωβ > β, then we set α[k] := 0 if β = 0, α[k] := ωγ · k if β = γ + 1, and

α[k] := ωβ[k] if β ∈ Lim.
3. If α = εβ > β, then α[k] := ωk(1) if β = 0, α[k] := ωk(εγ + 1) if β = γ + 1,

and α[k] := εβ[k] if β ∈ Lim.

This system of fundamental sequences enjoys the Bachmann property [11].
In view of Proposition 1, the following technical lemma will be crucial for

proving our main independence result for ACA′
0.

Lemma 7. Given k, c < ω with k ≥ 2, ψk+1(c[k←k + 1] − 1) ≥ (ψkc)[k].
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Proof. We prove the claim by induction on c. Let c =nf Aa(k, b) · m + n.

Case 1 (n > 0). Then the induction hypothesis and Lemma5 yield

ψk+1(c[k←k + 1] − 1) = ωεa+ψk+1(b[k←k+1]) · m + ψk+1(n[k←k + 1] − 1)

≥ ωεa+ψk(b) · m + (ψk(n))[k] = (ωεa+ψk(b) · m + ψk(n))[k]
= (ψk(Aa(k, b) · m + n))[k] = (ψkc)[k].

Case 2 (n = 0 and m > 1). Then the induction hypothesis and Lemma5 yield

ψk+1(c[k←k + 1] − 1)

= ψk+1(Aa(k + 1, b[k←k + 1]) · (m − 1) + ψk+1(Aa(k + 1, b[k←k + 1]) − 1)

≥ ψk(Aa(k, b) · (m − 1)) + (ψk(Aa(k, b)))[k] = (ψk(Aa(k, b) · m))[k] = (ψkc)[k].

Case 3 (n = 0 and m = 1). We consider several sub-cases.
Case 3.1 (a > 0 and b > 0). The induction hypothesis yields

ψk+1(c[k←k + 1] − 1) = ψk+1(Aa(k + 1, b[k←k + 1]) − 1)

≥ ψk+1(Aa(k + 1, (b[k←k + 1]) − 1) · k) = ωεa+ψk+1(b[k←k+1]−1) · k

≥ ωεa+(ψk(b))[k] · k ≥ (ωεa+ψk(b))[k] = (ψkc)[k],

since Aa(k + 1, (b[k←k + 1]) − 1) · k is in k + 1 normal form by Lemma2 and
Lemma 4.
Case 3.2 (a > 0 and b = 0). Then, the induction hypothesis yields

ψk+1(c[k←k + 1] − 1) = ψk+1(Aa(k + 1, 0) − 1) = ψk+1(A
k+1
a−1(k, ·)(0) − 1)

= ψk+1(Aa−1(k + 1, Ak
a−1(k + 1, ·)(0) − 1))

≥ ψk+1(A
k
a−1(k + 1, ·)(0)) = ωεa−1+ψk+1((A

k−1
a−1(k+1,·)(0)))

≥ ωψk+1((A
k−1
a−1(k+1,·)(0))) ≥ ωωk−1(εa−1+1)

= (εa)[k] = (ψk(Aa(k, 0)))[k] = (ψkc)[k],

since A�
a−1(k+1, ·)(0) is in k+1 normal form for � ≤ k by Lemma 2 and Lemma 4.

Case 3.3 (a = 0 and b > 0). Then the induction hypothesis yields similarly as
in Case 3.1:

ψk+1(c[k←k + 1] − 1) = ψk+1(A0(k + 1, b) − 1)
= ψk+1((k + 1)(b[k←k+1]−1) · k + · · · + (k + 1)0 · k)
≥ ψk+1((k + 1)(b[k←k+1]−1) · k)
≥ ωψk+1(b[k←k+1]−1) · k ≥ ω(ψkb)[k] · k ≥ (ψkc)[k],

since (k + 1)(b[k←k+1]−1) · k is in k + 1 normal form.
Case 3.4 (a = 0 and b = 0). The assertion follows trivially since then c = 1.
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Theorem 2. Let α < εω. Then PA + TI(α) 
� ∀�∃k bk(�) = 0. Hence ACA′
0 
�

∀�∃kbk(�) = 0.

Proof. Assume for a contradiction that PA+TI(α) � ∀�∃k bk(�) = 0. Then PA+
TI(α) � ∀�∃k bk(A�(2, 0)) = 0. Recall that o(A�(2, 0), k) = ψk+2(bk(A�(2, 0))).
We have o(A�(2, 0), 0) = εn. Lemma 7 and Lemma 5 yield o(A�(2, 0), k)[k + 1] ≤
o(A�(2, 0), k + 1) < o(A�(2, 0), k), hence Proposition 1 yields o(A�(2, 0), k) ≥
o(A�(2, 0))[1] . . . [k]. So the least k such that bk(A�(2, 0)) = 0 is at least as big
as the least k such that ε�[1] . . . [k] = 0. But by standard results in proof theory
[3], PA + TI(α) does not prove that this k is always defined as a function of �.
This contradicts PA + TI(α) � ∀�∃k bk(A�(2, 0))) = 0.

4 Goodstein Sequences for ACA+
0

In this section, we indicate how to extend our approach to a situation where the
base change operation can also be applied to the first argument of the Ackermann
function. The resulting Goodstein principle will then be independent of ACA+

0 .
The key difference is that the base-change operation is now performed recursively
on the first argument, as well as the second.

Definition 5. For k ≥ 2 and c ∈ N, define c[k←k + 1] by:

1. 0[k←k + 1] := 0
2. c[k←k+1] := Aa[k←k+1](k+1, b[k←k+1]) ·m+n[k←k+1] if c =nf Aa(k, b) ·

m + n.

Note that in this section, c[k←k + 1] will always indicate the operation of
Definition 5. We can then define a Goodstein process based on this new base
change operator.

Definition 6. Let � < ω. Put c0(�) := �. Assume recursively that ck(�) is defined
and ck(�) > 0. Then, ck+1(�) = ck(�)[k + 2←k + 3] − 1. If ck(�) = 0, then
ck+1(�) := 0.

Termination and independence results can then be obtained following the
same general strategy as before. We begin with the following lemmas, whose
proofs are similar to those for their analogues in Sect. 3.

Lemma 8. If c < d and k ≥ 2, then c[k←k + 1] < d[k←k + 1].

Lemma 9. If c = Aa(k, b) · m + n is in k-normal form, then c[k←k + 1] =
Aa[k←k+1](k + 1, b[k←k + 1]) · m + n[k←k + 1] is in k + 1 normal form.

It is well-known that the so-called slow-growing hierarchy at level Γ0 matches
up with the functions which are elementary in the Ackermann function, so one
might expect that the corresponding Goodstein process can be proved terminat-
ing in PA+ TI(Γ0). This is true but, somewhat surprisingly, much less is needed
here. Indeed, nested Ackermannian normal forms are related to the much smaller
ordinal ϕ2(0) by the following mapping.
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Definition 7. Given k ≥ 2, define a function χk : N → ϕ2(0) given by:

1. χk0 := 0.
2. χkc := ωεχka+χkb · m + ψkn if c =nf Aa(k, b) · m + n.

As was the case for the mappings ψk, the maps χk are strictly increasing and
invariant under base change, as can be checked using analogous proofs to those
in Sect. 3.

Lemma 10. Let c, d, k < ω with k ≥ 2.

1. If c < d, then χkc < χkd.
2. χk+1(c[k←k + 1]) = χkc.

Theorem 3. For all � < ω, there exists a k < ω such that ck(�) = 0. This is
provable in PA + TI(ϕ20).

Next, we show that for every α < ϕ20, PA + TI(α) 
� ∀�∃k ck(�) = 0. For
this, we need the following analogue of Lemma7.

Lemma 11. χk+1(c[k←k + 1] − 1) ≥ (χkc)[k].

Proof. We proceed by induction on c. Let c =nf Aa(k, b) · m + n. Let us concen-
trate on the critical case m = 1 and n = 0, where a > 0 and b = 0.

The induction hypothesis yields

χk+1(c[k←k + 1] − 1) = χk+1(Aa(k + 1, 0) − 1)

= χk+1(Ak+1
a[k←k+1]−1(k + 1, ·)(0) − 1) ≥ χk+1(Ak

a[k←k+1]−1(k + 1, ·)(0))

= ωεχk+1(a[k←k+1]−1)+ω
χk+1(A

k−1
a[k←k+1]−1(k+1,·)(0))

≥ ωk(εχk+1(a[k←k+1]−1) + 1)

≥ ωk(ε(χka)[k] + 1) ≥ (εχka)[k] = (χk(Aa(k, 0))[k],

since Ak
a[k←k+1]−1(k + 1, ·)(0) is in k + 1 normal form.

The remaining details of the proof of the theorem can be carried out similarly
as before.

Theorem 4. For every α < ϕ20, PA + TI(α) 
� ∀�∃k ck(�) = 0. Hence ACA+
0 
�

∀�∃kck(�) = 0.
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Abstract. �Lukasiewicz logic is an established formal system of many-
valued logic. Decision problems in both propositional and first-order case
have been classified as to their computational complexity or degrees of
undecidability; for the propositional fragment, theoremhood and prov-
ability from finite theories are coNP complete. This paper extends the
range of results by looking at validity degree in propositional �Lukasiewicz
logic, a natural optimization problem to find the minimal value of a term
under a finite theory in a fixed complete semantics interpreting the logic.
A classification for this problem is provided using the oracle class FPNP,
where it is shown complete under metric reductions.

1 Introduction

�Lukasiewicz logic originated in the 1920s as a semantically motivated formal sys-
tem for many-valued logic. This paper works with the infinite-valued �Lukasiewicz
logic �L, introduced by �Lukasiewicz and Tarski [20]. As with some other non-
classical systems, such as intuitionistic logic, the syntax is similar to classical
logic, while the valid inferences form a strict subset of those of classical logic.

Validity/provability degrees as a concept in �Lukasiewicz logic stem from a
research line proposed by Goguen [11]. The paper set the challenge to develop
a formal approach allowing to derive partly true conclusions from partly true
assumptions. In [26] the task was taken up by Pavelka, who offered a compre-
hensive formalism based on complete residuated lattices, using essentially dia-
grams of arbitrary but fixed residuated lattices to capture provability degrees in
the syntax. Pavelka used graded terms1 and his formal system incorporated rules
that explicitly use the algebra on degrees/grades alongside syntactic derivations.
For example, a graded modus ponens reads {〈r, ϕ〉, 〈s, ϕ → ψ〉}/〈r � s, ψ〉 with
r and s truth constants, ϕ and ψ terms, and � the monoidal operation of the
residuated lattice. Pavelka’s approach was later simplified by Hájek [12], who
proposed an expansion of �Lukasiewicz infinite-valued logic with constants for
rational elements of [0, 1], and rendered each graded term 〈r, ϕ〉 as the impli-
cation r → ϕ. This was an elegant example of embedding the graded syntax

1 We use term and (propositional) formula interchangeably in this paper.
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approach in what turns out to be a conservative expansion of �Lukasiewicz logic.
The resulting logic was named Rational Pavelka logic (RPL); see [12, 14, 4, 7].

Assume truth values range in a complete lattice. The validity degree of a
term ϕ under a theory T is the infimum of values ϕ can get under assignments
that make T true. No constants are needed to define this notion. Still, the con-
stants provide a canonical way of introducing provability degrees, the syntactic
counterpart; thus we look at the language of RPL next to that of �L.

Both �L and RPL have an equivalent algebraic semantics (in the sense of
[5]). In particular, �L corresponds to the variety of MV-algebras; [6,9,24] and the
references therein provide resources for their well-developed theory. MV-algebras
are strongly linked to Abelian �-groups ([22]); this is manifest in the choice of
algebraic language, and we follow MV-algebraists and use the language ⊕ and
¬ as a reference language for our complexity results. This is also a matter of
convenience since some previous results are framed in this language.

We shall use the real-valued (standard) MV-semantics, with the unit interval
as the domain and piecewise linear functions as interpretations of the function
symbols; one can prove strong completeness for finite theories over �L w.r.t. this
algebra. The algebra has been useful for obtaining complexity results for �L, since
Mundici’s pioneering NP completeness result on its SAT problem [23], which
also gives coNP completeness for theoremhood in �L. Other complexity results
for propositional logic �L include [1,2] reducing the decision problems in �L to the
setting of finite MV-chains, [17,18] dealing with admissible rules, [25], [3], or [8].
All these works target decision problems.

The validity degree task (to determine the validity degree of a term ϕ under
a finite theory T ) is a natural optimization problem induced by the many-valued
setting and the purpose of this paper is to see where it sits among other optimiza-
tion problems. Using tools of complexity theory, we classify the validity degree
task in propositional �Lukasiewicz logic �L and its extension RPL, for instances
that pair a finite theory T with a term ϕ. Our emphasis is on �L rather than
RPL: it is far better known, and the existing algebraic methods for �L provide us
with tools. In fact, the few complexity results available for RPL rely on reduc-
tions to �L. In [12] Hájek proved that for finite theories in RPL, validity degrees
are rational; his method inspires ours in eliminating the constants, relying on
their implicit definability in �L. Hájek also provided complexity classification for
the decision version of the problem in [13], showing that provability from finite
theories in propositional RPL is coNP complete, using mixed integer program-
ming. In [15], the same result is obtained from analogous results for �L, using the
implicit definability of constants directly.

We fill the gap of a basic classification for the optimization problem. Our
upper bounds are based on improving Hájek’s rationality proof for validity
degrees with establishing an explicit polynomial bound on denominator size,
relying on Aguzzoli and Ciabattoni’s paper [2]. Their paper uses the language of
�L; however, the methods of [12,15] allow us to tackle the rational constants and
to derive analogous upper bounds for RPL, and we do that in Sect. 4; such upper
bounds then apply also to any fragments of language, i.a., the MV-language. For
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lower bounds (Sect. 5), we work with the language of �L, whereby the hardness
result applies also to RPL.

The decision version of the validity degree is coNP complete, and the SAT
problem for [0, 1]�L is NP complete. Looking at these and similar results on NP
completeness of decision versions for other common optimization problems, one
might ask what would the appropriate (many-one, poly-time) reduction notion
be between the optimization versions, and indeed if such reductions always exist.
Krentel [19] defines metric reductions in response to the former question and
shows that as far as these reductions are concerned, the answer to the latter is
negative unless P = NP (an outline of relevant results is in Sect. 3). Thus there
is a sense in which a mere fact that the decision version of a problem is NP
complete does not provide enough information about the optimization version.

Under standard complexity assumptions, one cannot even approximate the
validity degree efficiently: [16, Theorem 7.4] says that no efficient algorithm can
compute the validity degree for an empty theory within a distance of δ < 1/2
unless P = NP.

The combined results of Sects. 4 and 5 yield the following statement.

Theorem 1. The validity degree task, considered in either �L or RPL, is com-
plete for the class FPNP under metric reductions.

This appears to be the first work to shift the focus from decision to opti-
mization problems as regards complexity of fuzzy logics, identifying a relevant
complexity class. We find it compelling to investigate complexity problems for
non-classical logics that have no counterpart in classical logic, and the valid-
ity degree problem, discussed here for �L, presents one such research direction.
(While, e.g., admissible rules present another, now well established one.)

This work is about the propositional fragments of �L and RPL, so notions
such as language, term/formula, or assignment need to be read appropriately.

2 �Lukasiewicz Logic and Rational Pavelka Logic

The basic language of propositional �Lukasiewicz logic �L has two function sym-
bols: unary ¬ (negation) and binary ⊕ (strong disjunction or sum). Other func-
tion symbols are definable: 1 as x⊕¬x and 0 as ¬1; further, x� y is ¬(¬x⊕¬y)
(strong conjunction or product); x → y is ¬x ⊕ y; x ≡ y is (x → y) � (y → x);
x ∨ y is (x → y) → y or (y → x) → x; and x ∧ y is ¬(¬x ∨ ¬y).

The interpretations of ⊕, �, ∧ and ∨ are commutative and associative, so
one can write, e.g., x1 ⊕· · ·⊕xn without worrying about order and parentheses.
We write xn for x � · · · � x

︸ ︷︷ ︸

n times

and nx for x ⊕ · · · ⊕ x
︸ ︷︷ ︸

n times

. Also, ∨ and ∧ distribute over

each other and � distributes over ∨.
Well-formed �L-terms are defined as usual. The basic language is a point of

reference for complexity considerations in this paper, however we may at times
use the expanded language for clarity (as in classical logic).
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Definition 1. ([2]) For any term ϕ(x1, . . . , xn), �(x)ϕ denotes the number of
occurrences of the variable x in ϕ, and �ϕ = Σn

i=1�(xi)ϕ.

The � function is a good notion of length for terms without iterated ¬ sym-
bols (¬¬ϕ ≡ ϕ is a theorem of L). Our complexity results apply also to the
language of the Full Lambek calculus with exchange and weakening (FLew), i.e.,
{�,→,∨,∧, 0, 1} (and the MV-symbol ⊕). Indeed one observes that rendering �
and → in the basic language does not affect length; for ∨ and ∧, any occurrence
of these defined symbols can be expanded to the basic language in two different
ways (due to commutativity), and this can be used to rewrite any term with these
symbols with only polynomial increase in length.

2.1 MV-algebras

The general MV-algebraic semantics will not be needed in this paper, anymore
than a formal calculus for �L. We will work with the standard MV-algebra [0, 1]�L:
the domain is the real interval [0, 1] and with each MV-term ϕ(x1, . . . , xn) we
associate a function fϕ : [0, 1]n −→ [0, 1], defined by induction on term structure
with f¬ϕ defined as 1 − fϕ, fϕ⊕ψ as min(1, fϕ + fψ). 1 is the only designated
element, accounting for the notions of truth/validity. For any assignment v in
[0, 1]�L, v(ϕ → ψ) = 1 iff v(ϕ) ≤ v(ψ), and thus v(ϕ ≡ ψ) = 1 iff v(ϕ) = v(ψ).

The class of MV-algebras is generated by [0, 1]�L as a quasivariety; it is also
generated by the class of finite MV-chains, the (k + 1)-element MV-chain being
the subalgebra of [0, 1]�L on the domain {0, 1/k, . . . , (k + 1)/k, 1}.

Provability from finite theories in �L coincides with the finite consequence
relation of [0, 1]�L. We have bypassed introducing the formal calculus; to provide a
meaning to the references to �L within this paper, let us adopt this as a definition.
We lose little since the algorithmic approach only tackles finite theories anyway.

A function f : [0, 1]n → [0, 1] is a McNaughton function if it is continuous and
piecewise linear with integer coefficients: there are finitely many linear polyno-
mials {pi}i∈I , with pi(x̄) = Σn

j=1aij xj +bi and āi, bi integers for each i, such that
for any ū ∈ [0, 1]n there is an i ∈ I with f(ū) = pi(ū). McNaughton theorem
([21]) says that term-definable functions of [0, 1]�L coincide with McNaughton
functions. The theorem highlights the fact that one can provide a countably infi-
nite array of pairwise non-equivalent MV-terms for any fixed number of variables
starting with one, as opposed to the case of Boolean functions.

A polyhedral complex C is a set of polyhedra (cells) such that if A is in C, so
are all faces of A, and for A,B in C, A∩B is a common face of A and B. Given
an MV-term ϕ(x1, . . . , xn) one can build canonically a polyhedral complex C(ϕ)
such that [0, 1]n =

⋃

C(ϕ) and fϕ is linear over each n-dimensional cell of C(ϕ).
The minimum of fϕ is attained at a vertex of an n-dimensional cell of C(ϕ). [2]
derives the upper bound ( �ϕ

n )n for the least common denominator of any vertex
of any n-dimensional cell of C(ϕ) (see also [23]). By [1] this is a tight bound on
cardinality of MV-chains witnessing non-validity of MV-terms.

For any MV-term ϕ, the 1-region of fϕ is the union of cells of C(ϕ) such
that fϕ attains the value 1 on all points in the cell. (The highest dimension of
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the cells in the 1-region of ϕ can range anywhere between 0 and n.) The 1-region
of fϕ is compact for any ϕ. One can investigate the minimum of fψ relative to
the 1-region of an fϕ; details in [2].

2.2 RMV-algebras

The language of RPL expands the language {⊕,¬} of �L with a set Q = Q∩ [0, 1]
of constants. The constants are represented as ordered pairs of coprime integers
in binary. The size of the binary representation of an integer n is denoted |n|.

The standard RMV-algebra [0, 1]Q�L has [0, 1]�L as its MV-reduct and interprets
rational constants as themselves. As for �L above, we identify RPL with the finite
consequence relation of [0, 1]Q�L . If ϕ is an RMV-term, fϕ is the function defined
by ϕ in [0, 1]Q�L .

Let us extend the � function to obtain a good length notion for RMV-terms.
Rational constants can be viewed as atoms but the number of atom occurrences
is not a suitable length notion since it ignores the space needed to represent each
constant, which can be arbitrary with respect to the term structure.

Definition 2. Let an RMV-term ϕ have constants p1/q1, . . . , pm/qm and vari-
ables x1, . . . , xn. For a rational p/q ∈ [0, 1], let �(p/q)ϕ denote the number of
occurrences of p/q in ϕ. Define �ϕ = Σn

i=1�(xi)ϕ + Σm
j=1�(pj/qj)ϕ(|pj | + |qj |).

Each rational r in [0, 1] is implicitly definable by an MV-term in [0, 1]�L2: i.e.,
there is an MV-term ϕ(x1, . . . , xk) and an i ∈ {1, . . . , k} such that, for each
assignment v in [0, 1]�L, we have v(xi) = r whenever v(ϕ) = 1 (cf. [12,15]). To
implicitly define a rational p/q, with 1 ≤ p ≤ q, in [0, 1]�L, first define 1/q, using
the one-variable term z1/q ≡ (¬z1/q)q−1, whereupon p/q becomes term-definable
under a theory containing this definition of 1/q, namely we have zp/q ≡ pz1/q

(cf. the technical results in [28, 10, 16]). With p and q in binary, these implicit
definitions are exponential-size in |p| and |q|. One can make them polynomial-size
on pain of introducing (a linear number of) new variables.

Lemma 1. ([15, Lemma 4.1]) For q ∈ N, q ≥ 2, take the binary representation of
q − 1, i.e., let q − 1 = Σm

i=0pi2i with pi ∈ {0, 1} and pm = 1. Let I = {i | pi = 1}.
In [0, 1]�L, the set

{y0 ≡ ¬z1/q, y1 ≡ y2
0 , y2 ≡ y2

1 , . . . , ym ≡ y2
m−1, z1/q ≡ Πi∈Iyi}

has a unique satisfying assignment, sending z1/q to 1/q.

To define 1/q, we need |q − 1| + 1 variables, and the length of the product in
the last equivalence is linear in |q|. Similarly one can achieve a polynomial-size
variant of an implicit definition for p/q.

It is shown in [12] how to obtain finite strong completeness of RPL
w.r.t. [0, 1]Q�L from finite strong completeness of �L w.r.t. [0, 1]�L, based on the

2 On the other hand, no rationals beyond 0 and 1 are term-definable in [0, 1]�L, as a
consequence of McNaughton theorem.
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following statement ([12, Lemma 3.3.13]). Let δp/q be an MV-term that implic-
itly defines the value p/q in a variable zp/q in [0, 1]�L. First, given an RMV-
term ϕ in variables x1, . . . , xn and constants p1/q1, . . . , pm/qm, let δϕ stand for
δp1/q1 � · · · � δpm/qm

3, and let ϕ� result from ϕ by replacing each constant
pi/qi with the variable zpi/qi

. Now let {ψ1, . . . , ψk} ∪ {ϕ} be a finite set of
RMV-terms (in some variables x1, . . . , xn, particularly, with no occurrences of
y-variables or z-variables) and let τ denote {ψ1 � · · · � ψk}. The statement says
that τ �RPL ϕ iff τ� � δτ�ϕ ��L ϕ�. The reason is that under δτ�ϕ, the vari-
ables that correspond to the implicitly defined constants behave exactly as the
constants would. Moreover, δτ�ϕ is an MV-term.

Lemma 2. Let τ and ϕ be RMV-terms with rational constants (p1/q1, . . . ,
pm/qm). Using the δ notation as above, we have:

1. δτ�ϕ has Σm
j=1(|pj | + |qj − 1|) + 2m variables.

2. the length of δτ�ϕ, written as an MV-term featuring ⊕ and ¬, is at most
Σm

j=1(8|pj | + 8|qj − 1| + 4).

Finally we are ready to define the validity degree of a term ϕ in a theory T :

‖ϕ‖T = inf{v(ϕ) | v model of T},

where a valuation v is a model of T if it assigns the value 1 to all terms in T .
We only consider finite theories; for T = {ψ1, . . . , ψk} write τ = ψ1 � · · · � ψk;
then ‖ϕ‖τ = min{v(ϕ) | v model of τ}. For τ inconsistent, ‖ϕ‖τ = 1. In the rest
of this paper, T is finite and represented by the term τ as above. We define the
optimization problem.

Validity Degree

Instance: RMV-terms τ and ϕ (possibly without constants).
Output: ‖ϕ‖τ .

Lemma 3. ‖ϕ‖τ = ‖ϕ�‖(τ��δτ�ϕ).

3 Optimization Problems and Metric Reductions

This section briefly sketches our computational paradigm, reproducing some
notions and results on the structure of the oracle class FPNP as given in Krentel
[19], with a wider framework as provided in [27]. We also introduce an optimiza-
tion problem from [19] that will be used in Sect. 5.

In this paper we use the term optimization problem for what is sometimes
called an evaluation or cost version of a function problem (cf. [27]). In our setting,
the output is the validity degree ‖ϕ‖τ (as an extremal value of fϕ on the 1-region
of fτ ), rather than an assignment at which the extremal value is attained.
3 It is assumed that the collections of auxiliary variables for the implicit definitions

of pi, qi with 1 ≤ i ≤ n are pairwise disjoint and also disjoint from the variables
x1, . . . , xn.
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Let z : N −→ N be smooth.4 FPNP[z(n)] is the class of functions computable
in polynomial time with an NP oracle with at most z(|x|) oracle calls for instance
x. In particular, FPNP stands for FPNP[nO(1)].

Definition 3. ([19]) Let Σ be a finite alphabet and f, g : Σ∗ −→ N. A metric
reduction from f to g is a pair (h1, h2) of polynomial-time computable functions
where h1 : Σ∗ −→ Σ∗ and h2 : Σ∗ × N −→ N, such that f(x) = h2(x, g(h1(x)))
for all x ∈ Σ∗.

The concept of a metric reduction is a natural generalization of polynomial-
time many-one reduction to optimization problems. It follows from the definition
that for each function z as above, FPNP[z(n)] is closed under metric reductions.
The paper [19] provides examples of problems that are complete for FPNP under
metric reductions. We define one such problem (see [19]).

Weighted Max-SAT

Instance: Boolean CNF term (C1 ∧· · ·∧Cn)(x1, . . . , xk) with weights on clauses
w1, . . . , wn, each wi positive integer in binary.
Output: the maximal sum of weights of true clauses over all (Boolean) assign-
ments to the variables x1, . . . , xk.

Theorem 2. ([19]) Weighted Max-SAT is FPNP complete.

The paper [19] provides a separation result for problems in FPNP, a simple
form of which is given below. In particular, under standard complexity assump-
tions there are no metric reductions from FPNP complete problems (such as
Weighted Max-SAT) to some problems in FPNP[O(log n)], such as the Ver-

tex Cover problem.

Theorem 3. ([19]) Assume P �= NP.
Then FPNP[O(log log n)] � FPNP[O(log n)] � FPNP[nO(1)].

4 Upper Bound: Validity Degree is in FPNP

We present a polynomial-time oracle computation for Validity Degree, using
a coNP complete decision version of the problem as an oracle; this yields mem-
bership of Validity Degree in FPNP. The instances of the problem are pairs
(τ, ϕ) of RMV-terms, i.e., terms with the MV-symbols ⊕ and ¬ where atoms are
variables and rational constants. The following oracle will be used.

D-RPL-Graded-Provability

Instance: (τ, ϕ, k) with τ, ϕ RMV-terms and k a rational number in [0, 1].
Output: τ �RPL k → ϕ?

4 I.e., z is nondecreasing and the function 1n �→ 1z(n) is polynomial-time computable.



182 Z. Haniková

Note that τ �RPL k → ϕ iff k ≤ ‖ϕ‖τ . By [13], RPL-provability from finite
theories (given RMV terms τ and ϕ, it is the case that τ �RPL ϕ?) is coNP
complete. Hence, so is D-RPL-Graded-Provability.

The oracle computation can employ a binary search, given an explicit upper
bound on denominators. To obtain a polynomial-time (oracle) computation, the
result of [12] that ‖ϕ‖τ is rational is not enough: we need an upper bound N(τ, ϕ)
on the denominator that is in itself of polynomial size (in binary).

To expose the algebraic methods employed in this section, let us start with
a simpler related problem, interesting in its own right: the natural optimization
version of the term satisfiability problem in the standard MV-algebra [0, 1]�L.

Max Value

Instance: MV-term ϕ(x1, . . . , xn).
Output: max fϕ on [0, 1]n.

This problem reduces to Validity Degree: one maximizes fϕ by minimizing
f¬ϕ under an empty theory. As mentioned in Sect. 1, even this simpler problem
cannot be efficiently approximated (see [16, Theorem 7.4]).

Lemma 4. Let p1/q1 and p2/q2 be two distinct rational numbers and N a pos-
itive integer, let q1, q2 ≤ N . Then

∣

∣

∣

p1
q1

− p2
q2

∣

∣

∣ ≥ 1
N2 .

Lemma 5. Let a < b be rationals and N a positive integer. Assume the interval
[a, b) contains exactly one rational c with denominator at most N , and other
rationals with denominator at most N are at a distance greater than b − a from
c. There is a poly-time algorithm that finds c on input a,b, and N in binary.

Theorem 4. Max Value is in FPNP.

Proof. Let ϕ(x1, . . . , xn) be an MV-term. Then fϕ is maximal on a rational
vector 〈p1/q1, . . . , pn/qn〉; the least common denominator of the vector is at most
( �ϕ

n )n ([2, Theorem 14]). It follows that the denominator of fϕ(p1/q1, . . . , pn/qn)
is at most N(ϕ) = ( �ϕ

n )n.
We sketch a polynomial-time algorithm computing max(fϕ) using binary

search on rationals in [0, 1] with denominators at most N(ϕ), using the general-
ized satisfiability (GenSAT), known to be NP complete ([25]), as oracle: given
MV-term ϕ and a rational r ∈ [0, 1], is max(fϕ) ≥ r?

Test GenSAT(ϕ, 1). If so, output 1 and terminate.
Otherwise, let a = 0, b = 1, and k = 0.
Repeat
k = k + 1; if GenSAT(ϕ, a + b/2), let a = a + b/2, otherwise let b = a + b/2
until 2k > (N(ϕ))2.
Finally, find ‖ϕ‖τ in [a, b) relying on Lemma 5.

Assume the algorithm runs through the loop at least once. After the search
terminates, k is the least integer s.t. 2k > (N(ϕ))2, i.e., k > 2 log(N(ϕ)) ≥ k − 1.
hence the number k of passes through the loop is polynomial. Also, the semi-closed
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interval [a, b) of length 1/2k < 1/(N(ϕ))2 contains max fϕ, and by Lemma 4,
max fϕ is the only value in [a, b) with denominator at most N(ϕ). The values of a
and b are l/2k and (l + 1)/2k respectively, so |a| and |b| are polynomial in k.

Let us address the Validity Degree problem. The binary search will be
analogous, we need to establish an upper bound for the denominators. The fol-
lowing lemma can be obtained from the proof of [2, Theorem 17], a result on
finite consequence relation in �L.

Lemma 6. Let τ and ϕ be MV-terms and let n be the number of variables in
these terms. Assume M,N ∈ N are coprime non-negative integers such that
‖ϕ‖τ = M/N . Then

N ≤
(

�τ + �ϕ

n

)n

Proof. Following [2] and the references therein, one can build, in a canonical
way, (n-dimensional5) polyhedral complexes C(τ) and C(ϕ) such that

⋃

C(τ) =
[0, 1]n =

⋃

C(ϕ), with fτ linear over each n-dimensional cell of C(τ) and fϕ

linear over each n-dimensional cell of C(ϕ).
It follows from the analysis of [2] that the minimum of fϕ on the 1-region of

τ is attained at a vertex (of an n-dimensional cell) of the common refinement of
C(τ) and C(ϕ). It can further be derived from that paper that the least common
denominator of any vertex in this common refinement is bounded by ( �τ+�ϕ

n )n;
the proof is analogous to the case when τ is void.

Hence, there is a rational vector 〈p1/q1, . . . , pn/qn〉 on which fτ is 1, fϕ

attains the value ‖ϕ‖τ , and the least common denominator of 〈p1/q1, . . . , pn/qn〉
is ( �τ+�ϕ

n )n. It follows that N ≤
(

�τ+�ϕ
n

)n

.

Denote by N(τ, ϕ) the obtained upper bound on the denominator of ‖ϕ‖τ

for MV-terms τ and ϕ. To provide an upper bound N�(τ, ϕ) on the denomina-
tor of ‖ϕ‖τ in case τ and ϕ are RMV-terms, we rely on Lemma 3 in order to
apply the existing results for MV-terms: namely, we use the upper bounds on
‖ϕ�‖(τ��δτ�ϕ).

Lemma 7. Let τ and ϕ be RMV-terms. N�(τ, ϕ) = N(τ� � δτ�ϕ, ϕ�) =
= ( �τ�+�δτ�ϕ+�ϕ�

n )n, where n denotes the number of variables in the terms τ�,
δτ�ϕ, and ϕ�.

Lemma 8. For τ and ϕ RMV-terms, N�(τ, ϕ) is polynomial size in �τ and �ϕ.

Theorem 5. Validity Degree is in FPNP.

5 The dimension of fτ and fϕ can be extended to n in a number of ways, e.g., supplying
dummy variables. This will modify the length by a linear function of n.
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Proof. We provide a polynomial-time Turing reduction of Validity Degree

to D-RPL-Graded-Provability; i.e., for RMV-terms τ and ϕ the algorithm
computes ‖ϕ‖τ in time polynomial in �τ+�ϕ, relying on the oracle. The algorithm
is based on a binary search analogous to the algorithm for Max Value from
Theorem 4.

The initial test is D-RPL-Graded-Provability(1, τ, ϕ), where a positive
answer yields ‖ϕ‖τ = 1.

If this is not the case, the binary search is initiated. The upper bound N =
N�(τ, ϕ) on denominator of ‖ϕ‖τ is as in Lemma 7 and 8. This provides discrete
structure to search in and the terminating condition 2k > N2.

The final application of Lemma 5 is analogous to the proof of Theorem4.

5 Lower Bound: Validity Degree Is FPNP Hard

We give a metric reduction of Weighted Max-SAT to Validity Degree. In
this section the Validity Degree problem is considered for MV-terms τ and
ϕ, i.e., we work in the MV-fragment of the RMV language. The lower bound
obtained for the MV-language then applies also to RMV-language.

Theorem 6. Validity Degree is FPNP hard under metric reductions.

Proof. For clarity, the proof is divided in two parts. First, we reduce Weighted

Max-SAT to Validity Degree in an MV-language with the definable symbols.
Subsequently we show how to polynomially translate general MV-terms that
occur in the range of the metric reduction to MV-terms in the basic language.

We define the function h1 from Definition 3, which takes inputs to Weighted

Max-SAT and transforms them to inputs to Validity Degree. Consider a
classical CNF-term (with language ∧, ∨, and ¬) ϕ with variables x1, . . . , xk and
weights w1, . . . , wn for the clauses C1, . . . , Cn of ϕ. One obtains the solution
to Weighted Max-SAT by maximizing Σn

i=1v(Ci)wi over all Boolean assign-
ments v to x1, . . . , xk. To utilize Validity Degree, we need to render this
expression in the MV-language and to isolate the Boolean semantics among the
broader semantics of [0, 1]�L.

We define a finite theory T and a term Φ in stages by making several obser-
vations. At any stage, T is assumed to include terms specified in the earlier
stages.

(a) On any input 〈τ, ϕ〉, Validity Degree gives the minimum of fϕ in [0, 1]�L
over the 1-region of fτ . The routine can also compute the maximum of fϕ on
the same domain if the input is 〈τ,¬ϕ〉 and the output is subtracted from 1.

(b) To force Boolean assignments, for each 1 ≤ j ≤ k put xj ∨¬xj in T . Since ∨
evaluates as max in [0, 1]�L, this condition is true only under (standard MV-)
assignments where either xj is 1, or ¬xj is 1, i.e., xj is 0.
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(c) The algebra [0, 1]�L can only correctly add up to the sum 1.6 Thus the weights
w1, . . . , wn need to be scaled. The computations with weights are bounded
by w = Σn

i=1wi, which is the output of Weighted Max-SAT in case ϕ is
satisfiable, so an appropriate factor to scale by is 1/w. The new weights are
w′

i = wi/w for each i ∈ {1, . . . , n} This is an order-preserving transformation
of the weights and the new weights are of poly-size in the input size.

(d) Multiplication is not available, so e(Ci)w′
i cannot be expressed with an MV-

term. One can however implicitly define some rational expressions as follows.
– Introduce a new variable b. To implicitly define 1/w in variable b, include

in T the system from Lemma 1 that polynomially renders the condition
b ≡ (¬b)w−1 ; now any model v of T will have v(b) = 1/w.

– For 1 ≤ i ≤ n, introduce a new variable yi. Include yi → b in T ; any
model v of T will have v(yi) ≤ 1/w. Further, include in T a polynomial
rendering of yi ⊕ yi ⊕ · · · ⊕ yi

︸ ︷︷ ︸

w times

≡ Ci, using Lemma 1; then for any model v

of T we have that v(Ci) = 0 implies v(yi) = 0, whereas v(Ci) = 1 implies
v(yi) ≥ 1/w, which in combination with the other condition in this item
gives v(yi) = v(Ci)/w.

– For 1 ≤ i ≤ n, introduce a new variable zi. Include in T a polynomial
rendering of yi ⊕ yi ⊕ · · · ⊕ yi

︸ ︷︷ ︸

wi times

≡ zi, again relying on Lemma 1. Any model

v of T will have v(zi) = v(Ci)w′
i.

To recap, we define T as the following set of MV-terms:

– xj ∨ ¬xj for each j ∈ {1, . . . , k};
– a polynomial-sized rendering of b ≡ (¬b)w−1 (cf. Lemma 1);
– for 1 ≤ i ≤ n, yi → b and a poly-sized rendering of wyi ≡ Ci (Lemma 1);
– for 1 ≤ i ≤ n, a poly-sized rendering of wiyi ≡ zi (Lemma 1).

Let a term τ represent T , let Φ stand for ¬(z1 ⊕z2 ⊕· · ·⊕zn). Let m = ‖Φ‖τ ,
i.e., m is the rational number that Validity Degree returns on input τ and
Φ. We claim that (1 − m)w (the function h2 from Definition 3) is the solution to
the instance C1, . . . , Cn and w1, . . . , wn of Weighted Max-SAT on input.

To see this, observe that the models of τ feature precisely all Boolean assign-
ments to variables {x1, . . . , xk}. Each such model v extends to the new vari-
ables b, yi and zi (1 ≤ i ≤ n), namely v(b) = 1/w, v(yi) = (1/w)v(Ci), and
v(zi) = (wi/w)v(Ci). In particular, if v models T , then the values of b, yi and
zi under v are determined by the values that v assigns to the x-variables (i.e.,
the “Boolean” variables). Except for b, the sets of variables introduced for each
i are pairwise disjoint.

It follows from the construction of τ and Φ that any Boolean assignment that
yields an extremal value of Weighted Max-SAT also produces an extremal
value of Validity Degree and vice versa. It is easy to check that the order-
reversing operations (taking 1− y back and forth) and the scaling and descaling

6 Addition, represented by the strong disjunction ⊕, is truncated at 1.
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work as expected (both are order-preserving). Hence, the reduction correctly
computes an input to Validity Degree and correctly renders the result of this
routine as an output of Weighted Max-SAT.

Finally, both functions involved are clearly polynomial-time functions.
For the second part of the proof, we notice that Φ is a term in the basic

language. As for τ , recall that one can render ϕ � ψ and ϕ → ψ in the basic
language, using the definitions, without changing the number of variable occur-
rences; this includes the nested occurrences of � in (a rendering of) (¬b)w−1

(recall that the product in the p-size variant is of cardinality |w|). To rewrite
each disjunction Ci in the basic language, we apply to the following claim.7

Claim: let α = (α1∨· · ·∨αn), where αi are terms in the basic language. There
is a term β in the basic language �L-equivalent to α and such that �β = 2�α.

To justify the claim, let αl = α′ ∨ αn, where α′ = (α1 ∨ · · · ∨ αn−1). Then αl

is equivalent to (α′ → αn) → αn. Repeat this process for α′ unless it coincides
with α1. This produces a term equivalent to α, with → as the only symbol; then
rewrite → in the basic language.

6 Closing Remarks

This result attests a key role of algebraic methods for computational complexity
upper bounds in propositional �Lukasiewicz logic. Syntactic derivations are not
even discussed; indeed at present we have no idea how to employ them.

A proof-theoretic counterpart of a validity degree is the provability degree:
|ϕ|T = sup{r | T �RPL r → ϕ}, with the provability relation defined by extend-
ing �Lukasiewicz logic with suitable axioms. Hájek proved Pavelka completeness
for RPL in [12]: for any choice of T and ϕ, |ϕ|T coincides with ‖ϕ‖T . Our results
thereby apply also to provability degrees (for finite theories).

To our knowledge there are no works explicitly dealing with the more prag-
matical tasks of providing algorithms computing the validity degree (or maximal
value), identifying fragments where they might be efficient, or similar.

We have obtained hardness for FPNP under metric reductions for Validity

Degree but not Max Value. A somewhat similar reduction of Weighted

Max-SAT to a 0-1 integer programming problem was presented in [19], where
roughly speaking, some conditions in the matrix correspond to some of our
conditions in the theory. We do not know how to avoid employing the theory,
and cannot supply a FPNP hardness proof for Max Value at present.

Acknowledgements. This work was supported partly by the grant GA18-00113S
of the Czech Science Foundation and partly by the long-term strategic development
financing of the Institute of Computer Science (RVO:67985807).

The author is indebted to Stefano Aguzzoli, Tommaso Flaminio, Llúıs Godo, Jirka
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Abstract. There are continuum many homeomorphism types of Polish
spaces. In particular, there is a Polish space which is not homeomor-
phic to any computably presented Polish space. We examine the details
of degrees of non-computability of presenting homeomorphic copies of
Polish spaces.
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How difficult is it to describe an explicit presentation of an abstract mathe-
matical structure? In computable structure theory, there are a large number of
works on degrees of non-computability of presenting isomorphism types (known
as degree spectra) of algebraic structures such as groups, rings, fields, linear
orders, lattices, Boolean algebras, and so on, cf. [1,5,6,8]. In this article, we
deal with its topological analogue, i.e., degrees of non-computability of present-
ing homeomorphism types of certain topological spaces, and mainly focus on
presentations of Polish spaces (i.e., completely metrizable separable spaces). We
present some of the results obtained in Hoyrup-Kihara-Selivanov [9] on this topic.

The notion of a presentation plays a central role, not only in computable
structure theory, but also in computable analysis [2,3,16]. In this area, one of
the most crucial problems was how to present large mathematical objects (which
possibly have the cardinality of the continuum) such as metric spaces, topological
spaces and so on, and then researchers have obtained a number of reasonable
answers to this question. In particular, the notion of a computable presentation of
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a Polish space has been introduced around 1950-60s, cf. [12], and since then this
notion has been widely studied in several areas including computable analysis
[2,14,16] and descriptive set theory [13].

In recent years, several researchers succeeded to obtain various results on
Turing degrees of presentations of isometric isomorphism types of Polish metric
spaces, separable Banach spaces, and so on, cf. [4,10,11]. However, most of works
are devoted to metric structures, and there seem almost no works on presenta-
tions on homeomorphism types of Polish spaces. The investigation of Turing
degrees of homeomorphism types of topological spaces (not necessarily Polish)
was initiated in [15]. Some results were obtained for domains but the case of
Polish spaces was apparently not investigated seriously so far.

Every Polish space is homeomorphic to the Cauchy completion of a metric on
(an initial segment of) the natural numbers ω, so one may consider any distance
function d : ω2 → Q as a presentation of a Polish space. Then, observe that there
are continuum many homeomorphism types of Polish spaces. In particular, by
cardinality argument, there is a Polish space which is not homeomorphic to any
computably presented Polish space. Surprisingly however, it was unanswered
until very recently even whether the following holds:

Question 1. Does there exist a 0′-computably presented Polish space which is
not homeomorphic to a computably presented one?

The solution to Question 1 was very recently obtained by the authors of
this article, and independently by Harrison-Trainor, Melnikov, and Ng [7]. One
possible approach to solve this problem is using Stone duality between countable
Boolean algebras and zero-dimensional compact metrizable spaces, but they also
noticed that every low4-presented zero-dimensional compact metrizable space is
homeomorphic to a computable one. This reveals certain limitations of Stone
duality techniques. Our next step is to develop new techniques other than Stone
duality. More explicitly, the next question is the following:

Question 2. Does there exist a low4-presented Polish space which is not home-
omorphic to a computably presented one?

One of the main results in Hoyrup-Kihara-Selivanov [9] is that there exists a
0′-computable low3 infinite dimensional compact metrizable space which is not
homeomorphic to a computable one. This solves Question 2. Indeed, Hoyrup-
Kihara-Selivanov [9] showed more general results by considering two types of
presentations:

A Polish presentation (or simply a presentation) of a Polish space X is a
distance function d on ω whose Cauchy completion is homeomorphic to X . If X is
moreover compact, then by a compact presentation of X we mean a presentation
of X equipped with an enumeration of (codes of) all finite rational open covers
of X , where a rational open set is a finite union of rational open balls. For
readers who are familiar with the abstract theory of modern computable analysis
(cf. [2]), we note that a Polish (compact, resp.) presentation of X is just a name
of a homeomorphic copy of X in the space of overt (compact overt, resp.) subsets
of Hilbert cube [0, 1]ω.
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Theorem 1 ([9]). For any Turing degree d and natural number n > 0, there
exists a compact metrizable space Zd,n such that for any Turing degree x,

d ≤ x(2n−1) ⇐⇒ Zd,n has anx-computable compact presentation.

Theorem 2 ([9]). For any Turing degree d and natural number n > 0, there
exists a compact metrizable space Pd,n such that for any Turing degree x,

d ≤ x(2n) ⇐⇒ Pd,n has anx-computable compact presentation.

d ≤ x(2n+1) ⇐⇒ Pd,n has anx-computable Polish presentation.

Corollary 1 ([9]). There exists a Polish space which is 0′-computably pre-
sentable, but not computably presentable.

Indeed, for any n > 0, there exists a compact metrizable space X such that

x is high2n ⇐⇒ X has anx-computable compact presentation.

x is high2n+1 ⇐⇒ X has anx-computable Polish presentation.

Corollary 2 ([9]). There is a compact Polish space X which has a computable
presentation, but has no presentation which makes X computably compact.

Another important question is whether the homeomorphism type of a Polish
space can have an easiest presentation.

Question 3. Does there exist a homeomorphism type of a Polish space which
is not computably presentable, but have an easiest presentation with respect to
Turing reducibility?

Hoyrup-Kihara-Selivanov [9] partially answered Question 3 in negative. More
precisely, we show the cone-avoidance theorem for compact Polish spaces, which
states that, for any non-c.e. set A ⊆ ω, every compact Polish space has a pre-
sentation that does not enumerate A.

Some other side results in [9] are:

Theorem 3 ([9]). There exists a compact metrizable space X which has a com-
putably compact presentation, but its nth Cantor-Bendixson derivative X n has
no 0(2n−1)-computably compact presentation.

Indeed, there exists a compact metrizable space X such that the following are
equivalent for any Turing degree x:

1. X has an x-computable compact presentation
2. The nth derivative X n has an x(2n)-computable compact presentation

Theorem 4 ([9]). There exists a computably presentable compact metrizable
space whose perfect kernel is not computably presentable.

Similarly, there exists a computably compact, computably presented, compact
metrizable space whose perfect kernel is compact, but has no presentation which
makes it computably compact.
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Our key idea is using dimension (more explicitly, high-dimensional holes, i.e.,
a cycle which is not a boundary) to code a given Turing degree. As a result, all
of our examples in the above results are infinite dimensional. We do not know
if there are finite dimensional examples satisfying our main results. We also
note that all of our examples are disconnected, and it is not known if there are
connected examples.
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Abstract. Two-player win/lose games of infinite duration are involved
in several disciplines including computer science and logic. If such a game
has deterministic winning strategies, one may ask how simple such strate-
gies can get. The answer may help with actual implementation, or to win
despite imperfect information, or to conceal sensitive information espe-
cially if the game is repeated.

Given a concurrent two-player win/lose game of infinite duration, this
article considers equivalence relations over histories of played actions.
A classical restriction used here is that equivalent histories have equal
length, hence time awareness. A sufficient condition is given such that
if a player has winning strategies, she has one that prescribes the same
action at equivalent histories, hence uniformization. The proof is fairly
constructive and preserves finiteness of strategy memory, and counterex-
amples show relative tightness of the result. Several corollaries follow for
games with states and colors.

Keywords: Two-player win/lose games · Imperfect information ·
Criterion for existence of uniform winning strategies · Finite memory

1 Introduction

In this article, two-player win/lose games of infinite duration are games where
two players concurrently and deterministically choose one action each at every
of infinitely many rounds, and “in the end” exactly one player wins. Such games
(especially their simpler, turn-based variant) have been used in various fields
ranging from social sciences to computer science and logic, e.g. in automata
theory [5,15] and in descriptive set theory [12].

Given such a game and a player, a fundamental question is whether she has
a winning strategy, i.e. a way to win regardless of her opponent’s actions. If the
answer is positive, a second fundamental question is whether she has a simple
winning strategy. More specifically, this article investigates the following strategy
uniformization problem: consider an equivalence relation ∼ over histories, i.e.
over sequences of played actions; if a player has a winning strategy, has she a
winning ∼-strategy, i.e. a strategy prescribing the same action after equivalent
histories? This problem is relevant to imperfect information games and beyond.
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This article provides a sufficient condition on ∼ and on the winning condition
of a player such that, if she has a winning strategy, she has a winning ∼-strategy.
The sufficient condition involves time awareness of the player, but perfect recall
(rephrased in Sect. 2) is not needed. On the one hand, examples show the tight-
ness of the sufficient condition in several directions; on the other hand, further
examples show that the sufficient condition is not strictly necessary.

The proof of the sufficient condition has several features. First, from any
winning strategy s, it derives a winning ∼-strategy s ◦ f . The map f takes as
input the true history of actions, and outputs a well-chosen virtual history of
equal length. Second, the derivation s �→ s ◦ f is 1-Lipschitz continuous, i.e.,
reactive, as in reactive systems. (Not only the way of playing is reactive, but
also the synthesis of the ∼-strategy.) Third, computability of ∼ and finiteness
of the opponent action set make the derivation computable. As a consequence in
this restricted context, if the input strategy is computable, so is the uniformized
output strategy. Fourth, finite-memory implementability of the strategies is pre-
served, if the opponent action set is finite. Fifth, strengthening the sufficient
condition by assuming perfect recall makes the virtual-history map f definable
incrementally (i.e. by mere extension) as the history grows. This simplifies the
proofs and improves the memory bounds.

The weaker sufficient condition, i.e. when not assuming perfect recall, has
an important corollary about concurrent games with states and colors: if any
winning condition (e.g. not necessarily Borel) is defined via the colors, a player
who can win can do so by only taking the history of colors and the current state
into account, instead of the full history of actions. Finiteness of the memory is
also preserved, if the opponent action set is finite. Two additional corollaries
involve the energy winning condition or a class of winning conditions laying
between Büchi and Muller.

Both the weaker and the stronger sufficient conditions behave rather well
algebraically. In particular, they are closed under arbitrary intersections. This
yields a corollary involving the conjunction of the two aforementioned winning
conditions, i.e., energy and (sub)Muller.

Finding sufficient conditions for strategy uniformization may help reduce the
winning strategy search space; or help simplify the notion of strategy: instead of
expecting a precise history as an input, it may just expect an equivalence class,
e.g. expressed as a simpler trace.

The strategy uniformization problem is also relevant to protagonist-imperfect-
information games, where the protagonist cannot distinguish between equiva-
lent histories; and also to antagonist-imperfect-information games, where the
protagonist wants to behave the same after as many histories as possible to con-
ceal information from her opponent or anyone (partially) observing her actions:
indeed the opponent, though losing, could try to lose in as many ways as possible
over repeated plays of the game, to learn the full strategy of Player 1, i.e. her
capabilities. In connection with the latter, the longer version [11] of this arti-
cle studies the strategy maximal uniformization problem: if there is a winning
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strategy, is there a maximal ∼ such that there is a winning ∼-strategy? A basic
result is proved (there but not here) and examples show its relative tightness.

Related Works. The distinction between perfect and imperfect information was
already studied in [16] for finite games. Related concepts were clarified in [9] by
using terms such as information partition and perfect recall: this article is meant
for a slightly more general setting and thus may use different terminologies.

I am not aware of results similar to my sufficient condition for universal
existence, but there is an extensive literature, starting around [18], that studies
related decision problems of existence: in some class of games, is the existence of
a uniform winning strategy decidable and how quickly? Some classes of games
come from strategy logic, introduced in [4] and connected to information imper-
fectness, e.g., in [2]. Some other classes come from dynamic epistemic logic,
introduced in [8] and connected to games, e.g., in [20] and to decision proce-
dures, e.g., in [14]. Among these works, some [13] have expressed the need for
general frameworks and results about uniform strategies; others [3] have studied
subtle differences between types of information imperfectness.

Imperfect information games have been also widely used in the field of secu-
rity, see e.g. the survey [19, Section 4.2]. The aforementioned strategy maximal
uniformization problem could be especially relevant in this context.

Structure of the Article. Section 2 presents the main results on the strategy
uniformization problem; Sect. 3 presents various corollaries about games with
states and colors; and Sect. 4 presents the tightness of the sufficient condition in
several directions. Proofs and additional sections can be found in [11].

2 Main Definitions and Results

The end of this section discusses many aspects of the forthcoming definitions
and results.

Definitions on Game Theory. In this article, a two-player win/lose game
is a tuple 〈A,B,W 〉 where A and B are non-empty sets and W is a subset
of infinite sequences over A × B, i.e. W ⊆ (A × B)ω. Informally, Player 1 and
Player 2 concurrently choose one action in A and B, respectively, and repeat
this ω times. If the produced sequence is in W , Player 1 wins and Player 2 loses,
otherwise Player 2 wins and Player 1 loses. So W is called the winning condition
(of Player 1).

The histories are the finite sequences over A×B, denoted by (A×B)∗. The
opponent-histories are B∗. The runs and opponent-runs are their infinite
versions.

A Player 1 strategy is a function from B∗ to A. Informally, it tells Player 1
which action to choose depending on the opponent-histories, i.e. on how Player
2 has played so far.

The induced history function h : ((B∗ → A) × B∗) → (A × B)∗ expects
a Player 1 strategy and an opponent-history as inputs, and outputs a history.
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It is defined inductively: h(s, ε) := ε and h(s, β · b) := h(s, β) · (s(β), b) for all
(β, b) ∈ B∗ × B. Informally, h outputs the very sequence of pairs of actions that
are chosen if Player 1 follows the given strategy while Player 2 plays the given
opponent-history. Note that β �→ h(s, β) preserves the length and the prefix
relation, i.e. ∀β, β′ ∈ B∗, |h(s, β)| = |β| ∧ (β � β′ ⇒ h(s, β) � h(s, β′)).

The function h is extended to accept opponent-runs (in Bω) and then to
output runs: h(s,β) is the only run whose prefixes are the h(s,β≤n) for n ∈ N,
where β≤n is the prefix of β of length n. A Player 1 strategy s is a winning
strategy if h(s,β) ∈ W for all β ∈ Bω.

Definitions on Equivalence Relations over Histories. Given a game 〈A,B,W 〉,
a strategy constraint (constraint for short) is an equivalence relation over
histories. Given a constraint ∼, a strategy s is said to be a ∼-strategy if
h(s, β) ∼ h(s, β′) ⇒ s(β) = s(β′) for all opponent-histories β, β′ ∈ B∗. Infor-
mally, a ∼-strategy behaves the same after equivalent histories that are compat-
ible with s.

Useful predicates on constraints, denoted ∼, are defined below.

1. Time awareness: ρ ∼ ρ′ ⇒ |ρ| = |ρ′|, where |ρ| is the length of the
sequence/word ρ.

2. : ρ ∼ ρ′ ⇒ ρρ′′ ∼ ρ′ρ′′.
3. Perfect recall: (ρ ∼ ρ′ ∧ |ρ| = |ρ′|) ⇒ ∀n ≤ |ρ|, ρ≤n ∼ ρ′

≤n
4. Weak W -closedness: ∀ρ,ρ′ ∈ (A × B)ω, (∀n ∈ N,ρ≤n ∼ ρ′

≤n) ⇒ (ρ ∈ W ⇔
ρ′ ∈ W )

5. Strong W -closedness: ∀ρ,ρ′ ∈ (A × B)ω,
(∀n ∈ N,∃γ ∈ (A × B)∗,ρ≤nγ ∼ ρ′

≤n+|γ|) ⇒ (ρ ∈ W ⇒ ρ′ ∈ W )

Note that the first three predicates above constrain only (the information avail-
able to) the strategies, while the last two constrain also the winning condition.

Definitions on Automata Theory. The automata in this article have the classical
form (Σ,Q, q0, δ) where q0 ∈ Q and δ : Q × Σ → Q, possibly with additional
accepting states F ⊆ Q in the definition. The state space Q may be infinite,
though. The transition function is lifted in two ways by induction. First, to
compute the current state after reading a word: δ+(ε) := q0 and δ+(ua) :=
δ(δ+(u), a) for all (u, a) ∈ Σ∗ × Σ. Second, to compute the sequence of visited
states while reading a word: δ++(ε) := q0 and δ++(ua) = δ++(u)δ+(ua). Note
that |δ++(u)| = |u| for all u ∈ Σ∗.

Given a game 〈A,B,W 〉, a memory-aware implementation of a strategy
s is a tuple (M,m0, Σ, μ, ) where M is a (in)finite set (the memory), m0 ∈ M
(the initial memory state), Σ : M → A (the choice of action depending on the
memory state), and μ : M ×B → M (the memory update), such that s = Σ◦μ+,
where μ+ : B∗ → M (the “cumulative” memory update) is defined inductively:
μ+(ε) := m0 and μ+(βb) = μ(μ+(β), b) for all (β, b) ∈ B∗ × B. If M is finite, s
is said to be a finite-memory strategy.

Word Pairing: for all n ∈ N, for all u, v ∈ Σn, let u‖v := (u1, v1) . . . (un, vn) ∈
(Σ2)n.
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A time-aware constraint is 2-tape-recognizable using memory states Q, if
there is an automaton ((A×B)2, Q, q0, F, δ) such that u ∼ v iff δ+(u‖v) ∈ F . (It
implies q0 = δ+(ε‖ε) ∈ F .) If moreover Q is finite, the constraint is said to be
2-tape-regular. Recognition of relations by several tapes was studied in, e.g.,
[17]. Note that 2-tape regularity of ∼ was called indistinguishability-based in [3].

Main Results. Let us recall additional notions first. Two functions of domain
Σ∗ that coincide on inputs of length less than n but differ for some input of
length n are said to be at distance 1

2n . In this context, a map from strategies to
strategies (or to B∗ → B∗) is said to be 1-Lipschitz continuous if from any input
strategy that is partially defined for opponent-histories of length up to n, one
can partially infer the output strategy for opponent-histories of length up to n.

Theorem 1. Consider a game 〈A,B,W 〉 and a constraint ∼ that is time-aware
and closed by adding a suffix. The two results below are independent.

1. Stronger assumptions and conclusions: If ∼ is also perfectly recalling
and weakly W -closed, there exists a map f : (B∗ → A) → (B∗ → B∗)
satisfying the following.
(a) For all s : B∗ → A let fs denote f(s); we have s ◦ fs is a ∼-strategy, and

s ◦ fs is winning if s is winning.
(b) The map f is 1-Lipschitz continuous.
(c) For all s the map fs preserves the length and the prefix relation.
(d) The map s �→ s ◦ fs is 1-Lipschitz continuous.
(e) If B is finite and ∼ is computable, f is also computable; and as a conse-

quence, so is s ◦ fs for all computable s.
(f) If s has a memory-aware implementation using memory states M , and

if ∼ is 2-tape recognizable by an automaton with accepting states F , then
s ◦ fs has a memory-aware implementation using memory states M × F .

2. Weaker assumptions (no perfect recall) and conclusions: If ∼ is also
strongly W -closed, there exists a self-map of the Player 1 strategies that sat-
isfies the following.
(a) It maps strategies to ∼-strategies, and winning strategies to winning

strategies.
(b) It is 1-Lipschitz continuous.
(c) If B is finite and ∼ is computable, the self-map is also computable.
Moreover, if ∼ is 2-tape recognizable using memory M∼, and if there is a
winning strategy with memory Ms, there is also a winning ∼-strategy using
memory P(Ms × M∼).

Lemma 1 below shows that the five constraint predicates behave rather well
algebraically. It will be especially useful when handling Boolean combinations of
winning conditions.

Lemma 1. Let A, B, and I be non-empty sets. For all i ∈ I let Wi ⊆ (A×B)ω

and ∼i be a constraint over (A × B)∗. Let ∼ be another constraint.
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1. If ∼i is time-aware (resp. closed by adding a suffix, resp. perfectly recalling)
for all i ∈ I, so is ∩i∈I ∼i.

2. If ∼i is weakly (strongly) Wi-closed for all i ∈ I, then ∩i∈I ∼i is weakly
(strongly) ∩i∈IWi-closed.

3. If ∼ is weakly (strongly) Wi-closed for all i ∈ I, then ∼ is weakly (strongly)
∪i∈IWi-closed.

Comments on the Definitions and Results. In the literature, Player 1 strategies
sometimes have type (A × B)∗ → A. In this article, they have type B∗ → A
instead. Both options would work here, but the latter is simpler.

In the literature, Player 1 winning strategies are often defined as strate-
gies winning against all Player 2 strategies. In this article, they win against all
opponent runs instead. Both options would work here, but the latter is simpler.

Consider a game 〈A,B,W 〉 and its sequentialized version where Player
1 plays first at each round. It is well-known and easy to show that a Player
1 strategy wins the concurrent version iff she wins the sequential version.
I have two reasons to use concurrent games here, though. First, the nota-
tion is nicer for the purpose at hand. Second, concurrency does not rule out
(semi-)deterministic determinacy of interesting classes of games1 as in [1] and
[10], and using a sequentialized version of the main result to handle these con-
current games would require cumbersome back-and-forth game sequentialization
that would depend on the winner. That being said, many examples in this article
are, morally, sequential/turn-based games.

Strong W -closedness is indeed stronger than weak W -closedness, as
proved in [11]. Besides these two properties, which relate ∼ and W , the other
predicates on ∼ alone are classical when dealing with information imperfectness,
possibly known under various names. For example, Closedness by adding a
suffix is sometimes called the no-learning property.

However strong the strong W -closedness may seem, it is strictly weaker
than the conjunction of perfect recall and weak W -closedness, as proved
in [11]. This justifies the attributes stronger/weaker assumptions in Theorem1.
Note that the definition of strong W -closedness involves only the implication
ρ ∈ W ⇒ ρ′ ∈ W , as opposed to an equivalence.

The update functions of memory-aware implementations have type M ×B →
M , so, informally, they observe only the memory internal state and the oppo-
nent’s action. In particular they do not observe for free any additional state of
some system.

The notion of 2-tape recognizability of equivalence relations is natural
indeed, but so is the following. An equivalence relation ∼ over Σ∗ is said to be
1-tape recognizable using memory Q if there exists an automaton (Σ,Q, q0, δ)
such that u ∼ v iff δ+(u) = δ+(v). In this case there are at most |Q| equiva-
lence classes. If Q is finite, ∼ is said to be 1-tape regular. When considering

1 A class of games enjoys determinacy if all games therein are determined. A game is
(deterministically) determined if one player has a (deterministic) winning strategy.



Time-Aware Uniformization of Winning Strategies 199

time-aware constraints, 2-tape recognizability is strictly more general, as proved
in [11], and it yields more general results. A detailed account can be read in [3].

Here, the two notions of recognizability require nothing about the cardi-
nality of the state space: what matters is the (least) cardinality that suffices. The
intention is primarily to invoke the results with finite automata, but allowing for
infinite ones is done at no extra cost.

In the memory part of Theorem 1.1, the Cartesian product involves only
the accepting states F , but it only spares us one state: indeed, in a automaton
that is 2-tape recognizing a perfectly recalling ∼, the non-final states can be
safely merged into a trash state. In Theorem 1, however, the full M∼ is used
and followed by a powerset construction. So by Cantor’s theorem, the memory
bound in Theorem1.2 increases strictly, despite finiteness assumption for B.

Generally speaking, 1-Lipschitz continuous functions from infinite words
to infinite words correspond to (real-time) reactive systems; continuous func-
tions correspond to reactive systems with unbounded delay; and computable
functions to reactive systems with unbounded delay that can be implemented
via Turing machines. Therefore both 1-Lipschitz continuity and computabilty
are desirable over continuity (and both imply continuity).

In Theorem 1.1, the derived ∼-strategy is of the form s ◦ fs, i.e. it is essen-
tially the original s fed with modified inputs, which are called virtual opponent-
histories. Theorem 1.1b means that it suffices to know s for opponent-history
inputs up to some length to infer the corresponding virtual history map fs for
inputs up to the same length. Theorem1.1c means that for each fixed s, the vir-
tual opponent-history is extended incrementally as the opponent-history grows.
The assertations 1b and 1c do not imply one another a priori, but that they
both hold implies Theorem1.1d indeed; and Theorem1.1d means that one can
start synthesizing a ∼-strategy and playing accordingly on inputs up to length
n already when knowing s on inputs up to length n. This process is even com-
putable in the setting of Theorem 1.1e.

In Theorem 1.2, the derived ∼-strategy has a very similar form, but the fs no
longer preserves the prefix relation since the perfect recall assumption is dropped.
As a consequence, the virtual opponent-history can no longer be extended incre-
mentally: backtracking is necessary. Thus there is no results that correspond to
Theorems 1.1b and 1.1c, yet one retains both 1-Lipschitz continuity of the self-
map and its computability under suitable assumptions: Theorems 1.2b and 1.2c
correspond to Theorems 1.1d and 1.1e, respectively.

In Lemma 1, constraints intersection makes sense since the intersection
of equivalence relations is again an equivalence relation. This is false for unions;
furthermore, taking the equivalence relation generated by a union of equivalence
relations would not preserve weak or strong W -closedness.

3 Application to Concurrent Games with States
and Colors

It is sometimes convenient, for intuition and succinctness, to define a winning
condition not as a subset of the runs, but in several steps via states and colors.
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Given the current state, a pair of actions chosen by the players produces a color
and determines the next state, and so on. The winning condition is then defined
in terms of infinite sequences of colors.

Definition 1. An initialized arena is a tuple 〈A,B,Q, q0, δ, C, col〉 such that

– A and B are non-empty sets (of actions of Player 1 and Player 2),
– Q is a non-empty set (of states),
– q0 ∈ Q (is the initial state),
– δ : Q × A × B → Q (is the state update function).
– C is a non-empty set (of colors),
– col : Q × A × B → C (is a coloring function).

Providing an arena with some W ⊆ Cω (a winning condition for Player 1) defines
a game.

In such a game, a triple in Q × A × B is informally called an edge because it
leads to a(nother) state via the udpate function δ. Between two states there are
|A × B| edges. Note that the colors are on the edges rather than on the states.
This is generally more succinct and it is strictly more expressive in the following
sense: in an arena with finite Q, infinite A or B, and colors on the edges, infinite
runs may involve infinitely many colors. However, it would never be the case if
colors were on the states.

The coloring function col is naturally extended to finite and infinite sequences
over A × B. By induction, col++(ε) := ε, and col++(a, b) := col(q0, a, b), and
col++(ρ(a, b)) := col++(ρ)col(δ+(ρ), a, b). Then col∞(ρ) is the unique sequence
in Cω such that col++(ρ≤n) is a prefix of col∞(ρ) for all n ∈ N. Note that
|col++(ρ)| = |ρ| for all ρ ∈ (A × B)∗.

The histories, strategies, and winning strategies of the game with states and
colors are then defined as these of 〈A,B, (col∞)−1[W ]〉, which is a game as
defined in Sect. 2. Conversely, a game 〈A,B,W 〉 may be seen as a game with
states and colors 〈A,B,Q, q0, δ, C, col,W 〉 where C = A×B, and Q = {q0}, and
col(q0, a, b) = (a, b) for all (a, b) ∈ A × B.

Recall that the update functions of memory-aware implementations have type
M × B → M , so they do not observe the states in Q for free. This difference
with what is customary in some communities is harmless in terms of finiteness
of the strategy memory, though.

A Universal Result for Concurrent Games. Corollary 1 below considers games
with states and colors. Corollary 1.1 (resp. 1.2) is a corollary of Theorem 1.1
(resp. Theorem 1.2). It says that if there is a winning strategy, there is also
one that behaves the same after histories of pairs of actions that yield the same
sequence of states (resp. the same current state) and the same sequence of colors.
Note that no assumption is made on the winning condition in Corollary 1: it need
not be even Borel.

Corollary 1. Consider a game with states and colors G = 〈A,B,Q, q0,
δ, C, col,W 〉 where Player 1 has a winning strategy s. The two results below are
independent.
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1. Then Player 1 has a winning strategy s′ (obtained in a Lipschitz manner from
s) that satisfies the following for all β, β′ ∈ B∗.

δ++◦h(s′, β) = δ++◦h(s′, β′) ∧ col++◦h(s′, β) = col++◦h(s′, β′) ⇒ s′(β) = s′(β′)

Furthermore, if s can be implemented via memory space M , so can s′; and if
B is finite and ∼ is computable, s′ is obtained in a computable manner from
s.

2. Then Player 1 has a winning strategy s′ (obtained in a Lipschitz manner from
s) that satisfies the following for all β, β′ ∈ B∗.

δ+ ◦ h(s′, β) = δ+ ◦ h(s′, β′) ∧ col++ ◦ h(s′, β) = col++ ◦ h(s′, β′) ⇒ s′(β) = s′(β′)

Furthermore, if s can be implemented via memory M , then s′ can be imple-
mented via memory size 2|M |(|Q|2+1); and if B is finite and ∼ is computable,
s′ is obtained in a computable manner from s.

On the one hand, Corollary 1 exemplifies the benefit of dropping the perfect recall
assumption to obtain winning strategies that are significantly more uniform. On
the other hand, it exemplifies the memory cost of doing so, which corresponds
to the proof-theoretic complexification from Theorem 1.1 to Theorem 1.2, as is
discussed in [11].

To prove Corollary 1.2 directly, a natural idea is to “copy-paste”, i.e., rewrite
the strategy at equivalent histories. If done finitely many times, it is easy to
prove that the derived strategy is still winning, but things become tricky if done
infinitely many times, as it should.

Note that in Corollary 1, assumptions and conclusions apply to both players:
indeed, since no assumption is made on W , its complement satisfies all assump-
tions, too.

A consequence of Corollary 1 is that one could define state-color strategies as
functions in (Q∗ × C∗) → A or even (Q × C∗) → A, while preserving existence
of winning strategies. How much one would benefit from doing so depends on
the context.

In the remainder of this section, only the weaker sufficient condition, i.e.,
Theorem 1.2 is invoked instead of Theorem1.1.

Between Büchi and Muller. In Corollary 1 the exact sequence of colors mattered,
but in some cases from formal methods, the winning condition is invariant under
shuffling of the color sequence. Corollary 2 below provides an example where
Theorem 1 applies (but only to Player 1).

Corollary 2. Consider a game with states and colors G = 〈A,B,Q, q0, δ,
C, col,W 〉 with finite Q and C, and where W is defined as follows: let (Ci)i∈I be
subsets of C, and let γ ∈ W if there exists i ∈ I such that all colors in Ci occur
infinitely often in γ.

If Player 1 has a winning strategy, she has a finite-memory one that behaves
the same if the current state and the multiset of seen colors are the same.
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Note that the games defined in Corollary 2 constitute a subclass of the concur-
rent Muller games, where finite-memory strategies suffice [7], and a superclass
of the concurrent Büchi games, where positional (aka memoryless) strategies
suffice. In this intermediate class from Corollary 2, however, positional strate-
gies are not sufficient: indeed, consider the three-state one-player game in Fig. 1
where q1 and q2 must be visited infinitely often. As far as I know, Corollary 2 is
not a corollary of well-known results, although the complement of the winning
condition therein can be expressed by a generalised Büchi automaton.

q1 q0

start

q2

Fig. 1. A game where positional strategies do not suffice: q1 and q2 must be visited.

Energy Games. The energy winning condition relates to real-valued colors. It
requires that at every finite prefix of a run, the sum of the colors seen so far is non-
negative. More formally, ∀ρ ∈ (A×B)ω, ρ ∈ W ⇔ ∀n ∈ N, 0 ≤ ∑

col++(ρ≤n).
Corollary 3 is weaker than the well-known positional determinacy of turn-

based energy games, but its proof will be reused in that of Corollary 4.

Corollary 3. In an energy game G = 〈A,B,Q, q0, δ,R, col,W 〉, if Player 1 has
a winning strategy, she has one that behaves the same if the current time, state,
and energy level are the same.

Conjunction of Winning Conditions. Corollary 4 below strengthens Corollary 2
(finite-memory aside) by considering the conjunction of the original Muller con-
dition and the energy condition, which works out by Lemma1.2.

Corollary 4. Consider a game with states and colors G = 〈A,B,Q, q0, δ, C ×
R, col,W 〉 with finite Q and C and where W ⊆ (C ×R)ω is defined as follows: let
(Ci)i∈I be subsets of C, and let γ ∈ W if there exists i ∈ I such that all colors
in Ci occur infinitely often in π1(γ) (the sequence of the first components) and
if the energy level (on the second component) remains non-negative throughout
the run, i.e.

∑
π2 ◦ col++(γ≤n) for all n ∈ N.

If Player 1 has a winning strategy, she has one that behaves the same if the
current state, the multiset of seen colors, and the energy level are the same.

The diversity of the above corollaries which follow rather easily from Theo-
rem 1, especially Theorem 1.2, should suggest its potential range of application.
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4 Tightness Results

This section shows tightness results for Theorem 1. Dropping perfect recall fal-
sifies Theorem 1.1. Dropping either time awareness or closedness by adding a
suffix falsifies Theorem 1.2. Despite this relative tightness, the end of the section
shows well-known examples that are not captured by Theorem1.2.

Given a game with a Player 1 winning strategy, given a constraint ∼, if there
are no Player 1 winning ∼-strategies, then ∼ is said to be harmful. Otherwise it
is said to be harmless.

Below, Proposition 1.1 shows that perfect recall cannot be simply dropped
in Theorem 1.1. Proposition 1.2 shows that time awareness cannot be simply
dropped in Theorem1.2. Proposition 1.3 shows that the assumption of closedness
by adding a suffix cannot be simply dropped in Theorem1.2.

Proposition 1. 1. There exist a game 〈{0, 1}, {0, 1},W 〉 and a constraint that
is time-aware, closed by adding a suffix, weakly W -closed, and yet harmful.

2. There exist a game 〈{0, 1}, {0},W 〉 and a constraint that is closed by adding
a suffix, strongly W -closed, and yet harmful.

3. There exist a game 〈{0, 1}, {0, 1},W 〉 and a constraint that is time-aware,
strongly W -closed, and yet harmful.

Limitations and Opportunity for Meaningful Generalizations. Despite its rela-
tive tightness, Theorem 1 does not imply all known results that can be seen as
instances of strategy uniformization problems, so there is room for meaningful
generalizations. E.g., due to time awareness requirement, Theorem1 does not
imply positional determinacy of parity games [5,15], where two histories are
equivalent if they lead to the same state. Nor does it imply countable compact-
ness of first-order logic [6], which is also an instance of a uniformization problem:
Let (ϕn)n∈N be first-order formulas, and define a turn-based game: Spoiler plays
only at the first round by choosing m ∈ N. Then Verifier gradually builds a
countable structure over the signature of (ϕn)n∈N. More specifically, at every
round she either chooses the value of a variable, or the output value of a func-
tion at a given input value, or the Boolean value of a relation for a given pair
of values. Only countably many pieces of information are needed to define the
structure, and one can fix an order (independent of m) in which they are pro-
vided. Verifier wins if the structure she has defined is a model of ∧0≤k≤mϕk.
Let all histories of equal length be ∼-equivalent. Compactness says that if each
∧0≤k≤mϕk has a model, so does ∧0≤kϕk. Said otherwise, if Verifier has a win-
ning strategy, she has a winning ∼-strategy, i.e. independent of Spoiler’s first
move. This ∼ satisfies all the conditions of Theorem 1.1 but weak W -closedness:
the premise (∀n ∈ N,ρ≤n ∼ ρ′

≤n) holds by universality, but the conclusion
(ρ ∈ W ⇔ ρ′ ∈ W ) is false since a model for ∧0≤k≤mϕk need not be a model
for ∧0≤k≤m+1ϕk.
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Abstract. Specifying a computational problem requires fixing encod-
ings for input and output: encoding graphs as adjacency matrices, char-
acters as integers, integers as bit strings, and vice versa. For such discrete
data, the actual encoding is usually straightforward and/or complexity-
theoretically inessential (up to polynomial time, say); but concerning
continuous data, already real numbers naturally suggest various encod-
ings with very different computational properties. With respect to quali-
tative computability, Kreitz and Weihrauch (1985) had identified admis-
sibility as crucial property for “reasonable” encodings over the Cantor
space of infinite binary sequences, so-called representations. For (pre-
cisely) these does the Kreitz-Weihrauch representation (aka Main) The-
orem apply, characterizing continuity of functions in terms of continuous
realizers. We similarly identify refined criteria for representations suit-
able for quantitative complexity investigations. Higher type complexity
is captured by replacing Cantor’s as ground space with more general
compact metric spaces, similar to equilogical spaces in computability.

1 Introduction

Machine models formalize computation: they specify means of input, operations,
and output of elements from some fixed set Γ ; as well as measures of cost and of
input/output ‘size’; such that Complexity Theory can investigate the dependence
of the former on the latter. Problems over spaces X other than Γ are treated by
encoding its elements/instances over Γ .

Example 1. a) Recall the Turing machine model operating on the set Γ of
finite (e.g. decimal or binary) sequences, and consider the space X of
graphs: encoded for example as adjacency matrices’ binary entries. Opera-
tions amount to local transformations of, and in local dependence of, the tape
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contents. Size here is an integer: n commonly denotes the number of nodes
of the graph, or the binary length of the encoded matrix, both polynomially
related to each other.

b) Consider the space X = N of natural numbers, either encoded in binary or in
unary: their lengths are computably but not polynomially related, and induce
computably equivalent but significantly different notions of computational
complexity.

c) Recall the type-2 machine model [Wei00, §2.1] operating on the Cantor space
C := {0, 1}N of infinite binary sequences; and the real unit interval X =
[0; 1], equipped with various so-called representations [Wei00, §4.1]: surjective
partial mappings from C onto X that formalize (sequences of) approximations
up to any given absolute error bound 1/2n, n ∈ N. Different representations
of X may induce non-/equivalent notions of computability [Wei00, §4.2].

d) Computational cost of a type-2 computation is commonly gauged in depen-
dence of the index position n within the binary input/output sequence, that
is, the length of the finite initial segment read/written so far [Wei00, §7.1].
For X = [0; 1] and for some of the representations, this notion of ‘size’ is
polynomially (and for some even linearly) related to n occurring in the error
bound 1/2n [Wei00, §7.1]; for other computably equivalent representations it
is not [Wei00, Examples 7.2.1+7.2.3].

e) Recall the Turing machine model with ‘variable’ oracles [KC12, §3], operating
on a certain subset B of string functions

{0, 1}∗∗ :=
{
ϕ : {0, 1}∗ → {0, 1}∗} .

The ‘size’ of ϕ ∈ B here is captured by an integer function � : N � n �→
max

{|ϕ(−→x )| : |−→x | ≤ n
} ∈ N [KC96]; and polynomial complexity means

bounded by a second-order polynomial in � ∈ N
N and in n ∈ N [Meh76].

f) Equip the space X = C[0; 1] of continuous functions f : [0; 1] → R with the
surjective partial mapping δ� :⊆ B � X from [KC12, §4.3]. Then, up to a
second-order polynomial, the ‘size’ � = �(ϕ) from (e) is related to a modulus
of continuity (cmp. Subsect. 3.1 below) of f = δ�(ϕ) ∈ C[0; 1] and to the
computational complexity of the application operator (f, r) �→ f(r) [KS17,
KS20,NS20].

g) Spaces X of continuum cardinality beyond real numbers are also commonly
encoded over Cantor space [Wei00, §3], or over ‘Baire’ space {0, 1}∗∗ [KC12,
§3]. Matthias Schröder has recommended the Hilbert Cube as domain for par-
tial surjections onto suitable X. Also equilogical spaces serve as such domains
[BBS04].

To summarize, computation on various spaces is commonly formalized by various
models of computation (Turing machine, type-2 machine, oracle machine) using
encodings over various domains (Cantor space, ‘Baire’ space, Hilbert Cube, etc.)
with various notions of ‘size’ and of polynomial time.

Question 2. Fix two mathematical structures X and Y , expansions over topo-
logical spaces. What machine models, what encodings, what notions of size and
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polynomial time, are suitable to formalize computation of (multi)functions f
from X to Y ?

In the sequel we will focus on the part of the question concerned with
encoding continuous data. Section 2 recalls classical criteria and notions: qual-
itative admissibility of computably ‘reasonable’ representations for the Kreitz-
Weihrauch Main Theorem (Subsect. 2.1), and complexity parameters for a quan-
titative Main Theorem in the real case (Subsect. 2.2). Section 4 combines both
towards generic quantitative admissibility and an intrinsic complexity-theoretic
Main Theorem. The key is to consider metric properties of the inverse of a
representation, which is inherently multivalued a ‘function’. To this end Sect. 3
adopts from [PZ13] a notion of quantitative (uniform) continuity multifunctions
(Subsect. 3.1) and establishes important properties (Subsect. 3.2), including clo-
sure under a generalized conception of restriction. We close with applications to
higher-type complexity.

2 Coding Theory of Continuous Data

Common models of computation naturally operate on some particular domain
Γ (e.g., in/finite binary sequences, string functions, etc.); processing data from
another domain X (graphs, real numbers, continuous functions) requires agreeing
on some way of encoding (the elements x of) X over Γ .

Formally, a representation is a surjective partial mapping ξ :⊆ Γ � X; any
γ ∈ dom(ξ) is called a name of x = ξ(γ) ∈ X; and for another representation υ of
Y , computing a total function f : X → Y means to compute some (ξ, υ)-realizer :
a transformation F : dom(ξ) → dom(υ) on names such that f ◦ ξ = υ ◦ F .

Some representations are computably ‘unsuitable’ [Tur37], including the
binary expansion Γ = {0, 1}N � b̄ �→ ∑∞

n=0 bn2−n−1 ∈ [0; 1]; cmp. [Wei00,
Exercise 7.2.7]. Others are suitable for computability investigations [Wei00, The-
orem 4.3.2], but not for complexity purposes [Wei00, Examples 7.2.1+7.2.3].

Example 3. The signed digit representation of [0; 1] is the partial map

σ :⊆ {00, 01, 10}N ⊆ C � b̄ �→ 1
2 +

∞∑

m=0

(2b2m + b2m+1 − 1) · 2−m−2 ∈ [0; 1]

Already for the case X = [0; 1] of real numbers, it thus takes particular care
to arrive at a complexity-theoretically ‘reasonable’ representation [Wei00, Theo-
rem 7.3.1]; and even more so for continuous real functions [KC12], not to mention
for more involved spaces [Ste17].

2.1 Qualitative Admissibility and Computability

Regarding computability on a large class of topological spaces X, an important
criterion for a representation is admissibility [KW85,Sch02]:
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Definition 4. Call ξ :⊆ Γ � X admissible iff it is (i) continuous and satisfies
(ii):
(ii) To every continuous ζ :⊆ Γ � X there exists a continuous mapping G :
dom(ζ) → dom(ξ) with ζ = ξ ◦ G; see [Wei00, Theorem 3.2.9.2].

Admissible representations exist (at least) for T0 spaces; they are Cartesian
closed; and yield the Kreitz-Weihrauch (aka Main) Theorem [Wei00, Theo-
rem 3.2.11]:

Fact 5. Let ξ :⊆ Γ � X and υ :⊆ Γ � Y be admissible. Then f : X → Y is
continuous iff it admits a continuous (ξ, υ)-realizer F : dom(ξ) → dom(υ).

In particular discontinuous functions are incomputable.

2.2 Real Quantitative Admissibility

The search for quantitative versions of admissibility and the Main Theorem is
guided by above notion of qualitative admissibility. It revolves around quantita-
tive metric versions of qualitative topological properties, such as continuity and
compactness, obtained via Skolemization. Further guidance comes from review-
ing the real case.

Recall that a modulus of continuity of a function f : X → Y between compact
metric spaces (X, d) and (Y, e) is a strictly increasing mapping μ : N → N such
that

d(x, x′) ≤ 2−μ(n) ⇒ e
(
f(x), f(x′)

) ≤ 2−n . (1)

In this case one says that f is μ-continuous. Actually we shall occasionally
slightly weaken this notion and require Condition (1) only for all sufficiently
large n.

Example 6. The signed digit representation σ :⊆ C � [0; 1] from Example 3 has
modulus of continuity κ(n) = 2n.

Proposition 11d) below provides a converse. Together with Theorem13 and
Lemma 10 below, they yield the following quantitative strengthening of Fact 5
aka qualitative Main Theorem, where O() of refers to the asymptotic Landau
symbol:

Theorem 7. Fix strictly increasing μ : N → N. A function f : [0; 1] → [0; 1] has
modulus of continuity O

(
μ
(O(n)

))
iff it has a (σ, σ)-realizer with modulus of

continuity O
(
μ
(O(n)

))
.

In particular functions f with (only) ‘large’ modulus of continuity are inher-
ently ‘hard’ to compute; cmp. [Ko91, Theorem 2.19]. This suggests gauging the
efficiency of some actual computation of f relative to it modulus of continuity,
rather than absolutely [KC12,KS17,KS20,NS20]:
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Definition 8. Function f : [0; 1] → [0; 1] is polynomial-time computable iff it
can be computed in time bounded by a (first or second order) polynomial in the
output precision parameter n and in f ’s modulus of continuity.

In the sequel we consider continuous total (multi)functions whose domains are
compact: The latter condition ensures them to have a modulus of (uniform)
continuity. Moreover computable functions with compact domains admit com-
plexity bounds depending only on the output precision parameter n; cmp. [Ko91,
Theorem 2.19] or [Wei00, Theorems 7.1.5+7.2.7] or [Sch03].

3 Multifunctions

Multifunctions are unavoidable in real computation [Luc77]. Their introduction
simplifies several considerations; for example, every function f : X → Y has a
(possibly multivalued) inverse f−1 : Y ⇒ X.

Formally, a partial multivalued function (multifunction) F between sets X,Y
is a relation F ⊆ X × Y that models a computational search problem: Given
(any name of) x ∈ X, return some (name of some) y ∈ Y with (x, y) ∈ F . One
may identify the relation f with the single-valued total function F : X � x �→
{y ∈ Y | (x, y) ∈ F} from X to the powerset 2Y ; but we prefer the notation
f :⊆ X ⇒ Y to emphasize that not every y ∈ F (x) needs to occur as output.
Letting the answer y depend on the code of x means dropping the requirement
for ordinary functions to be extensional; hence, in spite of the oxymoron, such
F is also called a non-extensional function. Note that no output is feasible in
case F (x) = ∅.

Definition 9. Abbreviate with dom(F ) := {x | F (x) �= ∅} for the domain of F ;
and range(F ) := {y | ∃x : (x, y) ∈ F}. F is total in case dom(F ) = X; surjective
in case range(F ) = Y . The composition of multifunctions F :⊆ X ⇒ Y and
G :⊆ Y ⇒ Z is G ◦ F =

{
(x, z)

∣
∣ x ∈ X, z ∈ Z,F (x) ⊆ dom(G), ∃y ∈ Y : (x, y) ∈ F ∧ (y, z) ∈ G}

Call F pointwise compact if F (x) ⊆ Y is compact for every x ∈ dom(F ).

Note that every (single-valued) function is pointwise compact. A computational
problem, considered as total single-valued function f : X → Y , becomes ‘easier’
when restricting arguments to x ∈ X ′ ⊆ X, that is, when proceeding to f ′ = f |X′

for some X ′ ⊆ X. A search problem, considered as total multifunction F : X ⇒
Y , additionally becomes ‘easier’ when proceeding to any F ′ ⊆ X ⇒ Y satisfying
the following: F ′(x) ⊇ F (x) for every x ∈ dom(F ′). We call such F ′ also a
restriction of F , and write F ′ � F . A single-valued function f : dom(F ) → Y is
a selection of F :⊆ X ⇒ Y if F is a restriction of f .

Lemma 10. Fix partial multifunctions F :⊆ X ⇒ Y and G :⊆ Y ⇒ Z.

a) If both F and G are pointwise compact, then so is their composition G ◦ F .



210 D. Lim and M. Ziegler

b) The composition of restrictions F ′ � F and G′ � G, is again a restriction
G′ ◦ F ′ � G ◦ F .

c) It holds F−1◦F � idX : X → X. Single-valued surjective partial g :⊆ X � Y
furthermore satisfy g ◦ g−1 = idY .

d) For representations ξ of X and υ of Y , the following are equivalent: (i) f ◦ ξ
is a restriction of υ ◦ F (ii) f is a restriction of υ ◦ F ◦ ξ−1 (iii) υ−1 ◦ f ◦ ξ
is a restriction of F .

3.1 Quantitative Continuity for Multifunctions

Every restriction f ′ of a single-valued continuous function f is again continu-
ous. This is not true for multifunctions with respect to hemicontinuity. Instead
Definition 12 below adapts, and quantitatively refines, a notion of continuity for
multifunctions from [PZ13] such as to satisfy the following properties:

Proposition 11. a) A single-valued function is μ-continuous iff it is μ-
continuous when considered as a multifunction.

b) Suppose that F :⊆ X ⇒ Y is μ-continuous. Then every restriction F ′ � F is
again μ-continuous.

c) If additionally G :⊆ Y ⇒ Z is ν-continuous, then G ◦ F is ν ◦ μ-continuous
d) The multivalued inverse of the signed digit representation σ−1 is O(n)-

continuous.
e) For every ε > 0, the soft Heaviside ‘function’ hε is id-continuous, but not for

ε = 0:

hε(t) :=
{

0 : t ≤ ε
1 : t ≥ −ε

Our notion of quantitative (uniform) continuity is inspired by [BH94] and [PZ13,
§4+§6]:

Definition 12. Fix metric spaces (X, d) and (Y, e) and strictly increasing μ :
N → N. A total multifunction F : X ⇒ Y is called μ-continuous if there exists
some n0 ∈ N, and to every x0 ∈ X there exists some y0 ∈ F (x0), such that the
following holds for every k ∈ N:

∀n1 ≥ n0 ∀x1 ∈ Bμ(n1)(x0) ∃y1 ∈ F (x1) ∩ Bn1(y0)

∀n2 ≥ n1 + n0 ∀x2 ∈ Bμ(n2)(x1) ∃y2 ∈ F (x2) ∩ Bn2(y1) . . .

∀nk+1 ≥ nk + n0 ∀xk+1 ∈ Bμ(nk+1)(xk)∃yk+1 ∈ F (xk+1) ∩ Bnk+1(yk) .

The parameter n0 is introduced for the purpose of Proposition 11d+e). Recall
that also in the single-valued case we sometimes understand Eq. (1) to hold only
for all n ≥ n0.

A continuous multifunction on Cantor space, unlike one for example on the
reals [PZ13, Fig. 5], does admit a continuous selection, and even a bound on the
modulus:
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Theorem 13. Suppose (Y, e) is compact of diameter diam(Y ) ≤ 1 and satisfies
the strong triangle inequality

e(x, z) ≤ max
{
e(x, y), e(y, z)

} ≤ e(x, y) + e(y, z). (2)

If G :⊆ C ⇒ Y is μ-continuous and pointwise compact with compact domain
dom(G) ⊆ C, then G admits a μ

(
n + O(1)

)
-continuous selection.

3.2 Generic Quantitative Main Theorem

Generalizing both Fact 5 and Theorem 7, Lemma 10 and Proposition 11 and The-
orem 13 together in fact yields the following quantitative counterpart to the
qualitative Main Theorem for generic compact metric spaces:

Theorem 14. Fix compact metric spaces (X, d) and (Y, e) of diam(X),
diam(Y ) ≤ 1. Consider representations ξ :⊆ C � X and υ :⊆ C � Y .

Let μ, μ′, ν, ν′, κ,K : N → N be strictly increasing such that ξ is μ-continuous
with compact domain and μ′-continuous multivalued inverse ξ−1 : X ⇒ C; υ is
ν-continuous with compact domain and ν′-continuous multivalued inverse υ−1 :
Y ⇒ C.

a) If total multifunction g : X ⇒ Y has a K-continuous (ξ, υ)-realizer G, then
g is (ν ◦ K ◦ μ′)-continuous.

b) If total multifunction g : X ⇒ Y is κ-continuous and pointwise compact, then
it has a ν′ ◦ κ ◦ μ

(
n + O(1)

)
-continuous (ξ, υ)-realizer G.

Following up on Definition 8, this suggests gauging the efficiency of some actual
computation of g relative to both it modulus of continuity and moduli of conti-
nuity of the representations (and their multivalued inverses) involved.

4 Generic Quantitative Admissibility

According to Theorem14, quantitative continuity of a (multi)function g is con-
nected to that of a (single-valued) realizer G, subject to properties of the repre-
sentations ξ, υ under consideration.

A ‘true’ quantitative Main Theorem should replace these extrinsic param-
eters with ones intrinsic to the co/domains X,Y : by imposing suitable condi-
tions on the representations as quantitative variant of qualitative admissibility
[Lim19].

Definition 15. The entropy of a compact metric space (X, d) is the mapping
η = ηX : N → N such that X can be covered by 2η(n) closed balls Bn(x) of radius
2−n, but not by 2η(n)−1.

Introduced by Kolmogorov [KT59], η thus quantitatively captures total bound-
edness [Koh08, Definition 18.52]. Its connections to computational complexity
are well-known [Wei03,KSZ16].
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Example 16. a) The d-dimensional real unit cube X = [0; 1]d has linear entropy
η(n) = Θ(dn). Cantor space C = {0, 1}N, equipped with the metric d(x̄, ȳ) =
2−min{n:xn �=yn}, has linear entropy η(n) = Θ(n).

b) The space [0; 1]′ of non-expansive (aka 1-Lipschitz) functions f : [0; 1] → [0; 1]
is compact when equipped with the supremum norm and has entropy η(n) =
Θ(2n).

c) More generally fix a connected compact metric space (X, d) of diameter
diam(X) := sup{(d(x, x′) : x, x′ ∈ X} with entropy η. Then the space X ′

of non-expansive functionals Λ : X → [0; 1] is compact when equipped with
the supremum norm and has entropy η′(n) = 2η(n±O(1)).

Items (b) and (c) are relevant for higher-type complexity theory.
Since computational efficiency is connected to quantitative continuity (Sub-

sect. 2.2), in Theorem 14 one prefers ξ and ξ−1 with ‘small’ moduli; similarly
for υ and υ−1. A simple but important constraint has been identified in [Ste16,
Lemma 3.1.13]—originally for single-valued functions, but its proof immediately
extends to multifunctions.

Lemma 17. If surjective (multi)function g : X ⇒ Y is μ-continuous, then it
holds ηY (n) ≤ ηX ◦ μ(n) (for all sufficiently large n).

This suggests the following tentative definition:

Definition 18. Fix some compact metric space Γ , and recall Example 1g).

a) A representation of compact metric space (X, d) is a continuous partial sur-
jective (single-valued) mapping ξ :⊆ Γ � X.

b) Fix another compact metric space Δ and representation υ :⊆ Δ � Y . A
(ξ, υ)-realizer of a total (multi)function f : X ⇒ Y is a (single-valued) func-
tion F : dom(ξ) → dom(υ) satisfying any/all conditions of Lemma10d).

c) Representation ξ :⊆ Γ � X is polynomially admissible if (i) It has a mod-
ulus of continuity μ such that ηΓ ◦ μ is bounded by a (first or second order)
polynomial in the precision parameter n and in the entropy η of X. (ii) Its
multivalued inverse ξ−1 has polynomial modulus of continuity μ′.

d) Call total (multi)function f : X ⇒ Y polynomial-time computable iff it can
be computed in time bounded by a (first or second order) polynomial in the
output precision parameter n and in the entropy η of X.

In view of Lemma 10c+d) we deliberately consider only single-valued represen-
tations [Wei05]. Item d) includes Definition 8 as well as higher types, such as
Example 16b) and c). Note that Item (c i) indeed quantitatively strengthens
Definition 4i). And Item (c ii) quantitatively strengthens Definition 4ii): For ν-
continuous ζ, Theorem 13 yields a ν ◦ μ′-continuous selection G of ξ−1 ◦ ζ, that
is, with ζ = ξ ◦ G according to Lemma 10.
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Abstract. If T is a topology of open sets on a set X, a real-valued
function on X is of Baire class one over T , if it is the pointwise limit of a
sequence of functions in the corresponding ring of continuous functions
C(X). If F is a Bishop topology of functions on X, a constructive and
function-theoretic alternative to T introduced by Bishop, we define a
real-valued function on X to be of Baire class one over F , if it is the
pointwise limit of a sequence of functions in F . We show that the set
B1(F ) of functions of Baire class one over a given Bishop topology F on
a set X is a Bishop topology on X. Consequently, notions and results
from the general theory of Bishop spaces are naturally translated to the
study of Baire class one-functions. We work within Bishop’s informal
system of constructive mathematics BISH∗, that is BISH extended with
inductive definitions with rules of countably many premises.

1 Introduction

If T is a topology of open sets on a set X, a function f : X → R is of Baire
class one over T , if it is the pointwise limit of a sequence of functions in the
corresponding ring of continuous functions C(X). Such functions, which may
no longer be in C(X), were introduced by Baire in [2], suggesting the use of
functions, instead of sets, to tackle problems of real analysis. If B0(X) = C(X),
and if B1(X) is the set of all Baire class one-functions, one defines for every
ordinal α ≤ Ω, where Ω is the first uncountable ordinal Ω, the set

Bα(X) := Limp

( ⋃
β<α

Bβ(X)
)

,

where, if F(X) is the set of real-valued functions on X, Φ ⊆ F(X), and fn
p−→ f

denotes that f is the pointwise limit of (fn)∞
n=1, we set

Limp(Φ) :=
{
f ∈ F(X) | ∃(fn)∞

n=1⊆Φ

(
fn

p−→ f
)}

.

The theory of Baire class-functions is a function-theoretic version of the theory of
Baire sets i.e., of sets the characteristic function of which is in some Baire class1.
1 For that see the Lebesgue-Hausdorff theorem in [15], p. 393, and Lorch’s comment

in [16], p. 751, on the “coextension” of the two theories.
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Generalisations of Baire class functions between metrizable spaces are central
objects of study in descriptive set theory (see e.g., [13,14]), with Baire class
one-functions having applications to the theory of Banach spaces (see e.g., [9]).

The theory of Bishop spaces (TBS) is a function-theoretic approach to con-
structive topology within Bishop’s informal system of constructive mathematics
BISH. The fundamental notion of a function space, here called a Bishop space,
was only introduced by Bishop in [3], p. 71. The subject was revived much later
by Bridges in [5], where the notion of a Bishop morphism was also defined, and
by Ishihara in [11]. In [18–27] we try to develop TBS.

A Bishop topology of functions F on a set X is a set of real-valued functions
defined on X that satisfies the main properties of the set of all Bishop continuous
functions from R to R. A function φ : R → R is called (Bishop) continuous, if it
is uniformly continuous on every bounded subset B of R i.e., if for every bounded
subset2 B of R and for every ε > 0 there exists ωφ,B(ε) > 0 such that

∀a,b∈B

(
|a − b| ≤ ωφ,B(ε) ⇒ |φ(a) − φ(b)| ≤ ε

)
,

where the function ωφ,B : R+ → R
+, ε 	→ ωφ,B(ε), is called a modulus of continu-

ity for φ on B. Their set is denoted by Bic(R), and two functions φ1, φ2 ∈ Bic(R)
are equal, if φ1(a) = φ2(a), for every a ∈ R. The restriction of this notion of
continuity to a compact interval [a, b] of R is equivalent to uniform continuity.
By using this stronger notion of continuity, rather than the standard pointwise
continuity, Bishop managed to avoid the use of fan theorem in the proof of
the uniform continuity theorem and to remain “neutral” with respect to classi-
cal mathematics (CLASS), intuitionistic mathematics (INT), and intuitionistic
computable mathematics (RUSS).

Extending our work [22], where the Baire sets over a Bishop topology F are
studied, here we give an introduction to the constructive theory of Baire class
one-functions over a Bishop topology. In analogy to the classical concept, if F
is a Bishop topology on a set X, we define a function f : X → R to be of Baire
class one over F , if it is the pointwise limit of a sequence of functions in F . Our
constructive translation of the fundamentals of the classical theory of Baire class
one-functions (see e.g., [10]) within TBS is summarized by Theorem 1, according
to which the set B1(F ) of Baire class one-functions over F is a Bishop topology
on X that includes F . As we explain in Sect. 5, and based on the examples of
Baire class one-functions included in Sect. 4, this result offers a way to study
constructively classically discontinuous functions.

We work within BISH∗, that is BISH extended with inductive definitions
with rules of countably many premises. A formal system for BISH∗ is Myhill’s
system CST∗, developed in [17], or CZF with dependence choice3 (see [6], p. 12),
and some very weak form of Aczel’s regular extension axiom (see [1]).

2 It suffices to say that φ is uniformly continuous on every interval [−n, n], and the
quantification over the powerset of R is replaced by quantification over N.

3 Here we use the principle of dependent choice in the proof of Lemma 6.
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2 Fundamentals of Bishop Spaces

In this section we include all definitions and facts necessary to the rest of the
paper. All proofs not given given here are found in [18].

If a, b ∈ R, let a∨b := max{a, b} and a∧b := min{a, b}. Hence, |a| = a∨(−a).
If f, g ∈ F(X), let f =F(X) g :⇔ ∀x∈X

(
f(x) =R f(y)

)
, where for all definitions

related to R see [4], chapter 2. If f ∈ F(X) and (fn)∞
n=1 ⊆ F(X), the pointwise

convergence (fn)
p−→ f and the uniform convergence (fn) u−→ f on A ⊆ X are

defined, respectively, by

(fn)
p−→ f :⇔ ∀x∈A∀ε>0∃n0∈N∀n≥n0

(
|fn(x) − f(x)| < ε

)
,

(fn) u−→ f :⇔ ∀ε>0∃n0∈N∀n≥n0

(
U(A; f, fn, ε)

)
,

U(A; f, fn, ε) :⇔ ∀x∈A

(
|fn(x) − f(x)| < ε

)
.

A set X is inhabited, if it has an element. We denote by a, or simply by a, the
constant function on X with value a ∈ R, and by Const(X) their set.

Definition 1. A Bishop space is a pair F := (X,F ), where X is an inhabited
set and F is an extensional subset of F(X) i.e., [f ∈ F & g =F(X) f ] ⇒ g ∈ F ,
such that the following conditions hold:
(BS1) Const(X) ⊆ F .
(BS2) If f, g ∈ F , then f + g ∈ F .
(BS3) If f ∈ F and φ ∈ Bic(R), then φ ◦ f ∈ F .

(BS4) If f ∈ F(X) and (fn)∞
n=1 ⊆ F such that (fn) u−→ f on X, then f ∈ F .

We call F a Bishop topology on X. If G := (Y,G) is a Bishop space, a Bishop
morphism from F to G is a function h : X → Y such that ∀g∈G

(
g ◦ h ∈ F

)
. We

denote by Mor(F ,G) the set of Bishop morphisms from F to G. If h ∈ Mor(F ,G),
we say that h is open, if ∀f∈F ∃g∈G

(
f = g ◦ h

)
.

A Bishop morphism h ∈ Mor(F ,G) is a “continuous” function from F to G.
If h ∈ Mor(F ,G) is a bijection, then h−1 ∈ Mor(G,F) i.e., h is a Bishop isomor-
phism, if and only if h is open. Let R be the Bishop space of reals (R,Bic(R)).
It is easy to show that if F is a topology on X, then F = Mor(F ,R) i.e., an
element of F is a real-valued “continuous” function on X. A Bishop topology F
on X is an algebra and a lattice, where f ∨ g and f ∧ g are defined pointwise,
and Const(X) ⊆ F ⊆ F(X). If F∗(X) denotes the bounded elements of F(X),
then F ∗ := F ∩F

∗(X) is a Bishop topology on X. If x =X y is the given equality
on X, a Bishop topology F on X separates the points of X, or F is completely
regular (see [19] for their importance in the theory of Bishop spaces), if

∀x,y∈X

[
∀f∈F

(
f(x) =R f(y)

)
⇒ x =X y

]
.

In Proposition 5.1.3. of [18] it is shown that F separates the points of X if and
only if the induced by F apartness relation on X

x �=F y :⇔ ∃f∈F

(
f(x) �=R f(y)

)
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is tight i.e., ¬(x �=F y) ⇒ x =X y. We use the last result in the proof of
Proposition 1(iv). An apartness relation on X is a positively defined inequality
on X. E.g., if a, b ∈ R, then a �=R b :⇔ |a − b| > 0. In Proposition 5.1.2. of [18]
we show that a �=R b ⇔ a �=Bic(R) b.

Definition 2. Turning the definitional clauses (BS1) − (BS4) into inductive
rules, the least topology

∨
F0 generated by a set F0 ⊆ F(X), called a subbase

of
∨

F0, is defined by the following inductive rules:

f0 ∈ F0

f0 ∈
∨

F0
,

f ∈
∨

F0, g ∈ F(X), g =F(X) f

g ∈
∨

F0
,

a ∈ R

a ∈
∨

F0
,

f, g ∈
∨

F0

f + g ∈
∨

F0
,

f ∈
∨

F0, φ ∈ Bic(R)
φ ◦ f ∈

∨
F0

,
f ∈ F(X),

(
g ∈

∨
F0, U(X; f, g, ε)

)
ε>0

f ∈
∨

F0
,

where the last rule is reduced to the following rule with countably many premisses

f ∈ F(X), g1 ∈
∨

F0, U(X; f, g1,
1
2 ), g2 ∈

∨
F0, U(X; f, g2,

1
4 ), . . .

f ∈
∨

F0
.

The above rules induce the corresponding induction principle Ind∨
F0 on

∨
F0.

If A ⊆ X, the relative topology F|A on A has the set {f|A | f ∈ F} as a subbase.
Unless otherwise stated, from now on, X,Y are inhabited sets, and F,G are
Bishop topologies on X and Y , respectively.

3 The Bishop Topology of Baire Class One-Functions

Definition 3. A function g ∈ F(X) is called of Baire class one over F , or
simply of Baire class one when F is clear from the context, if there is a sequence
(fn)∞

n=1 ⊆ F such that (fn)
p−→ g on X. We denote their set by B1(F ).

Lemma 1. Let (fn)∞
n=1 ⊆ F(X) and g ∈ F(X) with (fn)

p−→ g. If x ∈ X, there
is Mx > 0, such that {fn(x) | n ≥ 1} ∪ {g(x)} ⊆ [−Mx,Mx].

Proof. Let n0 ≥ 1 such that if n ≥ n0, then |fn(x) − g(x)| ≤ 1, hence
|fn(x)| ≤ |fn(x) − g(x)| + |g(x)| ≤ 1 + |g(x)|. If Mx := max

{
1 +

|g(x)|, |f1(x)|, . . . , |fn0−1(x)|
}
, then |fn(x)| ≤ Mx, for every n ≥ 1, and |g(x)| ≤

Mx.

Lemma 2. If g ∈ B1(F ) and φ ∈ Bic(R), then φ ◦ g ∈ B1(F ).

Proof. Let (fn)∞
n=1 ⊆ F such that (fn)

p−→ g. If x ∈ X and ε > 0 are fixed,
there is n0

(
ωφ,[−Mx,Mx](ε)

)
such that for every n ≥ n0

(
ωφ,[−Mx,Mx](ε)

)
we have

that |fn(x) − g(x)| ≤ ωφ,[−Mx,Mx](ε). Since fn(x) ∈ [−Mx,Mx], for every n ≥ 1,
and g(x) ∈ [−Mx,Mx], by the uniform continuity of φ we have that

|fn(x) − g(x)| ≤ ωφ,[−Mx,Mx](ε) ⇒ |φ(fn(x)) − φ(g(x)| ≤ ε.

Hence, for every n ≥ m0(ε) := n0

(
ωφ,[−Mx,Mx](ε)

)
we have that |(φ ◦ fn)(x) −

(φ ◦ g)(x)| ≤ ε. Since ε > 0 is arbitrary, we get (φ ◦ fn)(x) n−→ (φ ◦ g)(x). Since
x ∈ X is arbitrary, we get φ ◦ fn

p−→ φ ◦ g.
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Note that (R,∨,∧) is not a distributive lattice, since not even (Q,∨,∧) is
one. For the properties of a ∧ b and a ∨ c used in the next proof see [7], p. 52.

Lemma 3. If a, b, c,M ∈ R and M > 0, the following hold.
(i) If a ≤ b, then a ∨ c ≤ b ∨ c and a ∧ c ≤ b ∧ c.
(ii) [a ∨ (−M)] ∧ M = [a ∧ M ] ∨ (−M).

Proof. (i) Since b ≤ b∨c, we get a ≤ b∨c. Since also c ≤ b∨c, we get a∨c ≤ b∨c.
Since a ∧ c ≤ a ≤ b, and since also a ∧ c ≤ c, we get a ∧ c ≤ b ∧ c.
(ii) By Corollary 2.17 in [4], p. 26, a > −M or a < M . If a > −M , then
[a∨ (−M)]∧M = a∧M and, since a,M > −M we also get a∧M > −M , hence
[a∧M ]∨(−M) = a∧M . If a < M , and since also −M < M , we get a∨(−M)∨M ,
hence [a ∨ (−M)] ∧ M = a ∨ (−M). Moreover, [a ∧ M ] ∨ (−M) = a ∨ (−M) and
the required equality holds.

Lemma 4. If g ∈ B1(F ) is bounded by some M > 0, there is a sequence
(hn)∞

n=1 ⊆ F such that (hn)
p−→ g and hn is bounded by M , for every n ≥ 1.

Proof. If (fn)∞
n=1 ⊆ F such that (fn)

p−→ g, let hn := [fn ∨ (−M)] ∧ M ∈ F ,
for every n ≥ 1. We show that (hn)

p−→ g. Let x ∈ X, ε > 0 and n0(ε) ≥ 1,
such that for every n ≥ n0(ε) we have that |fn(x) − g(x)| ≤ ε, or equivalently
g(x)− ε ≤ fn(x) ≤ g(x)+ ε. By Lemma 3(i), and since −M ≤ g(x) ≤ M , we get

fn(x) ∨ (−M) ≤ [g(x) + ε] ∨ (−M) = g(x) + ε.

Hence

[fn(x) ∨ (−M)] ∧ M ≤ fn(x) ∨ (−M) ≤ [g(x) + ε] ∨ (−M) = g(x) + ε

i.e., hn(x) − g(x) ≤ ε. Since g(x) − ε ≤ fn(x), by Lemma 3(i) we get [g(x) − ε] ∧
M ≤ fn(x) ∧ M . Since g(x) − ε ≤ g(x) ≤ M , we get g(x) − ε = [g(x) − ε] ∧ M ≤
fn(x) ∧ M, hence by Lemma 3(ii) we get

g(x) − ε ≤ fn(x) ∧ M ≤ [fn(x) ∧ M ] ∨ (−M) = [fn(x) ∨ (−M)] ∧ M

i.e., g(x) − ε ≤ hn(x), which implies g(x) − hn(x) ≤ ε. Since we have already
shown that hn(x)−g(x) ≤ ε, by the definition of |hn(x)−g(x)| we conclude that
|hn(x) − g(x)| ≤ ε, for every n ≥ n0(ε). Of course, |hn| ≤ M , for every n ≥ 1.

The proofs of the following two lemmas for B1(X) (see [8]) are constructive.

Lemma 5. Let (gk)∞
k=1 ⊆ B1(F ) and (Mk)∞

k=1 ⊆ R with Mk > 0, for every k ≥
1, and

∑∞
k=1 Mk ∈ R. If |gk| ≤ Mk, for every k ≥ 1, then g =

∑∞
k=1 gk ∈ B1(F ).

Proof. Since gk is bounded by Mk, for every k ≥ 1, by Lemma 4 there is
(fk

m)∞
m=1 ⊆ F with fk

m
p−→ gk and |fk

m| ≤ Mk. If n ≥ 1, let hn :=
∑n

k=1 fk
n =

f1
n + f2

n + . . . + fn
n ∈ F. Let ε > 0. Since

∑∞
k=1 Mk ∈ R, there is N ≥ 1 with



220 I. Petrakis

∑∞
k=N+1 Mk ≤ ε

3 . If x ∈ X, there is n0 ≥ N , such that for every n ≥ n0 we have
that |gk(x) − fk

n(x)| ≤ ε
3N , for every k ∈ {1, . . . , N}. If n ≥ n0, then

|g(x) − hn(x)| :=
∣∣∣∣

∞∑
k=1

gk(x) −
n∑

k=1

fk
n

∣∣∣∣

≤
∣∣∣∣

n∑
k=1

gk(x) − fk
n

∣∣∣∣ +
∣∣∣∣

∞∑
k=n+1

gk

∣∣∣∣

≤
n∑

k=1

∣∣gk(x) − fk
n

∣∣ +
∞∑

k=n+1

|gk|

=
N∑

k=1

∣∣gk(x) − fk
n

∣∣ +
n∑

k=N+1

∣∣gk(x) − fk
n

∣∣ +
∞∑

k=n+1

|gk|

≤
N∑

k=1

∣∣gk(x) − fk
n

∣∣ +
n∑

k=N+1

∣∣fk
n

∣∣ +
n∑

k=N+1

|gk(x)| +
∞∑

k=n+1

|gk|

=
N∑

k=1

∣∣gk(x) − fk
n

∣∣ +
n∑

k=N+1

∣∣fk
n

∣∣ +
∞∑

k=N+1

|gk|

≤
N∑

k=1

ε

3N
+

n∑
k=N+1

Mk +
∞∑

k=N+1

Mk

≤ N

(
ε

3N

)
+

ε

3
+

ε

3
= ε.

Lemma 6. If (gn)∞
n=1 ⊆ B1(F ) and g ∈ F(X) with (gn) u−→ g, then g ∈ B1(F ).

Proof. Using dependent choice there is a subsequence (gnk
)∞
k=1 of (gn)∞

n=1 with
U

(
X; g, gnk

, 1
2k

)
, for every k ≥ 1. Let hk := gnk+1 − gnk

∈ B1(F ). If x ∈ X, then

|hk(x)| ≤ |gnk+1 − g(x)| + |g(x) − gnk
(x)| ≤ 1

2k+1
+

1
2k

=
3
2

1
2k

=: Mk.

By Lemma 5 we have that h :=
∑∞

k=1 hk ∈ B1(F ). Since

h(x) = lim
N→∞

N∑
k=1

(
gnk+1(x) − gnk

(x)
)

= lim
N→∞

[(
gn2(x) − gn1(x)

)
+ . . . +

(
gnN+1(x) − gnN

(x)
)]

= lim
N→∞

(
gnN+1(x) − gn1(x)

)
= lim

N→∞
(
gnN+1(x)

)
− gn1(x)

= g(x) − gn1(x),

we get g = h + gn1 ∈ B1(F ), as B1(F ) is trivially closed under addition.
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Theorem 1. B1(F ) is a Bishop topology on X that includes F .

Proof. B1(F ) is an extensional subset of F(X), since if g ∈ F(X) and (fn)∞
n=1 ⊆

F such that (fn)
p−→ g on X, then if g∗ =F(X) g, we also get (fn)

p−→ g∗ on X.
Clearly, F ⊆ B1(F ), and hence Const(X) ⊆ B1(F ). Moreover, B1(F ) is closed
under addition. By Lemma 2 B1(F ) is closed under composition with elements
of Bic(R), and by Lemma 6 B1(F ) is closed under uniform limits.

By Theorem 1, if g1, g2 ∈ B1(F ), then g1 ∨ g2, g1 ∧ g2, g1 · g2, and |g1| are in
B1(F ). These facts also follow trivially by the definition of B1(F ). The impor-
tance of Theorem 1 though, is revealed by the use of the general theory of Bishop
spaces in the proof of non-trivial properties of B1(F ) that, consequently, depend
only on the Bishop space-structure of B1(F ).

Corollary 1. (i) B1(F )∗ := B1(F ) ∩ F
∗(X) is a Bishop topology on X.

(ii) If g ∈ B1(F ) such that g ≥ c, for some c ∈ R with c > 0, then 1
g ∈ B1(F ).

(iii) If g ∈ B1(F ) such that g ≥ 0, then
√

g ∈ B1(F ).
(iv) The collection Z(B1(F )) = {ζ(g) | g ∈ B1(F )} of zero sets of B1(F ), where
ζ(g) := {x ∈ X | g(x) = 0}, is closed under countable intersections.
(v) [Urysohn lemma for B1(F )-zero sets] If A,B ⊆ X, then there is h ∈ B1(F )
with h(A) = 0 and h(B) = 1 if and only if there are g1, g2 ∈ B1(F ), and c > 0.
such that A ⊆ ζ(g1), B ⊆ ζ(g2), and |g1| + |g2| ≥ c.
(vi) [Urysohn extension theorem for B1(F )] Let Y ⊆ X such that f|Y ∈ G,
for every f ∈ F . If for every A,B ⊆ Y , whenever A,B are separated by some
function in B1(G)∗, then A,B are separated by some function in B1(F )∗, then
every g∗ ∈ B1(G)∗ is the restriction of some f∗ ∈ B1(F )∗.

Proof. These facts follow from the corresponding facts on general Bishop spaces.
See [18], p. 41, for (i), Theorem 5.4.8. in [18] for (ii), [26] for a proof of (iii),
Proposition 5.3.3.(ii) in [18] for (iv), Theorem 5.4.9. in [18] for (v), and the
Urysohn extension theorem for general Bishop spaces in [20] for (vi).

Corollary 1, except from case (iii), are classically shown in [8] specifically for
B1(X). Notice that in [20] we avoid quantification over the powerset of Y in the
formulation of the Urysohn extension theorem, formulating it predicatively.

Proposition 1. Let x, y ∈ X.
(i) If g ∈ B1(F ) with g(x) �=R g(y), there is f ∈ F such that f(x) �=R f(y).
(ii) x �=B1(F ) y ⇔ x �=F y.
(iii) The apartness �=B1(F ) is tight if and only if the apartness �=F is tight.
(iv) B1(F ) separates the points of X if and only if F separates them.
(v) B1(F ) separates the points of X if and only if B1(F )∗ separates them.

Proof. (i) Since |g(x) − g(y)| > 0, let the well-defined function

g∗(z) :=
1

g(x) − g(y)
g(z) − g(y), z ∈ X.
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g∗ is in B1(F ), g∗(x) = 1 and g∗(y) = 0. If (fn)∞
n=1 ⊆ F with (fn)

p−→ g∗, then

∃nx
0 (

1
2 )∈N

∀n≥nx
0 (

1
2 )

(
|fn(x) − 1| <

1
2
)

& ∃ny
0(

1
2 )∈N

∀n≥ny
0(

1
2 )

(
|fn(y)| <

1
2
)
.

If m := max
{
nx
0( 12 ), ny

0(
1
2 )

}
, then fm ∈ F with fm(x) ∈

(
1
2 , 3

2

)
and fm(y) ∈(

− 1
2 , 1

2

)
, hence fm(x) �=R fm(y).

(ii) If x �=B1(F ) y, there is g ∈ B1(F ) such that g(x) �=R g(y). By (i) we get
x �=F y. Conversely, if x �=F y, there is f ∈ F with f(x) �=R f(y). Since f is also
in B1(F ), we get x �=B1(F ) y.
(iii) Let �=B1(F ) be tight. If ¬(x �=F y), then by (ii) we get ¬(x �=B1(F ) y), hence
x =X y. The converse implication is shown similarly.
(iv) It follows from (iii) and the result mentioned in Sect. 2 that a Bishop topol-
ogy separates the points if and only if its induced apartness is tight.
(v) It follows from the general fact that F separates the points if and only if F ∗

separates them (see Proposition 5.7.2. in [18]).

Proposition 2. Let F1 :=
(
X,B1(F )

)
and G1 :=

(
Y,B1(G)

)
.

(i) If h ∈ Mor(F ,G), then h ∈ Mor(F1,G1).
(ii) Let h : X → Y be a surjection with σ : Y → X a modulus of surjectivity4

for h i.e., h ◦ σ = idY . If h ∈ Mor(F ,G) is open, then h ∈ Mor(F1,G1) is open.

Proof. (i) We need to show that ∀g∈B1(G)

(
g ◦ h ∈ B1(F )

)
. If we fix g ∈ B1(G),

let (gn)∞
n=1 ⊆ G such that (gn)

p−→ g. Then, we get (gn ◦ h)
p−→ g ◦ h. Since

h ∈ Mor(F ,G), we have that gn◦h ∈ F , for every n ≥ 1, and hence g◦h ∈ B1(F ).
(ii) By case (i) h ∈ Mor(F1,G1). By Definition 1, if ∀f∈F ∃g∈G

(
f = g ◦ h

)
, we

prove ∀f∗∈B1(F )∃g∗∈B1(G)

(
f∗ = g∗ ◦ h

)
. Let f∗ ∈ B1(F ) and (fn)∞

n=1 ⊆ F with
(fn)

p−→ f∗ on X. By the principle of countable choice (see [6], p. 12) there is
(gn)∞

n=1 ⊆ G such that fn = gn ◦ h, for every n ≥ 1. Let g∗ : Y → R, defined by
g∗ := f∗ ◦ σ. First we show that g∗ ◦ h =F(X) f∗. If x ∈ X, we show that

(g∗ ◦ h)(x) := g∗(h(x)) := f∗(σ(h(x))) = f∗(x).

Since h(σ(h(x))) := (h ◦ σ)(h(x)) =Y idY (h(x)) = h(x), we get

(gn ◦ h)(σ(h(x))) := gn

(
h(σ(h(x)))

)
= gn

(
h(x)

)
:= (gn ◦ h)(x)

i.e., fn(σ(h(x))) = fn(x), for every n ≥ 1. Since fn(σ(h(x))) n−→ f∗(σ(h(x)))
and fn(x) n−→ f∗(x), we get f∗(σ(h(x))) = f∗(x). Since B1(F ) is an extensional
subset of F(X) and g∗ ◦ h =F(X) f∗ ∈ B1(F ), we conclude that g∗ ◦ h ∈ B1(F )
too. To prove g∗ ∈ B1(G), we show that (gn)

p−→ g∗. If y ∈ Y , then

gn(y) = gn

(
h(σ(y))

)
:= (gn ◦ h)(σ(y)) = fn(σ(y)).

Since fn(σ(y)) n−→ f∗(σ(y)) := g∗(y), we conclude that gn(y) n−→ g∗(y).

4 We use σ in order to avoid the general axiom of choice in the proof.
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4 Examples of Functions of Baire Class One over F

First we find an unbounded Baire class one-function over some Bishop topology.
If n ≥ 1, let fn : {0} ∪ (0, 1] → R defined by

fn(x) :=
{

0 , x = 0
(n2x ∧ n) ∧ 1

x , x ∈ (0, 1].

Clearly, fn ≤ n, for every n ≥ 1. If 0 < x < 1
n , then 0 < n2x < n and n < 1

x ,
hence (n2x ∧ n) ∧ 1

x = (n2x) ∧ 1
x = n2x. If 1

n ≤ x ≤ 1, then n ≤ n2x ≤ n2 and
1
x ≤ n, hence (n2x ∧ n) ∧ 1

x = n ∧ 1
x = 1

x . Hence,

fn(x) =
{

n2x , x ∈ {0} ∪ (0, 1
n )

1
x , x ∈ [ 1n , 1].

If F0 := {fn | n ≥ 1}, we consider the Bishop topology
∨

F0 on X := {0}∪(0, 1].
Let the function g : {0} ∪ (0, 1] → R, defined by

g(x) :=
{

0 , x = 0
1
x , x ∈ (0, 1].

Clearly, g is unbounded on its domain. We show that fn
p−→ g, hence g ∈

B1(
∨

F0). If x = 0, then 0 = fn(0) n−→ g(0) = 0. Let x ∈ (0, 1]. We fix some
ε > 0, and we find n0 ≥ 1 such that 1

n0
< x. Hence, if n ≥ n0, then 1

n < x too.
Since then n < n2x and 1

x < n, we have that

|fn(x) − g(x)| =
∣∣∣∣
[
(n2x ∧ n) ∧ 1

x

]
− 1

x

∣∣∣∣ =
∣∣∣∣
[
(n ∧ 1

x

]
− 1

x

∣∣∣∣ =
∣∣∣∣ 1x − 1

x

∣∣∣∣ = 0 ≤ ε.

A pseudo-compact Bishop topology is a topology all the elements of which are
bounded functions. Since boundedness is a “liftable” property from F0 to F i.e., if
every f0 ∈ F0 is bounded, then every f ∈

∨
F0 is bounded (see Proposition 3.4.4

in [18], p. 46), the topology
∨

F0 of the previous example is pseudo-compact,
and hence the above construction is also an example of an unbounded Baire-class
one function over a pseudo-compact Bishop topology!

It is immediate to show that B1(F(X)) = F(X) and B1(Const(X)) =
Const(X). Next we find a Baire class one-function over some F that is not
in F . Let Y := [0, 1) ∪ {1} be equipped with the relative Bishop topology
Cu([0, 1])|Y = Bic([0, 1])|Y , where Cu([0, 1]) is the Bishop topology of uniformly
continuous functions on [0, 1], and Cu([0, 1]) = Bic([0, 1]), with Bic([0, 1]) being
defined similarly to Bic(R). Let fn : Y → R, where fn := idn

|Y , for every n ≥ 1.
By the definition of relative Bishop topology (see Definition 2) we have that
fn ∈ Bic([0, 1])|Y , for every n ≥ 1, and (fn)

p−→ g, where g : Y → R is given by

g(x) :=
{

0 , x ∈ [0, 1)
1 , x ∈ {1}.
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Since Y is dense in [0, 1], g is not in Bic([0, 1])|Y ; if it was, by Proposition 4.7.15.
in [18] we get g = h|Y with h ∈ Cu([0, 1]), which is impossible.

A similar example is the following. Let Z := (−∞, 1) ∪ {1} ∪ (1,+∞) be
equipped with the relative topology Bic(R)|Z . If n ≥ 1, let φn = nidR+(1−n) ∈
Bic(R) and θn := −nidR+(1+n) ∈ Bic(R). If ψn := (φn ∨0)∧ (θn ∨0) ∈ Bic(R),

ψn(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0 , x < n−1
n

nx + 1 − n , x ∈ [n−1
n , 1]

−nx + 1 + n , x ∈ (1, n+1
n ]

0 , x > n+1
n .

Let ψ∗
n be the restriction of ψn to Z, for every n ≥ 1. Clearly, ψ∗

n
p−→ h, where

h(x) :=

⎧⎨
⎩

0 , x ∈ (−∞, 1)
1 , x ∈ {1}
0 , x ∈ (1 + ∞).

Since Z is dense in R (see Lemma 2.2.8. of [18]), and arguing as in the previous
example, h cannot be in the specified Bishop topology on Z.

As in the classical case, all derivatives of differentiable functions in F(R) are
Baire class one-functions over Bic(R). We reformulate the definition in [4], p. 44,
as follows.

Definition 4. Let a < b, f, f ′ : [a, b] → R (uniformly) continuous on [a, b], and
δf,[a,b] : R+ → R

+. We say that f is differentiable on [a, b] with derivative f ′

and modulus of differentiability δf,[a,b], in symbols Dif(f, f ′, δf,[a,b]), if

∀ε>0∀x,y∈[a,b]

(
|y − x| ≤ δf,[a,b](ε) ⇒ |f(y) − f(x) − f ′(x)(y − x)| ≤ ε|y − x|

)
.

If φ, φ′ ∈ Bic(R), we say that φ is differentiable with derivative φ′, in symbols
Dif(φ, φ′), if for every n ≥ 1 we have that Dif(φ|[−n,n], φ

′|[−n,n], δφ|[−n,n],[−n,n]).

Proposition 3. If φ, φ′ ∈ Bic(R) such that Dif(φ, φ′), then φ′ ∈ B1(Bic(R)).

Proof. If n ≥ 1, let φn := n[φ◦(idR+ 1
n )−φ] ∈ Bic(R). We show that (φn)

p−→ φ′.
Let x ∈ R and ε > 0. Let N ≥ 1 with x ∈ [−N,N ]. Since (x + 1

n ) n−→ x and
δφ,[−N,N ](ε) > 0, there is n0 ≥ 1 such that for every n ≥ n0 we have that
x + 1

n ∈ [−N,N ] and 1
n ≤ δφ,[−N,N ](ε), hence 1

n = |(x + 1
n − x| ≤ δφ,[−N,N ](ε),

and by Definition 4 we have that∣∣∣∣φ
(

x +
1
n

)
− φ(x) − φ′(x)

(
x +

1
n

− x

)∣∣∣∣ ≤ ε

∣∣∣∣x +
1
n

− x

∣∣∣∣ ⇔
∣∣∣∣φ

(
x +

1
n

)
− φ(x) − φ′(x)

1
n

∣∣∣∣ ≤ ε
1
n

⇒
∣∣∣∣nφ

(
x +

1
n

)
− nφ(x) − φ′(x)

∣∣∣∣ ≤ ε ⇔

|φn(x) − φ′(x)| ≤ ε.
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5 Concluding Comments

In this paper we introduced the notion of a function of Baire class one over a
Bishop topology F , translating a fundamental notion of classical real analysis
and topology into the constructive topology of Bishop spaces. Our central result,
that the set B1(F ) of Baire class one-functions over F is a Bishop topology
that includes F , is used to apply concepts and results from the general theory
of Bishop spaces to the theory of functions of Baire class one over a Bishop
topology. These first applications suggest that the structure of Bishop space,
treated classically, would also be useful to the classical study of function spaces
like B1(X).

For constructive topology, the fact that B1(F ) is a Bishop topology provides a
second way, within the theory of Bishop spaces, to treat classically discontinuous,
real-valued functions as “continuous” i.e., as Bishop morphisms. The first way
is to consider such discontinuous functions as elements of a subbase F0. Since
by definition F0 ⊆

∨
F0, the elements of F0 are Bishop morphisms from the

resulting least Bishop space F to the Bishop space R of reals. In [27], and based
on a notion of convergence of test functions introduced by Ishihara, we follow
this way to make the Dirac delta function δ and the Heaviside step function
H “continuous”. We consider a certain set D0(R) of linear maps on the test
functions on R, where δ,H ∈ D0(R), and the Bishop topology

∨
D0(R) is used

to define the set of distributions on R. The second way, is to start from a Bishop
topology F and find elements of B1(F ) i.e., Bishop morphisms from F1 to R,
that are pointwise discontinuous, as the functions g and h in the last two example
before Definition 4. This second way is sort of a constructive analogue to the
classical result that the points of pointwise continuity of some f ∈ B1(R) is
dense in R, hence f is almost everywhere continuous.

There are numerous interesting questions stemming from this introductory
work. Can we prove constructively that the characteristic function of a (com-
plemented) Baire set B =

(
B1, B0

)
over a Bishop topology F (see [22]) is a

Baire class-one function over the relative topology F|B1∪B0? Can we show con-
structively other classical characterisations of B1(X), like for example through
Fσ-sets? What is the exact relation between B1(F )|A and B1(F|A), or between
B1(F ×G) and the product Bishop topology (see [18], Sect. 4.1 for its definition)
B1(F ) × B1(G)? How far can we go constructively with the study of Baire class
two-functions?

A base of a Bishop topology F is a subset B of F such that every f ∈ F is
the uniform limit of a sequence in B. If B is a base of F , it follows easily that

Limp(B) = B1(F ),

hence for the uniform closure Limp(B) of B in F(X) we get

Limp(B) = B1(F ) = B1(F )

i.e., Limp(B) is a base of B1(F ). If F0 ⊆ F is a subbase of F i.e., F =
∨

F0, we
have that Limp(F0) ⊆ Limp(

∨
F0) = B1(F ), hence

∨
Limp(F0) ⊆ B1(F ). When

does the inverse inclusion also hold?
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We hope to address some of these questions in a future work.
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Florence, Italy

andrea.frosini@unifi.it
2 Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche,
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Abstract. The characterization of k-uniform hypergraphs by their
degree sequences, say k-sequences, has been a longstanding open prob-
lem for k ≥ 3. Very recently its decision version was proved to be NP-
complete in [3]. In this paper, we consider Saind arrays Sn of length
3n−1, i.e. arrays (n, n−1, n−2, . . . , 2−2n), and we compute the related
3-uniform hypergraphs incidence matrices Mn as in [3], where, for any
Mn, the array of column sums, π(n) turns out to be the degree sequence
of the corresponding 3-uniform hypergraph. We show that, for a generic
n ≥ 2, π(n) and π(n + 1) share the same entries starting from an index
on. Furthermore, increasing n, these common entries give rise to the inte-
ger sequence A002620 in [15]. We prove this statement introducing the
notion of queue-triad of size n and pointer k. Sequence A002620 is known
to enumerate several combinatorial structures, including symmetric Dyck
paths with three peaks, some families of integers partitions in two parts,
bracelets with beads in three colours satisfying certain constraints, and
special kind of genotype frequency vectors. We define bijections between
queue triads and the above mentioned combinatorial families, thus show-
ing an innovative approach to the study of 3-hypergraphic sequences
which should provide subclasses of 3-uniform hypergraphs polynomially
reconstructable from their degree sequences.

1 Introduction

A fundamental and widely investigated notion related both to graphs and to
hypergraphs is the characterization of their degree sequences (i.e. the array of
their vertex degrees), indeed they are of relevance to model and gather infor-
mation about a wide range of statistics of complex systems (see the book by
Berge [14]). The characterization of the degree sequences of k-uniform simple
hypergraphs, i.e., those hypergraphs whose hyperedges have the same cardi-
nality k and such that no loops and no parallel hyperedges are present, called
k-hypergraphic sequences, has been a long-standing open problem for the case
c© Springer Nature Switzerland AG 2020
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k > 2, until very recently has been proved to be NP-complete [3]. Formally, that
is: Given π = (d1, d2, . . . , dn) a sequence of positive integers, can π be the degree
sequence of a k-uniform simple hypergraph?

The degree sequences for k = 2, that is for simple graphs, have been studied
by many authors, including the celebrated work of Erdös and Gallai [2], which
effectively characterizes them. A polyonomial time algorithm to reconstruct the
adjacency matrix of a graph G having π as degree sequence (if G exists) has
been defined by Havel and Hakimi [16].

In this article, we push further the study of degree sequences of simple k-
uniform hypergraphs, with k ≥ 3: the NP-completeness result of their character-
ization led our interest to find some subclasses that are polynomially tractable
in order to restrict the NP-hard core of the problem. Some literature on recent
developments on this subject can be found in [3,5,7,10,12]. In particular, the
present study aims at studying degree sequences that generalize those used as
gadget for the NP-completeness proof in [3] and that can be computed starting
from a generic integer vector, as shown in the next section. We mainly focus on
vectors of the form (n, n − 1, n − 2, . . . , 2 − 2n), that we call Saind arrays, and
we analyze the combinatorial properties of the derived degree sequences in order
to characterize them and to gather information about the associated 3−uniform
hypergraphs. The results are obtained by borrowing some mathematical tools
from recent research areas involving Discrete Mathematics: Discrete Tomogra-
phy, Enumerative Combinatorics and Combinatorics on words. The next section
is devoted to definitions and results about graphs and hypergraphs that are
useful for our study.

In Sect. 3 we first introduce the notion of Saind array and we restrict our
investigation to 3−uniform hypergraphs and Saind sequences. We compute the
related incidence matrices Mn as in [3], where, for any Mn, the array of column
sums, π(n) turns out to be the degree sequences of the corresponding 3-uniform
hypergraph. We show that, for a generic n ≥ 2, π(n) and π(n + 1) share the
same entries starting from an index on. Furthermore, increasing n, these com-
mon entries give rise to the integer sequence A002620 in [15], that we call the
Saind sequence. Then, in Sect. 4 we analyze the combinatorial properties of the
computed degree sequences and then we are able to describe the Saind sequences
by introducing the notion of queue triads of given size and fixed pointer.

Then, we show their connections with other families of combinatorial struc-
tures known in the literature. Precisely, we show bijections between queue triads
and integer partitions in two parts; queue triads and symmetric Dyck paths with
three peaks.

2 Definitions and Previous Results

The seminal books by Berge [14] will give to the reader the formal definitions and
vocabulary, some results with the related proofs, and more about applications
of hypergraphs. In the following we recall the main concepts.

The notion of hypergraph generalizes that of graph, in the sense that each
hyperedge is a non-void subset of the set of vertices, without constraints on its
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cardinality. Formally, a hypergraph H is a pair (V,E), where V = {v1, . . . , vn} is
a finite set of vertices, and E ⊂ 2|V |\∅ is a set of hyperedges, i.e. a collection of
subsets of V . A hypergraph is simple if none of its hyperedges is a singleton and
there are no two hyperedges one included in (or equal to) another. From now on
we will only consider simple hypergraphs.

The degree of a vertex is the number of hyperedges that contain it. The
degree sequence π = (d1, d2, . . . , dn) of a simple hypergraph H is the sequence
of the degrees of its vertices, usually arranged in non increasing order. When H
is k-uniform (i.e. each hyperedge contains exactly k vertices) the sequence π is
called k-hypergraphic.

The study of k-hypergraphic sequences started with the simplest case of k =
2, i.e. the case of graphs. A 2-graphic sequence is simply called graphic. Observe
that a simple graph is then a graph without loops or parallel edges. The problem
of characterizing graphic sequences of simple graphs was solved by Erdös and
Gallai [2]:

Theorem 1. A sequence π = (d1, d2, . . . , dn), where d1 ≥ d2 ≥ · · · ≥ dn is
graphic if and only if

∑n
i=1 di is even and

k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}, 1 ≤ k ≤ n.

Let us denote with k-Seq the problem of deciding if an integer sequence π
is a k-sequence. The problem k-Seq for k ≥ 3 was raised by Colbourn et al. in
[9] and only recently proved to be NP -complete by Deza et al. in [3]. The proof
consists in a reduction of the NP -complete problem 3-Partition into 3-Seq and it
is based, in an intermediate step, on the construction of a 3-uniform hypergraph
HS from an integer sequence S related to an instance of 3-Partition.

We provide a generalized version of this construction: let S = (s1, . . . , sk) be
an array of integers. We define a binary matrix MS of dimension k′ ×k collecting
all the distinct rows (arranged in lexicographical order) that satisfy the following
constraint: for every index i, the i-th row of MS has all elements equal to zero
except three entries in positions j1, j2 and j3 such that sj1 + sj2 + sj3 > 0.
The number of rows k′ is bounded by

(
k
3

)
. For instance, the matrix MS with

S = (5, 2, 2,−1,−4,−4) is
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 2 2 −1 −4 −4
1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1
0 1 1 1 0 0
7 5 5 3 2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where S is depicted in red, and πS in blue.
The matrix MS is incidence matrix of a (simple) 3-uniform hypergraph

HS = (V,E) such that the element MS(i, j) = 1 if and only if the hyperedge
ei ∈ E contains the vertex vj . Let πS = (p1, . . . , pk) denote the degree sequence
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of HS . It holds
∑k′

i=1 MS(i, j) = pj . In [3], the authors underline the remarkable
property that HS is the only 3-uniform hypergraph (up to isomorphism) having
degree sequence πS . Moving the spot on MS , it is the only binary matrix having
distinct rows, 3-constant row sums and πS column sums. The following problems
can be addressed:

Problem 1: determine the computational complexity of 3-Seq restricted to the
class of the instances πS .

Problem 2: provide a combinatorial characterization of the 3-sequences of 3-
uniform hypergraphs which are unique up to isomorphism. Determine the
computational complexity of 3-Seq restricted to that class of instances.

The present study constitutes a step ahead in the solution of Problem 1: in
the next section we consider a family of non decreasing integer sequences and
we establish a connection between the 3-uniform hypergraphs constructed from
these sequences to several different combinatorial objects in order to find some
common properties that will provide a useful starting point for their character-
ization and for the reconstruction of the associated hypergraphs.

3 Saind Arrays and Their Incidence Matrices

In our analysis of the k-sequences, we restrict the investigation to those πSn

obtained when Sn is a Saind arrays, i.e. a sequence defined, for any n ≥ 2, as
Sn = (n, n − 1, n − 2, . . . , 2 − 2n) . For the sake of simplicity we will often refer
to the elements of the array Sn as (s1, . . . , s3n−1), where si = n − i + 1, and
to the related degree sequence πSn

as π(n). For every n ≥ 2, according to [3]
we associate to Sn its (unique) incidence matrix MSn

(briefly, Mn), obtained as
described in the previous section.

So for example, S2 = (2, 1, 0,−1,−2), S3 = (3, 2, 1, 0,−1,−2,−3,−4), and
their incidence matrices, M2 and M3, respectively, are depicted in Fig. 1.

By definition, for any n ≥ 2, π(n) = (π1, . . . , π3n−1) is such that π1 ≥ π2 ≥
. . . ≥ π3n−1 = 1. For small values of n ≥ 2, the vectors π(n) are reported below:

π(2) = (4, 3, 2,2, 1)
π(3) = (12, 10, 8, 6, 5,4, 2, 1)
π(4) = (25, 21, 18, 15, 12, 10,9, 6, 4, 2, 1)
π(5) = (42, 37, 32, 28, 24, 20, 17, 15,12, 9, 6, 4, 2, 1) .

We observe that, for every n ≥ 2 a final sequence of elements at the end of a
vector π(n) is repeated at the end of the vector π(n + 1) (in the list above, these
elements are in boldface). We refer to this array of elements as the queue Q(n)
of π(n). To avoid problems with the indices we often consider the reverse Q̃(n)
of Q(n), i.e. the vector obtained reading the entries of Q(n) from right to left.
So, we have for instance:

Q̃(2) = (1, 2); Q̃(3) = (1, 2,4); Q̃(4) = (1, 2, 4,6,9); Q̃(5) = (1, 2, 4, 6, 9,12).
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⎡
⎢⎢⎢⎢⎢⎣

2 1 0 −1 −2
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1

1 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎦

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

3 2 1 0 −1 −2 −3 −4
1 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
1 1 0 0 1 0 0 0
1 1 0 0 0 1 0 0
1 1 0 0 0 0 1 0
1 1 0 0 0 0 0 1
1 0 1 1 0 0 0 0
1 0 1 0 1 0 0 0
1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 0 1 1 0 0 0
1 0 0 1 0 1 0 0
0 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0
0 1 1 0 0 1 0 0
0 1 0 1 1 0 0 0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

Fig. 1. The matrices M2 (left) and M3 (right). Queue triads are in boldface and the
pointer of each triad has been put in box.

An element that belongs to Q̃(n + 1) but not to Q̃(n) is said a last entry of
Q̃(n + 1) (they are the boldface elements in the above list). By extension, we
speak of last entry of Q(n + 1) (and of π(n)).

Remark 1. A neat inspection shows that the queue of π(n) has two last entries
if n is even, and one last entry otherwise (red elements in π(n)). The reason for
this fact will be made clear in the sequel.

As n increases, the entries of Q̃(n) (and of the queue of π(n)) give rise to an
infinite sequence, that we call the Saind sequence (wn)n≥1. The first few terms
of wn are:

1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, . . .

In the following part of this section we prove some properties of the rows of
Mn. First of all, given n ≥ 2, the generic row r of the incidence matrix Mn

associated with Sn is uniquely described by the triad of indices tr = (ir, jr, kr)
of the entries in r that are equal to 1. Each of these triads contributes to increase
by one three entries of π(n), precisely the entries in the position specified by the
indices i, j, and k. By abuse of notation, with n fixed, we will sometimes refer
to a generic triad (i, j, k) of Mn by means of the corresponding elements of the
Saind array, i.e. (si, sj , sk), where clearly, for any h, the two triples are related
by sh = n − h + 1.

Let us introduce further notation. With 1 ≤ i < j, we denote by Bn(i)
(briefly, B(i)) the submatrix of Mn comprising rows that have the leftmost 1 in
position i, and by Bn(i, j) (briefly, B(i, j)) the submatrix of B(i) where the rows
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have the second occurrence of 1 in position j. For instance, the matrix B6(2, 6)
is the following

⎡

⎢
⎣

6 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10
0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

⎤

⎥
⎦

We observe that Bn(n−1) is the bottom block of Mn, and its last row, for any n,
is obtained by considering s1 = 2, s2 = 0, s3 = −1. Therefore, Mn = ∪n−1

i=1 Bn(i) .

Lemma 1. Let n ≥ 2 and 1 ≤ i < j ≤ 3n − 1. Then we have:

1. |Bn(i, j)| > 0 if and only if j < 3n−i+2
2 ;

2. For any j < 3n−i+2
2 , we have |Bn(i, j)| = 3n − i − 2j + 2;

3. |Bn(i)| = �n−i+1
2 	 · 
n−i+1

2 � ;
4. |Mn| =

∑n−1
i=1 �n−i+1

2 	 · 
n−i+1
2 � .

Proof. 1. Bn(i, j) contains at least a row if and only if si + sj + sj+1 > 0. This
holds if and only if j < 3n−i+2

2 .
2. With i, j fixed, Bn(i, j) contains all the triads of the form (i, j, k), so that

si +sj +sk > 0. This is satisfied by the values of k = j+1, . . . , 3n−(i+j)+2.
So the number of rows of Bn(i, j) is (3n−(i+j)+2)−(j+1)+1 = 3n−i−2j+2.

3. It is clear that for any i, n, |Bn(i)| = |Bn−i+1(1)|. So it is sufficient to compute
the cardinality of |Bm(1)|, for a generic m ≥ 2. So, using the formulas in 1.
and 2. , and omitting the computation, we obtain that:

|Bm(1)| =
{

1 + 3 + 5 + . . . + 3(m − 1) with m even
2 + 4 + 6 + . . . + 3(m − 1) with m odd .

Using standard methods, both the expressions above can be written in a more
compact way, i.e.

|Bm(1)| =
⌊m

2

⌋
·
⌈m

2

⌉
.

Then, we have that:

|Mn| = |Bn(1)|+ |Bn−1(2)|+ . . .+ |B2(n− 1)| =
n−1∑

i=1

⌊
n − i + 1

2

⌋

·
⌈

n − i + 1
2

⌉

.

�

4 Queue Triads and the Saind Sequence

As mentioned above, for every n, there are triads of indices (ik, jk, k(n)) (briefly,
(i, j, k)) that contribute to the appearance of the new entry(entries) of the queue,
in correspondence with the index k, and these triads are called queue triads of
size n and pointer k. These triads are depicted in bold in the matrices in Fig. 1,
whereas, for any triad, the pointer is put in a box. The following gives account
of the existence of the queue of the arrays π(n) (hence of the Saind sequence).
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Theorem 2. For any given h ≥ 1 there is a positive integer ñ(h) such that,
with n ≥ ñ(h), the h-th entry of π̃(n) (the reverse of π(n)) is equal to h-th entry
of π̃(n + 1).

Proof. We observe that the h-th element of π̃(n) corresponds to the entry 2 −
2n+h−1 in Sn. A generic triad that contributes to the value of the h-th element
of the sequence π̃(n) will contain two other nonnegative distinct integers k1, k2,
such that the corresponding entries in Sn are n−k1 and n−k2, with and k1 < k2.
It holds, by construction, 1 − 2n + h > 0, so k1 + k2 < h + 1. Hence, setting
ñ(h) =

∑h−2
i=1 p(i), with p(i) = (
i/2� − 1) being the number of pairs of different

elements that sum to i (see also Lemma 1, 3.), we get the result. �
Using the simple argument above we provide a characterization of queue

triads of size n.

Proposition 1. Queue triads (i, j, k) of size n can be generated as follows:

Step 1: We determine the pointers which can be associated with n:
{

ko = 3 · n+1
2 if n is odd;

ke = 3n+2
2 + 1, k′

e = 3n+2
2 if n is even.

Step 2: We calculate the values of i for the pointers determined in Step 1:

– n odd: {
1 ≤ i ≤ 3·n−ko

2 if ko odd;
1 ≤ i ≤ 3·n−ko+1

2 if ko even.

– n even, and k ∈ {ke, k
′
e}:

{
1 ≤ i ≤ 3·n−k+1

2 k odd;
1 ≤ i ≤ 3·n−k

2 k even.

Step 3: We calculate j for each of the values of i, k ∈ {ko, ke, k
′
e} obtained in

Steps 1,2: i + 1 ≤ j ≤ 3 · n − k − (i − 2).

Proof. The proof is obtained using technical arguments similar to those used for
Theorem 2. �

Let us denote by Qn the set of queue triads of size n generated using Propo-
sition 1. As an example, we determine the queue triads for n = 4:

Step 1: k′
e = 7, ke = 8;

Step 2: if ke = 8, then 1 ≤ i ≤ 2; if k′
e = 7, then 1 ≤ i ≤ 3;

Step 3: If ke = 8: with i = 1, 2 ≤ j ≤ 6; with i = 2, 3 ≤ j ≤ 5; with i = 3,
4 ≥ j ≥ 4. Otherwise, if k′

e = 7: with i = 1: 2 ≤ j ≤ 5; with i = 2: 3 ≤ j ≤ 4.
Therefore, the queue triads of size 4 are:

(1, 2, 8), (1, 3, 8), (1, 4, 8), (1, 5, 8), (2, 3, 8), (2, 4, 8)

with pointer 8, and

(1, 2, 7), (1, 3, 7), (1, 4, 7), (1, 5, 7), (1, 6, 7), (2, 3, 7), (2, 4, 7), (2, 5, 7), (3, 4, 7)
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with pointer 7, giving w4 = 6, and w5 = 9.
We would like to point out that the relation between queue triads of given

size and the Saind sequence can be described as follows:

1. if n is odd then the pointer ko is unique and the number of queue triads of
size n gives the term w3n−ko

;
2. if n is even, then we have two pointers: ke and k′

e, then the number of queue
triads of size n and pointer ke (resp. k′

e) gives the term w3n−ke
(resp. w3n−k′

e
).

Summarizing, the number of queue triads of size n and pointer k is the m = (3n−
k)-th term of the Saind sequence wm. This clearly explains the observation in
Remark 1. Moreover, using the arguments above, we can obtain a closed formula
for m-th entry of the Saind sequence:

Theorem 3. For any m ≥ 1, we have wm =
⌊

m+1
2

⌋ · ⌈
m+1
2

⌉
.

We point out that the nth term of the Saind sequence wn coincides with
the (n + 1)th term of sequence A002620 in the On-line Encyclopedia of Integer
Sequences, [15]. This sequence has several combinatorial interpretations. There-
fore, rather than giving an analytical proof of Theorem3, we will prove it bijec-
tively, in the next section, by establishing bijections between the queue triads of
a given size and pointer, and other combinatorial objects counted by sequence
A002620.

5 Bijections Between Queue Triads and Other
Combinatorial Objects

In this section we provide bijections between queue triads and other combinato-
rial objects counted by A002620, precisely: symmetric Dyck paths with 3 peaks
and integer partitions in two parts. These bijections provide a combinatorial
proof for the formula of Theorem3.

Queue Triads and Integer Partitions in Two Parts. A partition of a positive
integer n in k parts is a sequence of positive integers (λ1, λ2, . . . , λk), such that
λ1 ≥ λ2 ≥ · · · ≥ λk and λ1 + λ2 + · · · + λk = n. Let P (i, 2) denote the number
of integer partitions of i into 2 parts, it is known that P (i, 2) is � i

2	, and an =
n∑

i=2

P (i, 2). It is known that an is the n−th entry of sequence A002620 (see [15]).

Proposition 2. For any n ≥ 2, there is a bijection between queue triads of size
n and pointer k and integer partitions in two parts of the integers 2, 3, . . . , k −2.

Proof. Using the characterization of the pointers associated with a given n,
provided in Proposition 1, we have that k − 2 is equal to:

i) 3
(

n−1
2

)
+ 1, if n is odd;

ii) 3
(

n−2
2

)
+ 2 or 3

(
n−2
2

)
+ 3, if n is even.
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We define the function f as follows: given a queue triad t = (x, y, k), the
corresponding integer partition f(t) = (g, p) is obtained by setting g = y−1 and
p = x. The sum of the partition is then x + y − 1, and this value runs from 2 to
k − 2.

Conversely, given an integer partitions of 2, 3, . . . , i in two parts, we can find
the corresponding queue triads in the following way: we calculate the size n of the

Saind array, that is the only integer element of the set N =
{

2·i+1
3 , 2·(i+1)

3 , 2·i
3

}

.

Then, we define f−1(g, p) as the queue triad (p, g + 1, k) of Sn, where, if n is
odd, then k = 3 · n+1

2 , else if n = 2·(i+1)
3 (resp. n = 2·i

3 ), then k = 3·n+2
2 + 1

(resp. k = 3·n+2
2 ). �

Let us see an example with n = 3. The pointer associated with n = 3 is k = 6,
and the queue triads are (1, 2, 6), (1, 3, 6), (1, 4, 6) and (2, 3, 6). They are in cor-
respondence with the partitions of the integers 2, 3, . . . , 3 · 3−1

2 +1 = 4, precisely:
(1, 1), (2, 1), (3, 1), (2, 2). According to Proposition 2 we have: f(1, 2, 6) = (1, 1),
f(1, 3, 6) = (2, 1), f(1, 4, 6) = (3, 1), and f(2, 3, 6) = (2, 2).

Queue Triads and Symmetric Dyck Paths with Three Peaks. Recall that a Dyck
path of semi-length n is a lattice path using up U = (1, 1) and down D = (1,−1)
unit steps, running from (0, 0) to (2n, 0) and remaining weakly above the x-axis.
Any occurrence of a UD factor in a Dyck path is called a peak of the path. Here,
we consider Dyck paths that are symmetric with respect to the line which passes
through the upper end of the n − th step and it is parallel to the y-axis (see
Fig. 2). Deutsch showed that the number of symmetric Dyck paths with three
peaks and semi-length n is given by the (n − 1)th term of sequence A002620,
[15].

Fig. 2. A symmetric Dyck path of length 8 and its axis of symmetry.

Proposition 3. For any n ≥ 1, the family of queue triads with size n and
pointer k is in bijection with symmetric Dyck paths with exactly three peaks and
semi-length � = (3n − 1) − k + 3.

Proof. We observe that a symmetric Dyck path with 3 peaks of semi-length 2�
has the central peak lying on the symmetry line and is uniquely determined by
its prefix of length �, which ends with an U step. We denote this family of pre-
fixes by D(�). The function g maps queue triads with size n and pointer k onto
the paths of D(�), where � = (3n − 1) − k + 3. Precisely, the queue triad (x, y, k)
with size n is mapped onto the unique path of D(�) obtained as follows: y gives
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the number of steps between the vertex of the peak and the axis of symmetry
that passes through the upper end of the last step of the prefix, and x gives the
number of D steps between the first peak and the first valley.

l-y

x

y

Conversely, given a path G ∈ D(�), first we calculate the size n of the queue

triad, as the only integer element of the set: N =
{

2·�−1
3 , 2·�

3 , 2·(�−1)
3

}

.

Then the queue triad g−1(G) = (x, y, k), is obtained as follows: x is equal
to the number of D steps immediately after the vertex of the first peak, y is
equal to the number of steps between the vertex of the first peak and the axis of
symmetry and k is equal to k = 3 · n+1

2 if n is odd, or to k = � + 2 (resp. k = �)
if n = 2·�

3 (resp. n = 2·(�−1)
3 ). �

For example, the queue triads of size 3 and pointer 6 (i.e. (1, 2, 6), (1, 3, 6),
(1, 4, 6), (2, 3, 6)) are mapped onto the paths of D(5). The correspondence is
shown in Fig. 3.

(1,2,6) (2,3,6)(1,4,6)(1,3,6)

Fig. 3. The 4 paths in D(5) and the corresponding queue triads of size 3 and pointer
6.

6 Future Developments

Other than the bijections we showed in the previous section, in our study we
also established bijections (not presented in this paper) between queue triads of
size n and other families of objects as: (a) bracelets with n + 3 beads, two of
which are red and one of which is blue; (b) distinct genotype frequency vectors
possible for a sample of n diploid individuals at a biallelic genetic locus with a
specified major allele [15].

The study concerning Saind arrays led us to consider significant the inves-
tigation of other arrays having regular shapes. The following table shows some
examples that we have obtained experimentally with an approach similar to that
for the Saind sequence. We point out that each term of the sequence shown in
the first (resp. second) row is repeated twice (resp. three times). The second
column provides the sequence reference according to [15].
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Array Number sequence First terms
(n, n, n − 1, n − 1, . . . , 1 − 2n, 1 − 2n) A035608 1, 5, 10, 18, 27, 39, 52, 68, 85, . . .

(n, n, n, . . . , −n, −n, −n) A079079 3, 6, 12, 24, 42, 63, 90, 120 . . .

This study seems extremely relevant both from a combinatorial point of view,
since it would lead to new combinatorial interpretations of the computed
sequences, and from a graph theoretical perspective, due to their close con-
nection with hypergraphic degree sequences.
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Abstract. As a fairly frequent form of the Axiom of Choice about rel-
atively simple structures (posets), Hausdorff’s Maximal Chain Princi-
ple appears to be little amenable to computational interpretation. This
received view, however, requires revision. When attempting to convert
Hausdorff’s principle into a conservation theorem, we have indeed found
out that maximal chains are more reminiscent of maximal ideals than it
might seem at first glance. The latter live in richer algebraic structures
(rings), and thus are readier to be put under computational scrutiny.
Exploiting the newly discovered analogy between maximal chains and
ideals, we can carry over the concept of Jacobson radical from a ring to
an arbitrary set with an irreflexive symmetric relation. This achievement
enables us to present a generalisation of Hausdorff’s principle first as a
semantic and then as a syntactical conservation theorem. We obtain the
latter, which is nothing but the desired computational core of Hausdorff’s
principle, by passing from maximal chains to paths of finite binary trees
of an adequate inductively generated class. In addition to Hausdorff’s
principle, applications include the Maximal Clique Principle for undi-
rected graphs. Throughout the paper we work within constructive set
theory.

Keywords: Axiom of Choice · Maximal chain · Maximal ideal ·
Maximal clique · Jacobson radical · Proof-theoretic conservation ·
Computational content · Constructive set theory · Finite binary tree ·
Inductive generation

1 Introduction

Hausdorff’s maximal chain principle asserts that every totally ordered subset of
a partially ordered set S is contained in a maximal one. Equivalently, this can
be put as a completeness criterion in first-order terms: a chain C is maximal
precisely when, for every x ∈ S, if C ∪ { a } is a chain, then a ∈ C. So a chain
C is maximal if and only if, for every a ∈ S, either a ∈ C or a is incomparable
with at least one b ∈ C, i.e.,

a ∈ C ∨ (∃b ∈ C) (a � b ∧ b � a). (1)
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This is somewhat reminiscent of the characterisation of maximal ideals in com-
mutative ring theory [21]. In this setting an ideal J of a commutative unital ring
takes the place of C, and the respective right-hand disjunct of (1) expresses that
the ring element a is invertible modulo J . Moreover, it is possible to describe the
common part of all maximal ideals in first-order terms. This encodes Krull’s Max-
imal Ideal Theorem as an intersection principle, and yields a notion of Jacobson
radical suitable for constructive algebra [21,31,38].

By analogy, we can define the Jacobson radical Jac(C) of a chain C, and prove
(assuming the Axiom of Choice AC) that Jac(C) coincides with the intersection
of all maximal chains containing C. Hence Hausdorff’s principle too can be recast
as an intersection principle. All this will even be done in a slightly more general
fashion. The main point to be stressed is that a simple constructive interpretation
is possible, whence the purpose of this paper is twofold: we communicate a new
choice principle, and describe its constructive underpinning.

We proceed as follows. In Sect. 2, alongside the analogy with ring theory,
we describe our concepts of coalition and Jacobson radical. In Sect. 3 we briefly
relate this to past work [25–27] on the interplay of single- and multi-conclusion
entailment relations [9,35]. In Sect. 4 we give a constructive account of complete
coalitions by means of a suitable inductively generated class of binary trees. In
Sect. 5 we briefly discuss two applications: maximal chains of partially ordered
sets, and maximal cliques of undirected graphs. The main results are Proposi-
tion 1 and its constructive companion Proposition 3.

Foundations

The content of this paper is elementary and can be formalised in a suitable
fragment of constructive set theory CZF [2,3]. Due to the choice of this setting,
sometimes certain assumptions have to be made explicit which otherwise would
be trivial in classical set theory. For instance, a subset T of a set S is detachable
if, for every a ∈ S, either a ∈ T or a /∈ T . A set S is finitely enumerable if there
is n � 0 and a surjective function f : { 1, . . . , n } → S. We write Fin(S) for the
set of finitely enumerable subsets of S. To pin down a rather general, classical
intersection principle, and to point out certain of its incarnations, requires some
classical logic and the Axiom of Choice (AC) in its classically equivalent form of
Zorn’s Lemma (ZL) [40]. For simplicity we switch in such a case to classical set
theory ZFC, signalling this appropriately.

2 Coalitions

Throughout, let S be a set, and let R be an irreflexive symmetric relation on S.
We say that a subset C of S be a coalition1 (with respect to R) if ¬aRb for all
a, b ∈ C. This is the same as demanding that C be R-connected, which is to say

1 Incidentally, the term “coalition”, which we use here for sake of intuition, is standard
terminology in game theory to denote a group of agents [39].
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that a ∈ C only if aRb for every b ∈ C, where R denotes the complementary
relation. For instance, the empty subset is a coalition, as is every singleton subset
of S, by the irreflexivity of R. Notice that coalitions are closed under directed
union. A coalition C is called complete if, for every a ∈ S,

a ∈ C ∨ (∃b ∈ C) aRb. (2)

It is perhaps instructive to read aRb as “a opposes b” (and vice versa, to account
for symmetry), under which reading it makes sense to require irreflexivity. A
coalition is then a subset of S in which no two members oppose one another. A
complete coalition C is such that, given any a ∈ S, this a either belongs to C,
or else C exhibits a witness b which opposes a.

Lemma 1. Every complete coalition is detachable and maximal (with respect to
set inclusion) among coalitions. Conversely, with classical logic every maximal
coalition is complete.

Proof. Let C be a complete coalition. Since aRb for all a, b ∈ C, the second
alternative of completeness (2) entails that a /∈ C; whence C is detachable. As
regards C being maximal, let D be a coalition such that C ⊆ D and let a ∈ D.
By completeness, either a ∈ C right away, or else there is b ∈ C such that aRb,
but the latter case is impossible as D is a coalition. As regards the converse, if C
is a complete coalition and a /∈ C, then C ′ = C ∪{ a } cannot, due to maximality
of C, in turn be a coalition. With classical logic, the latter statement is witnessed
by a certain element b ∈ C. This yields completeness. 	


If C is a coalition, let us write

Comp/C

for the collection of all complete coalitions that contain C, with the special
case Comp = Comp/∅. Since every complete coalition is detachable (Lemma
1), these collections are sets due to the presence in CZF of the Exponentiation
Axiom [2,3].

All this is fairly reminiscent of the characteristics of maximal ideals in ring
theory [21]. Given a commutative ring A with 1, recall from [12,21] that the
Jacobson radical [20] of an ideal J of A can be defined as

Jac(J) = { a ∈ A | (∀b ∈ A)(1 ∈ 〈a, b〉 → (∃c ∈ J) 1 ∈ 〈b, c〉) }, (3)

where sharp brackets denote generated ideals. By plain analogy with the ring-
theoretic setting, let us then define the Jacobson radical of an arbitrary subset
C of S, of course with respect to our default, irreflexive symmetric relation R:

Jac(C) = { a ∈ S | (∀b ∈ S)(aRb → (∃c ∈ C) bRc) }. (4)

In particular, the Jacobson radical of the empty coalition is

Jac(∅) = { a ∈ S | (∀b ∈ S) aRb }.
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Thus, we substitute the property of mutual opposition in (4) for the one of
comaximality in (3), i.e., for the property of two ring elements to generate the
unit ideal. Assuming AC, the Jacobson radical of an ideal J is the intersection of
all maximal ideals that contain J [21]. Similarly, and still with AC, the Jacobson
radical of a coalition C turns out to be the intersection of all complete coalitions
containing C (Proposition 1).

Lemma 2. The Jacobson radical defines a closure operator on S which restricts
to a mapping on coalitions, i.e., if C is a coalition, then so is Jac(C).

Proof. As for the first statement we only show idempotency, i.e., Jac(Jac(C)) ⊆
Jac(C), where C ⊆ S. In fact, if a ∈ Jac(Jac(C)) and b ∈ S is such that aRb,
then there is c ∈ Jac(C) with cRb. It follows that there is c′ ∈ C such that bRc′,
and so a ∈ Jac(C).

As regards the second statement, suppose that C ⊆ S is a coalition, and let
a0, a1 ∈ Jac(C). Assuming that a1Ra0, since a1 ∈ Jac(C), there is c0 ∈ C such
that a0Rc0. Since a0 ∈ Jac(C) too, there is c1 ∈ C such that c0Rc1, which is in
conflict with C being a coalition. 	


Proposition 1 (ZFC). If C is a coalition, then

Jac(C) =
⋂

Comp/C.

Proof. Let a ∈ Jac(C) and suppose that D is a complete coalition which contains
C. By completeness, either a ∈ D right away, or else there is b ∈ D such that aRb.
But since a ∈ Jac(C), the latter case would imply that there were c ∈ C ⊆ D
with bRc, by way of which D would fail to be a coalition after all.

For the right-to-left inclusion we concentrate on the contrapositive. Thus,
suppose that a /∈ Jac(C). Accordingly, there is b such that aRb and C ′ := C∪{ b }
is a coalition. ZL yields a coalition D which is maximal among those containing
C ′. This D is complete by way of being maximal, and it must avoid a, because
if a ∈ D, then D were not a coalition since b ∈ C ′ ⊆ D and aRb. 	


Remark 1. The argument in the right-to-left part of the proof of Proposition 1
can also be used in a more affirmative manner. ZL, which is said to be construc-
tively neutral [4],2 directly implies that

⋂
Max/C ⊆ { a ∈ S | (∀b ∈ S)(aRb → ¬(∀c ∈ C) bRc) },

where Max/C denotes the collection of all maximal coalitions over C. The crucial
direction of Proposition 1 can also be proved in a more direct manner by using
Open Induction [6,11,23] in place of Zorn’s Lemma. For similar cases see [10,
24,29,30].

2 Forms of ZL have been considered over classical [14], intuitionistic [5] as well as
constructive set theory [1,32].



The Computational Significance of Hausdorff’s Maximal Chain Principle 243

By a radical coalition C we understand one which is closed with respect
to Jac, i.e., which is such that Jac(C) = C. Clearly, every complete coalition
is radical, and by Lemma 2 so is the intersection of an inhabited family of
complete coalitions. By Proposition 1, in ZFC the radical coalitions are precisely
the intersections of complete coalitions; so in particular

{ a ∈ S | (∀b ∈ S) aRb } = Jac(∅) =
⋂

Comp.

With Proposition 3 we will give a constructive version of Proposition 1 in
Sect. 4, to which end Proposition 2 below will be crucial.

In the following, we write

R(x) = { y ∈ S | xRy }

for the image of x under R, and use Jac(C, x) as a shorthand for Jac(C ∪ {x }).

Proposition 2. The following is provable for the Jacobson radical:

a ∈ Jac(C, x) (∀y ∈ R(x)) a ∈ Jac(C, y)
a ∈ Jac(C)

where a, x ∈ S and C is an arbitrary subset of S.

Proof. Given the displayed premises, to check that a ∈ Jac(C), consider b ∈ S
such that aRb. We need to find c ∈ C such that bRc. The left-hand premise
yields c′ ∈ C ∪ {x } such that bRc′. If c′ ∈ C, then c = c′ is as required. In case
of c′ = x, the right-hand premise for y = b yields a ∈ Jac(C, b). Again with aRb
it follows that there is c ∈ C ∪ { b } such that bRc, whence in fact c ∈ C since R
is irreflexive. 	


Remark 2. Given a binary relation R on S, an R-clique is a subset C such that,
for every a ∈ S,

a ∈ C ⇔ (∀b ∈ C) aRb.

Bell’s Clique Property asserts that, for any reflexive symmetric relation R on S,
an R-clique exists. This is in fact an intuitionistic equivalent of ZL [5]. Clas-
sically, given an irreflexive symmetric relation R, every R-clique is a complete
R-coalition. Conversely, and constructively, every complete R-coalition is an R-
clique. More precisely, a subset C of S is an R-clique if and only if it is R-
connected as well as R-saturated, the latter of which is to say that a ∈ C already
if aRb for all b ∈ C.

3 Entailment for Completeness

Consider on S the relation � ⊆ Fin(S) × S which is defined by the Jacobson
radical, i.e., stipulate

U � a ≡ a ∈ Jac(U).
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Lemma 2 tells us that this � is a single-conclusion entailment relation, which is
to say that it is reflexive, monotone, and transitive in the following sense:

U � a

U � a
(R)

U � a

U, V � a
(M)

U � b U, b � a

U � a
(T)

where the usual shorthand notation is at work with U, V ≡ U ∪ V and U, b ≡
U ∪ {b}. In ZFC, the consequences with respect to � of a coalition U ∈ Fin(S)
are semantically determined by the complete coalitions over U , i.e.,

(∀C ∈ Comp)(C ⊇ U =⇒ a ∈ C) =⇒ U � a.

Proposition 2 implies that the following is provable:

U, x � a (∀y ∈ R(x))U, y � a

U � a

This is to say that the infinitary axiom of completeness (2), which in the present
context can be put in the form

� x,R(x)

is in fact conservative [25,26] over �. To make this precise requires extending
the results of [25,26] to an infinitary setting [36], but upon which those results
go through verbatim. We do not require such a development here; an elementary
constructive interpretation of Proposition 1 will be given in the following section
using instead a suitable inductively generated collection of finite binary trees.
For related uses of conservativity see also, e.g., [16,27,28].

4 Binary Trees for Complete Coalitions

In this section we carry over the approach recently followed in [34] for prime
ideals of commutative rings, so as to accommodate complete coalitions. Readers
familiar with dynamical algebra [13,21,38] will draw a connection between the
tree methods of [13] and the one employed here.

Let again S be a set. For every a ∈ S we first introduce a corresponding
letter Xa. Let

S = (S ∪ {Xa | a ∈ S })∗

be the set of finite sequences of elements of S and such letters, with the usual
provisos on notation, concatenation, etc. Next, we generate inductively a class
T of finite rooted binary trees T ⊆ S as follows:

{ [] } ∈ T (root)
T ∈ T u ∈ Leaf(T ) a ∈ S

T ∪ {ua, uXa } ∈ T (branch) (5)

As usual, by a leaf we understand a sequence u ∈ T without immediate
successor in T . The second rule is to say that, given T ∈ T , if u is a leaf of T ,
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then each element a of S gives rise to a new member of T by way of an additional
branching at u. More precisely, u gives birth to two children ua and uXa. Here
is a possible instance, where a, b ∈ S:

[]

[a]

[a, b] [a,Xb]

[Xa]

As an auxiliary tool, we further need a sorting function sort : S → S which
gathers all occurring letters Xa at the tail of a finite sequence. As the result-
ing order of the entries won’t matter later on, this function may be defined
recursively in the simplest manner, as follows:

sort([]) = []
sort(ua) = a sort(u)

sort(uXa) = sort(u)Xa

Last but not least, given a subset C of S, we introduce a relation �C between
elements of S and sorted finite sequences in S by defining

c �C [a1, . . . , ak,Xb1 , . . . , Xb�
] ≡

(∀x1, . . . , x� ∈ S)
( �∧

j=1

xjRbj → c ∈ Jac(C, a1, . . . , ak, x1, . . . , x�)
)
,

where we drop the quantifier in case of � = 0. In particular,

c �C [] ⇔ c ∈ Jac(C). (6)

Keeping in mind Proposition 1, with AC the semantics of this relation is that
if u = [a1, . . . , ak,Xb1 , . . . , Xb�

] as above, then c �C u precisely when, for
every simultaneous instantiation of respective opponents x1, . . . , x� of b1, . . . , b�,
this c is a member of every complete coalition over C that further contains
a1, . . . , ak, x1, . . . , x�. The case in which this holds with respect to every leaf of
a certain tree T ∈ T will later be of particular interest.

With the relation �C in place, we can now rephrase Proposition 2 as follows.

Lemma 3. Let a, c ∈ S and let u ∈ S be sorted. If c �C au and c �C uXa, then
c �C u.

Proof. Consider u = [a1, . . . , ak,Xb1 , . . . , Xb�
] and suppose that (i) c �C au and

(ii) c �C uXa. To show that c �C u, let x1 ∈ R(b1), . . . , x� ∈ R(b�). We write
C ′ = C ∪ { a1, . . . , ak, x1, . . . , x� } and need to check that c ∈ Jac(C ′). With
x1, . . . , x� fixed, premise (i) yields c ∈ Jac(C ′, a), while (ii) implies that, for
every x ∈ R(a), c ∈ Jac(C ′, x). Now Proposition 2 implies a ∈ Jac(C ′). 	
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Given a subset C and an element c of S, let us say that a tree T ∈ T
terminates for C in c if c �C sort(u) for every leaf u of T . Intuitively, this is to
say that, along every path of T , no matter how we instantiate indeterminates
Xb that we might encounter with a corresponding opponent x of b, if C ′ is a
complete coalition over C and contains the elements we will have collected at the
leaf, then c is a member of C ′. The idea is now to fold up branchings by inductive
application of Lemma 3, to capture termination by way of the Jacobson radical,
and thus to resolve indeterminacy in the spirit of [33].

The following is the constructive counterpart of Proposition 1 and does not
require that C be a coalition to start with.

Proposition 3. Let C be a subset and c an element of S. The following are
equivalent.

1. c ∈ Jac(C).
2. There is T ∈ T which terminates for C in c.

Proof. If c ∈ Jac(C), then c �C [] by (6), which is to say that [] terminates for
C in c. Conversely, suppose that T ∈ T is such that c �C sort(u) for every leaf
u of T . We argue by induction on T to show that c ∈ Jac(C). The case T = []
is trivial (6). Suppose that T is the result of a branching at a certain leaf u of
an immediate subtree T ′, and suppose further that c �C sort(ua) = a sort(u)
as well as c �C sort(uXa) = sort(u)Xa for a certain a ∈ S. Lemma 3 implies
that c �C sort(u), whence we reduce to T ′, to which the induction hypothesis
applies. 	

Membership in a radical coalition C is thus tantamount to termination.

Remark 3. Very much in the spirit of dynamical algebra [13,21,37,38], every tree
T ∈ T represents the course of a dynamic argument as if a given coalition were
complete. Note that every complete coalition Cm of S gives rise to a path through
a given tree T ∈ T . In fact, at each branching, corresponding to an element a of
S, by way of completeness this a either belongs to Cm or else the latter assigns
a value to Xa in the sense of exhibiting a witness b ∈ Cm for which aRb. The
entries in the terminal node of this path, with values assigned appropriately, then
belong to Cm. In particular, if T terminates in c for a certain subset C ⊆ Cm,
then c ∈ Cm because c ∈ Jac(C) ⊆ Jac(Cm) = Cm by Proposition 3 and the
fact that every complete coalition is radical.

Remark 4. In general it cannot be decided effectively, i.e., without using some
excluded middle, whether, given c ∈ S and C ⊆ S, there is a tree T ∈ T which
terminates for C in c.3 This is due to the constructive character of Proposition 3
and the following Brouwer–style counterexample. Let ϕ be a bounded formula.4

Let S = { 0, 1 } and put

Rϕ = { (0, 1) | ϕ } ∪ { (1, 0) | ϕ }.

3 One of the anonymous referees has kindly drawn our attention to this.
4 A set-theoretic formula ϕ is bounded if only set-bounded quantifiers ∀x ∈ y and

∃x ∈ y occur in ϕ.
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By definition, this relation clearly is irreflexive and symmetric. Consider now the
corresponding Jacobson radical Jac(∅). It is easy to see that

0 ∈ Jac(∅) ⇔ ¬ϕ.

Therefore, if Jac(∅) is detachable, then

¬ϕ ∨ ¬¬ϕ.

This is to say that the Weak Restricted Law of Excluded Middle (WREM) holds.

5 Applications

We will now briefly discuss two instantiations of Proposition 1, concerning max-
imal chains of partially ordered sets and maximal cliques in undirected graphs.
In both cases Proposition 3 provides the corresponding constructive underpin-
ning, which we leave to the reader to spell out in detail. Incidentally, the trick
is to start with a relation R of which only the complement R is the relation one
actually one wants to consider. This clearly fits the concept of coalition we are
employing.

Hausdorff’s Principle

Let (S,�) be a partially ordered set. On S we consider the binary relation R of
incomparability, which is

aRb ≡ a � b ∧ b � a,

and for which R means comparability. Classically, a coalition for R is nothing
but a chain, i.e., a totally ordered subset of S, and the complete coalitions are
the maximal chains. As regards the Jacobson radical in this setting, Proposition
1 applied to the empty chain yields that

{ a ∈ S | (∀b ∈ S)(a � b ∨ b � a) } =
⋂

Comp. (7)

This is a way to rephrase Hausdorff’s maximal chain principle [17]. In fact, if S is
not totally ordered by �, as witnessed by a certain element a of S incomparable
to some b ∈ S, then by (7) and classical logic there is a maximal chain that
avoids a. Incidentally, this application helps to calibrate Proposition 1, which
over classical set theory ZF thus turns out equivalent to AC through Hausdorff’s
principle [18,19,22].

Maximal Cliques

Let G = (V,E) be an undirected graph, V being its set of vertices, E its set of
edges, i.e., E is a set of unordered pairs of elements of V . On the set of vertices
we consider the binary relation R of nonadjacency, which is

aRb ≡ a �= b ∧ { a, b } /∈ E.
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In this setting, classically, a coalition for R is nothing but a clique5 [7], i.e., a
subset of V every two distinct elements of which are adjacent, and the complete
coalitions are the maximal cliques. Concerning the Jacobson radical, Proposi-
tion 1 implies that

{ a ∈ V | (∀b ∈ V )(a �= b → { a, b } ∈ E) } =
⋂

Comp.

Similar to the preceding application, this yields a solution to the problem of
finding a maximal clique with AC.6

6 Conclusion

Hausdorff’s Maximal Chain Principle, a forerunner of Zorn’s Lemma [8,40], is
presumably one of the most well-known order-theoretic forms of the Axiom of
Choice. We have seen that the property of a chain to be maximal can be put as
a completeness criterion, reminiscent of the case in commutative ring theory for
maximal ideals. By analogy with Krull’s Theorem for maximal ideals, employing
a suitably adapted form of Jacobson radical, it has become possible to put a new
variant of Hausdorff’s Principle in terms of a universal statement. This has paved
the way to a constructive, purely syntactic rereading by means of an inductively
defined class of finite binary trees which encode computations along generic
maximal chains. It remains to be seen, however, to what extent in a concrete
setting our method allows to bypass invocations of Hausdorff’s Principle.

Along similar lines, we have carried over the concept of Jacobson radical
from commutative rings to the setting of universal algebra and thus to broaden
considerably the range of applications that our approach has opened up so far
[33,34]. In fact, every single-conclusion entailment relation is accompanied by a
Jacobson radical which in turn encodes a corresponding maximality principle. In
particular, this encompasses the Jacobson radical for distributive lattices [12],
commutative rings [31], as well as for propositional theories [15,16]. We keep
for future research to put all this under computational scrutiny, and to compare
with ours the related methods employed in dynamical algebra [13].
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5 A caveat on terminology: this notion is a priori different from the one used in Bell’s
Clique Property (cf. Remark 2) but which carries over to graph theory.

6 Clique problems, e.g., the problem of finding a maximum clique and that of listing all
maximal cliques are prominent in finite graph theory and computational complexity
theory [7].
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Abstract. We present some asymptotic properties on the average num-
ber of prefixes in trace languages. Such languages are characterized by an
alphabet and a set of commutation rules, also called concurrent alphabet,
which can be encoded by an independency graph or by its complement,
called dependency graph. One key technical result, which has its own
interest, concerns general properties of graphs and states that “if an
undirected graph admits a transitive orientation, then the multiplicity
of the root of minimum modulus of its clique polynomial is smaller or
equal to the number of connected components of its complement graph”.
As a consequence, under the same hypothesis of transitive orientation
of the independency graph, one obtains the relation E[Tn] = O(E[Wn]),
where the random variables Tn and Wn represent the number of pre-
fixes in traces of length n under two different fundamental probabilistic
models:

– the uniform distribution among traces of length n (for Tn),
– the uniform distribution among words of length n (for Wn).

These two quantities are related to the time complexity of algorithms for
solving classical membership problems on trace languages.

Keywords: Trace monoids · Clique polynomials · Möbius functions ·
Automata theory · Analytic combinatorics · Patterns in words

1 Introduction

In computer science, trace monoids have been introduced by Mazurkiewiecz [22]
as a model of concurrent events, describing which action can permute or not
with another action (we give a formal definition of traces and trace monoids in
Sect. 2, see also [14] for a treatise on the subject). In combinatorics, they are
related to the fundamental studies of the “monöıde partiellement commutatif”
introduced by Cartier and Foata in [10], and to its convenient geometrical view
as heap of pieces proposed by Viennot in [25].
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Several classical problems in language theory (recognition of rational and
context-free trace languages, determination of the number of representative
words of a given trace, computing the finite state automaton recognizing these
words) can be solved by algorithms that work in time and space proportional to
(or strictly depending on) the number of prefixes of the input trace [3,6–8,15,23].
This is due to the fact that prefixes represent the possible decompositions of a
trace in two parts and hence they are natural indexes for computations on traces.

This motivates the analysis of the number of prefixes of a trace of given
length both in the worst and in the average case. In the average case analysis,
two natural sequences of random variables play a key role:

– {Tn}n∈N, the number of prefixes of traces of length n generated at random
under the equidistribution of traces of given size;

– {Wn}n∈N, the number of prefixes of traces of length n generated at random
under the equidistribution of representative words of given size.

For some families of trace monoids, the asymptotic average, variance, and limit
distributions of {Tn} and {Wn} are known [6,7,19–21]. It is interesting that they
rely on the structural properties of an underlying graph (the independency graph,
defined in Sect. 2). For example, it is known that, for every trace monoid M, the
maximum number of prefixes of a trace of length n is of the order Θ(nα), where
α is the size of the largest clique in the concurrent alphabet defining M [8]. We
summarize further such results in Sect. 3. In analytic combinatorics (see [17] for
an introduction to this field), it remains a nice challenge to get a more universal
description of the possible asymptotics of Tn and Wn.

In this work we prove that, if the concurrent alphabet (Σ, C) admits a tran-
sitive orientation, then

E[Tn] = O(E[Wn]).

This is obtained by showing a general property of undirected graphs, which in our
context is applied to the concurrent alphabet (Σ,C) and its complement (Σ,Cc).
Such a property states that, for any undirected graph G admitting a transitive
orientation of its edges, the number of connected components of its complement
is greater or equal to the multiplicity of the root of smallest modulus in the
clique polynomial of G. The interest for the present discussion mainly relies on
the use of finite state automata and on classical tools of formal languages to study
properties of integer random variables in particular the asymptotic behaviour of
their moments.

The paper is organized as follows: in Sect. 2 we recall the basic definitions on
trace monoids; in Sect. 3 we summarize some asymptotic results on the random
variables Tn and Wn; in Sects. 4 and 5, we present our main results on cross-
sections of trace monoids, clique polynomials, and a new bound relating the
asymptotic behaviour of Tn and Wn; we then conclude with possible future
extensions of our work.
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2 Notation and Preliminary Notions

For the reader not already familiar with the terminology of trace languages, we
present in this section the key notions used in this article (see e.g. [14] for more
details on all these notions).

Given a finite alphabet Σ, as usual Σ∗ denotes the free monoid of all words
over Σ, ε is the empty word and |w| is the length of a word w for every w ∈ Σ∗.
We recall that, for any w ∈ Σ∗, a prefix of w is a word u ∈ Σ∗ such that w = uv,
for some v ∈ Σ∗. Also, for any finite set S, we denote by #S the cardinality of
S.

A concurrent alphabet is then a pair (Σ, C), where C ⊆ Σ×Σ is a symmet-
ric and irreflexive relation over Σ. Such a pair can alternatively be defined by an
undirected graph, which we call independency graph, where Σ is the set of
nodes and {{a, b} | (a, b) ∈ C} is the set of edges. Its complement (Σ,Cc) is
called dependency graph. As the notions of concurrent alphabet and indepen-
dency graph are equivalent, in the sequel we indifferently refer to either of them.
Informally, a concurrent alphabet lists the pairs of letters which can commute.

The trace monoid generated by a concurrent alphabet (Σ, C) is defined as
the quotient monoid Σ∗/ ≡C , where ≡C is the smallest congruence extending the
equations {ab = ba : (a, b) ∈ C}, and is denoted by M(Σ, C) or simply by M. Its
elements are called traces and its subsets are named trace languages. In other
words, a trace is an equivalence class of words with respect to the relation ≡C
given by the reflexive and transitive closure of the binary relation ∼C over Σ∗

such that uabv ∼C ubav for every (a, b) ∈ C and every u, v ∈ Σ∗. For any w ∈ Σ∗,
we denote by [w] the trace represented by w; in particular [ε] is the empty trace,
i.e. the unit of M. Note that the product of two traces r, s ∈ M, where r = [x]
and s = [y], is the trace t = [xy], which does not depend on the representative
words x, y ∈ Σ∗ and we denote the product by t = s · r. The length of a trace
t ∈ M, denoted by |t|, is the length of any representative word. For any n ∈ N,
let Mn := {t ∈ M : |t| = n} and mn := #Mn.

Note that if C = ∅ then M reduces to Σ∗, while if C = {(a, b) ∈ Σ×Σ | a �= b}
then M is the commutative monoid of all monomials with letters in Σ.

Any trace t ∈ M can be represented by a partial order over the multiset
of letters of t, denoted by PO(t). It works as follows: first, consider a word w
satisfying t = [w]. Then, for any pair of letters (a, b) of w, let ai be the i-th
occurrence of the letter a and bj the j-th occurrence of the letter b. The partial
order is then defined as ai < bj whenever ai precedes bj in all representative
words of [w]. (See Example 1 hereafter.)

A prefix of a trace t ∈ M is a trace p such that t = p · s for some s ∈ M.
Clearly, any prefix of t is a trace p = [u] where u is a prefix of a representative
of t. It is easy to see that if p is a prefix of t then the PO(u) is an order ideal of
PO(t) and can be represented by the corresponding antichain. We recall that an
antichain of a partial order set (S,≤) is a subset A ⊆ S such that a ≤ b does
not hold for any pair of distinct elements a, b ∈ A, while an order ideal in (S,≤)
is a subset {a ∈ S | ∃ b ∈ A such that a ≤ b} for some antichain A of (S,≤). For
every t ∈ M, we denote by Pref(t) the set of all prefixes of t.
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Example 1. Let M be the trace monoid characterized by the following inde-
pendency graph:

�a �b �c �d

That is, one has ab = ba, bc = cb, cd = dc. Then, the trace [bacda] (i.e., the
equivalence class of the word bacda) is the set of words {bacda, badca, abdca,
abcda, acbda}. The corresponding partially ordered set is given by the following
diagram

PO([bacda]) =
b1

a1

�

�

�
��

d1
���

c1���
a2

where an arrow from xi to yj means that xi always precedes yj and where we
omitted the arrows implied by transitivity. The set of prefixes is given by

Pref([bacda]) = {[ε], [a], [b], [ab], [ac], [abc], [abd], [abcd], [abcda]}.

In this set, we now overline the letters belonging to the antichain of each prefix:
{[ε], [a], [b], [ab], [ac], [abc], [abd], [abcd], [abcda]}. �

Recognizable, rational and context-free trace languages are well defined by
means of linearization and closure operations over traditional string languages;
their properties and in particular the complexity of their membership problems
are widely studied in the literature (see for instance [8,14,15,23]).

For any alphabet Σ and trace monoid M, we denote by Z〈〈Σ〉〉 the set of
formal series on words (they are thus series in noncommutative variables) and
by Z〈〈M〉〉 the set of formal series on traces (they are thus series in partially
commutative variables), and Z[[z]] stands for ring of classical power series in the
variable z. These three distinct rings (with the operations of sum and Cauchy
product, see [5,14,24]) will be used in Sects. 4 and 5.

3 Asymptotic Results for the Number of Prefixes

Several algorithms are presented in the literature for the recognition of rational
and context-free trace languages, or for other problems like computing the num-
ber of representative words of a trace, that take a trace t as input and then carry
out some operations on all prefixes of t [3,6–9,15,23]. Thus, their time and space
complexity strictly depend on the number of prefixes of t and in many cases they
work just in time Θ(#Pref(t)). Now, it follows from [8] that

max{#Pref(t) : t ∈ Mn} = Θ(nα), (1)

where α is the size of the largest clique in the independency graph of M. It is thus
essential to get a more refined analysis of the asymptotic behaviour of #Pref(t)
under natural distribution models in order to obtain a better understanding of
the average complexity of all these algorithms.

In this section, we recall the main results on the number of prefixes of a
random trace, under two different probabilistic models.
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3.1 Probabilistic Analysis on Equiprobable Words

A main goal of the present contribution is to compare the random variables Tn

and Wn, defined by

Tn = #Pref(t) and Wn = #Pref([w]), (2)

where t is uniformly distributed over Mn, while w is uniformly distributed
over Σn. Clearly the properties of Tn and Wn immediately yield results on
time complexity of the algorithms described in [3,6,7] assuming, respectively,
equiprobable input traces of length n and equiprobable representative words of
length n. Since every trace of length n has at least n + 1 prefixes, a first crude
asymptotic bound is

n + 1 ≤ Tn ≤ dnα, n + 1 ≤ Wn ≤ dnα (∀ n ∈ N),

for a suitable constant d > 0, where α is defined as in (1). More precise results
on the moments of Wn are studied in [6,7,20]:

E[W j
n] = Θ(njk) ∀ j ∈ N, (3)

where k is the number of connected components of the dependency graph
of M. This relation is obtained by constructing suitable bijections between
each moment of Wn and the set of words of length n in a regular language [6].
These bijections also allow proving a first order cancellation of the variance, i.e.
var(Wn) = O(n2k−1) [20]. Further, when the dependency graph is transitive,
this leads to two different limit laws, either chi-squared or Gaussian, according
whether all the connected components of (Σ,Cc) have the same size or not [19].

3.2 Probabilistic Analysis on Equiprobable Traces

Now, in order to analyse Tn (the number of prefixes of a random trace of size n),
it is useful to introduce the generating function of the trace monoid M:

M(z) :=
∑

n∈N

mnzn, with mn := #Mn = #{t ∈ M : |t| = n}.

The Möbius function of M is defined as μM :=
∑

t∈M μM(t) t, where

μM(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if t = [ε],
(−1)n if t = [a1a2 · · · an],

where all ai ∈ Σ are distinct and (ai, aj) ∈ C for any i �= j,
0 otherwise.

It is in fact a polynomial belonging to Z〈〈M〉〉. As established by Cartier and
Foata in [10], an important property of μM is that

ξM · μM = μM · ξM = 1, (4)

where ξM =
∑

t∈M t is the characteristic series of M. Here, ξM can be seen as
a partially commutative analogue of M(z).
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Now, let pM ∈ Z[z] be the commutative analogue of μM. It then follows that

pM(z) = 1 − c1z + c2z
2 − · · · + (−1)αcαzα, (5)

where ci is the number of cliques of size i in the independency graph of M.
For this reason, we call pM the clique polynomial of the independency graph
(Σ,C). Its properties are studied in several papers (see for instance [18,21]). In
particular, the commutative analogue of Eq. (4) is then

M(z) · pM(z) = pM(z) · M(z) = 1. (6)

This entails that M(z) = (pM(z))−1, a fundamental identity which can also be
derived by an inclusion-exclusion principle.

As it is known from [21] that pM has a unique root ρ of smallest modulus
(and clearly ρ > 0 via Pringsheim’s theorem, see [17]), one gets mn = #Mn =
cρ−nn�−1 + O

(
ρ−nn�−2

)
, where c > 0 is a constant and � is the multiplicity of

ρ in pM(z). We observe that the existence of a unique root of smallest modulus
for pM(z) is not a consequence of the strict monotonicity of the sequence {mn}.
Indeed, if one considers M(z) = 1

(1−z3)(1−z)2 , one has mn+3 = ((n + 5)mn +
2mn+1 + 2mn+2)/(n + 3) so the sequence {mn} is strictly increasing; however,
the polynomial (1−z3)(1−z)2 has 3 distinct roots of smallest modulus. Therefore,
such a M(z) cannot be the generating function of a trace monoid.

In our context, clique polynomials are particularly relevant as they are related
to the average value of the number of prefixes of traces [7,21]. In fact, for any
trace monoid M, we have E[Tn] = Pn

mn
, where Pn =

∑
t∈Mn

#Pref(t). Since
ξ2M =

∑
t∈M #Pref(t)t, from (4) and (6) its commutative analogue becomes∑

n Pnzn = pM(z)−2 and hence Pn = Θ(ρ−nn2�−1), which proves

E[Tn] = Θ(n�), (7)

where � is the multiplicity of the smallest root of pM(z).

4 Cross-Sections of Trace Monoids

Cross-sections are standard tools to study the properties of trace monoids by
lifting the analysis at the level of free monoids. Intuitively, a cross-section of a
trace monoid M is a language L having exactly one representative string for
each trace in M. Thus, the generating function of L coincides with M(z) and
hence it satisfies equality (6). As a consequence, by choosing an appropriate
regular cross-section L, one can use the property of a finite state automaton
recognizing L to study the singularities of M(z), i.e. the roots of pM(z).

Formally, a cross-section of a trace monoid M over a concurrent alphabet
(Σ,C) is a language L ⊆ Σ∗ such that

– for each trace t ∈ M, there exists a word w ∈ L such that t = [w],
– for each pair of words x, y ∈ L, if [x] = [y] then x = y.
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Among all cross-sections of M, it is convenient to consider a canonical one. A
natural one is based on a normal form using the lexicographic order [1]. Alterna-
tively, one can see it as based on the orientations of edges in the independency
graph of M, as used in [12,13] to study properties of Möbius functions in trace
monoids. It works as follows. Let ≤ be any total order on the alphabet Σ and
let ≤∗ be the lexicographic linear order induced by ≤ over Σ∗. We denote by <C
the binary relation over Σ such that a <C b if (a, b) ∈ C and a ≤ b. Thus, <C is
an orientation of the independency graph of M. We now consider the following
cross-section of M: the language L≤ of all minimal lexicographic representatives
of traces in M, i.e. L≤ = {w ∈ Σ∗ | w ≤∗ y for every y ∈ [w]}. Moreover, L≤ is
regular, as it satisfies the equality

L≤ = Σ∗\
⋃

(a,b)∈C
a<Cb

Σ∗b C∗
a aΣ∗, (8)

where Ca := {c ∈ Σ | (a, c) ∈ C} is the set of letters allowed to commute with
a. Thus, L≤ is the set of all words in Σ∗ that do not contain any factor of the
form bva where a <C b and v ∈ C∗

a . Then, for any w ∈ Σ∗, in order to verify
whether w ∈ L≤, one can read the letters of w in their order, updating at each
step the family of letters a ∈ Σ forming a “forbidden” factor of the form bva,
with a <C b, v ∈ C∗

a . If one of these letters is met then w is rejected, otherwise
it is accepted.

To formalize the definition, for each b ∈ Σ, the predecessors of b are Pred(b) =
{a ∈ Σ | a <C b}. Define the finite state automaton A as the 4-tuple (2Σ , ∅, δ, F ),
where the set of states is 2Σ , i.e. the power set of Σ, the initial state is the empty
set ∅, F = {S ∈ 2Σ | S �= Σ} is the family of final states and the transition
function δ : (2Σ × Σ) → 2Σ is given by

δ(S, b) =
{

Σ if b ∈ S
Pred(b) ∪ (S ∩ Cb) otherwise (∀ S ⊆ Σ, ∀ b ∈ Σ).

Note that, during a computation, the current state S represents the set of for-
bidden letters. At the beginning, all input letters are allowed, as ∅ is the initial
state, while Σ is a trap state, where all letters are forbidden. In a general step, if
S ⊆ Σ is the current state and b /∈ S is an input letter, the new set of forbidden
letters must be obtained from S ∪ Pred(b) by removing those elements that do
not commute with b. This justifies the above definition of δ and it is clear that
A recognizes L≤.

Moreover, the state set of the above automaton can be reduced to the states
S � Σ reachable from ∅. Setting

Q = {S ⊆ Σ | S �= Σ,∃ w ∈ Σ∗ : δ(∅, w) = S},

the entries of the transition matrix Ã of the automaton A are given by:

ÃS,S′ =
∑

b∈Σ:δ(S,b)=S′
b (∀ S,S ′ ∈ Q).
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The commutative analogue in N[[z]] of this transition matrix has therefore all its
entries which are monomials of degree one in z. Factorizing by z, this commuta-
tive analogue can thus be written zA, for a matrix A we call the adjacency matrix
of A. Note that A strictly depends on both the concurrent alphabet (Σ,C) and
the total order ≤ over Σ.

As a consequence, since A recognizes a cross-section of M, denoting by π
and η, respectively, the characteristic (column) vectors of ∅ and Q, the generating
function M(z) is given by

M(z) =
+∞∑

n=0

π′Anηzn = π′(I − zA)−1η, (9)

where I is the identity matrix of size #Q × #Q and π′ is the transposed of π.
This identity, together with relation (6) proves the following proposition.

Proposition 1 (Factorisation property). For any trace monoid M with a
concurrent alphabet (Σ, C), let ≤ be a total order on Σ, let A be the adjacency
matrix of the automaton A recognizing the cross-section L≤ of M, and assume
I, π and η defined as in (9). Then, M(z) and pM(z) satisfy the identities

M(z) = π′(I − zA)−1η =
π′ adj(I − zA)η

det(I − zA)
, pM(z) =

det(I − zA)
π′ adj(I − zA)η

. (10)

Example 2. Consider the concurrent alphabet (Σ, C) defined by the graph

�a

�d

�c ��

�b �� �e

Then, the clique polynomial and the generating function of M are given by

pM(z) = 1 − 5z + 6z2 − z3, M(z) =
+∞∑

n=0

mnzn =
1

1 − 5z + 6z2 − z3
.

The standard ordering (a, b, c, d, e) on Σ induces the following (non-transitive)
orientation <C over the independency graph

<C =
�a

�d

	

�


 �c

�

�b
�e

���

��

Thus the predecessors of each letter are given by Pred(a) = Pred(b) = ∅,
Pred(c) = Pred(d) = {a, b}, Pred(e) = {b, c} and the transition matrix of A
is defined by the following table, where rows and columns are labelled by the
states of A:
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∅ {a, b} {b, c} {c}
∅ a + b c + d e 0

˜A = {a, b} 0 c + d e 0

{b, c} 0 d e a

{c} 0 d e a + b

From that I −zA is easily computed (where A is the adjacency matrix of A):

I − zA =

⎡

⎢⎢⎣

1 − 2z −2z −z 0
0 1 − 2z −z 0
0 −z 1 − z −z
0 −z −z 1 − 2z

⎤

⎥⎥⎦

and, accordingly, det(I − zA) = 1 − 7z + 16z2 − 13z3 + 2z4 = (1 − 2z)pM(z). �

Proposition 2. For any trace monoid M over a concurrent alphabet (Σ,C) and
any total order ≤ on Σ, all roots of the clique polynomial pM(z) are reciprocals of
eigenvalues of the corresponding adjacency matrix A. More precisely, the clique
polynomial of any independency graph (Σ, C) is of the form

pM(z) =
α∏

i=1

(1 − xiz)

where α is the size of the maximum clique in (Σ, C) and all xi’s are eigenvalues
of a adjacency matrix A.

Proof (sketch). The result follows from Proposition 1 by refining equalities (10)
and recalling that all roots of clique polynomials are different from 0. ��

We observe that the reverse property does not hold in general, i.e. it may
occur that an eigenvalue of A is not the reciprocal of a root of pM(z). However,
as shown in the following section, such a reverse sentence is true whenever the
graph (Σ, C) admits a transitive orientation.

5 Concurrent Alphabets with Transitive Orientation

Now let us consider a trace monoid M such that its independency graph (Σ,C)
admits a transitive orientation. Then, we may fix a total order ≤ on Σ such
that <C is transitive. In this case, the definition of cross-section L≤ and of
the automaton A can be simplified, since the set of “forbidden” factors of the
form bwa, with a <C b and w ∈ C∗

a , can be reduced to the simple set of words
S = {τσ ∈ Σ2 | σ <C τ}. To prove this property, consider a forbidden factor of
the above form bwa, with a <C b and w ∈ C∗

a ; thus any symbol c occurring in w
must verify (a, c) ∈ C. As a consequence, either a <C c or c <C a: in the first case



260 C. Banderier and M. Goldwurm

ca belongs to S while, in the second case, by transitivity of <C we have c <C b
and hence bc is in S.

Thus, identity (8) can be simplified as L≤ = Σ∗\⋃
a<Cb Σ∗baΣ∗. Moreover,

the state set of the automaton A can be reduced to Q = {Pred(a) | a ∈ Σ} and
the transition function now assumes values δ(S, b) = Pred(b), for every S ∈ Q
and every b ∈ Σ\S.

Proposition 3. Let (Σ, C) be a concurrent alphabet with an associated indepen-
dency graph admitting a transitive orientation <C. Let ≤ be a total order on Σ
extending <C. Also assume that the dependency graph (Σ, Cc) is connected. Then
the adjacency matrix A is primitive.

Proof (sketch). Under these hypotheses, by the simplifications above, it turns out
that the state diagram of the automaton A (defined by ≤) is strongly connected
and has at least one loop. ��

The hypothesis of transitivity for <C cannot be avoided to guarantee that A is
primitive. For instance, in Example 2 the dependency graph (Σ, Cc) is connected
but the orientation <C of (Σ, C) is not transitive, and in fact observe that the
corresponding transition matrix is not irreducible and hence A is not primitive.
Nevertheless, the smallest root of pM(z) is simple and then the same concurrent
alphabet satisfies the following theorem.

Theorem 4. Let (Σ, C) be a concurrent alphabet. If its independency graph
admits a transitive orientation <C, then one has � ≤ k, where � and k denote,
respectively, the multiplicity of the smallest root of pM(z) and the number of
connected components of the dependency graph (Σ, Cc).

Proof (sketch). First, it is well-known [18,21] that pM(z) is always the prod-
uct of the clique polynomials of all independency subalphabets given by the
connected components of (Σ,Cc). Then, each of these clique polynomials (using
the additional condition that one has a transitive orientation) has a smallest root
of multiplicity 1: this follows from Proposition 3 and a commutative analogue of
a result in [11] stating that, when (Σ,C) has a transitive orientation, its clique
polynomial equals det(I − zA). ��

Applying the previous theorem to relations (3) and (7), one gets the following.

Theorem 5. Let (Σ, C) be a concurrent alphabet. If its independency graph
admits a transitive orientation <C, then the random variables counting the num-
ber of prefixes in traces (as defined in (2)) satisfy E[Tn] = O(E[Wn]).

Example 3. Consider the concurrent alphabet (Σ, C) and the orientation <C
of Example 2. Note that (Σ, C) is connected but <C is not transitive and in
fact A is not primitive. However, (Σ, C) admits a (different) orientation that is
transitive, given by

�a

�d

�

	

�

�c



�b
�e

���

���
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A total order extending the previous orientation is c < d < a < e < b. Computing
matrix A with respect to this total order we obtain

I − zA =

⎡

⎢⎢⎣

1 − 2z −z −z −z
0 1 − z −z −z

−z −z 1 − z −z
0 −z 0 1 − z

⎤

⎥⎥⎦ ,

and hence det(I − zA) = 1 − 5z + 6z2 − z3 = pM(z). �

The following example considers an independency graph of M that does
not admit any transitive orientation. In this case pM(z) is a proper factor of
det(I − zA), but its smallest root is again simple and hence � ≤ k is still true
even if the hypothesis of Theorem 4 is not satisfied.

Example 4. Consider the concurrent alphabet corresponding to the following
independency graph G, associated to the following partial order <C :

G =
�a

�c

�d ��

�b �� �e ; <C =
�a

�c

	

�


 �d

�b
�e

���

��

Thus the transition matrix, defined according to Sect. 4, is given by the following
table:

∅ {a, b} {a} {b, d} {d}
˜A = ∅ a + b c d e 0

{a, b} 0 c d e 0

{a} b c d e 0

{b, d} 0 c 0 e a

{d} b c 0 e a

Accordingly, one has det(I − zA) = 1 − 6z + 10z2 − 5z3 = (1 − z)pM(z). �

6 Conclusion

We have investigated the fundamental role played by the clique polynomial in
asymptotic studies of trace monoids. Building on the factorization property
(stated in Proposition 1), we got a link between the multiplicity of its small-
est root and the number of connected components of some associated graph
(Theorem 4). This, in turn, is the key for a new asymptotic relation between
the number of prefixes in traces of length n: E[Tn] = O(E[Wn]) (Theorem 5),
where Tn and Wn correspond to two natural models (uniform distribution over
traces and over words). In the long version of this article, we plan to extend
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these analyses to more general cases (including concurrent alphabets without
transitive orientation).

Several other problems remain open in our context and could be at the centre
of future investigations. The first one concerns the adjacency matrix A defined
in Sect. 4, which does not seem to be studied too much in the previous literature;
in particular, in all our examples det(I − zA) is a clique polynomial, even when
the concurrent alphabet (Σ, C) does not admit any transitive orientation. For
this purpose, similarly to the approach used in [11] and in our proof of Theo-
rem 4, it is possible to adapt a noncommutative approach building on links to
words with forbidden patterns (see [2]). We plan to use these links to tackle the
asymptotic behaviour of the variance and higher moments of {Tn}, and the limit
distributions of both {Tn} and {Wn} for all trace monoids.

In conclusion, all these studies are further illustration of the nice interplay
between complex analysis (analytic combinatorics) and the structural properties
of formal languages, as also illustrated e.g. in [4,5,16,17,19,20].
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Abstract. A (finite or infinite) word is said to be k-th power-free if it
does not contain k consecutive equal blocks. A colouring of the integer
lattice points in the n-dimensional Euclidean space is power-free if there
exists a positive integer k such that the sequence of colours of consecutive
points on any straight line is a k-th power-free word. The Thue threshold
of Zn is the least number of colours t(n) allowing a power-free colouring
of the integer lattice points in the n-dimensional Euclidean space.

Answering a question of Grytczuk (2008), we prove that t(2) = t(3) =
2. Moreover, we show the existence of a 2-colouring of the integer lattice
points in the Euclidean plane such that the sequence of colours of con-
secutive points on any straight line does not contain squares of length
larger than 26.

In order to obtain these results, we study repetitions in Toeplitz words.
We show that the Toeplitz word generated by any sequence of primitive
partial words of maximal length k is k-th power-free. Moreover, adding
a suitable hypothesis on the positions of the holes in the generating
sequence, we obtain that also the subwords occurring in the considered
Toeplitz word according to an arithmetic progression of suitable differ-
ence, are k-th power-free words.

Keywords: Power-free word · Toeplitz word · Partial word · Word
with bounded square · Thue threshold · Arithmetic subword

1 Introduction

The study of repetitions in words has been one of the main fields of interest
in Combinatorics on Words since its origins [6,20,21]. This subject has several
applications in other fields such as Algebra, Symbolic Dynamics, Game Theory.

Let k be a positive integer. We recall that a word is said to be k-th power-
free if it does not contain k consecutive equal blocks. For instance, the word
“barbarian” is not square-free, since it contains two consecutive occurrences of
the block “bar”, while it is cube-free. It is known that there exist cube-free
infinite words over a two-letter alphabet and square-free infinite words over a
three-letter alphabet [20].
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In [8], one of the authors considered the following multidimensional exten-
sion of k-th power-freeness, suggested by J. Berstel. Consider a colouring of the
integer lattice points in the n-dimensional Euclidean space, with finitely many
colours. Such a colouring will be called k-th power-free if the sequence of colours
of consecutive points on any straight line is an infinite k-th power-free word. The
main result of [8] is the existence of a square-free colouring of the integer lattice
points in the n-dimensional Euclidean space, for all positive integer n.

The minimum number of colours C(n) required for such a colouring is actu-
ally unknown. While the construction of [8] uses 4n colours, recently [16] it has
been shown that C(n) ≥ 9 · 2n−2, for all n ≥ 2. Kao et al. [15] used a smaller
number of colours to build k-th power-free colourings of the integer lattice points
of the plane, with k > 2. In this context, an interesting notion is the Thue thresh-
old, introduced by Grytczuk [13]. A colouring of the integer lattice points in the
n-dimensional Euclidean space is power-free if it is k-th power-free for some posi-
tive k. The Thue threshold of Zn is the minimum number of colours t(n) needed
for such a colouring. One of the problems proposed by Grytczuk asks for the
value of t(n), at least in the case n = 2. The existence of infinite cube-free words
on a binary alphabet shows that t(1) = 2. The results of [15] quoted above imply,
in particular, that t(2) ≤ 4 and, more generally, t(n) ≤ 2n. On the other side, it
is clear that t(n) ≥ 2 for all n. In this paper, we will show that t(2) = t(3) = 2.
More precisely, we construct a 9-th power-free 2-colouring of the 3-dimensional
Euclidean space and an 8-th power-free 2-colouring of the Euclidean plane. In
view of these results, we conjecture that t(n) = 2 for all positive n.

Another notion very close to power-freeness is that of bounded repetition.
An infinite word is said to have bounded repetition if the length of the squares
occurring in it is upperbounded by a constant. An infinite word with bounded
repetition over a binary alphabet has been given in [10]. Further examples can
be found, for instance, in [1,11,19]. Similarly to the Thue threshold, one can
introduce the bounded repetition threshold as follows. A colouring of the integer
lattice points in the n-dimensional Euclidean space is said to have bounded
repetition if the length of the squares occurring in it is upperbounded by a
constant. The minimum number of colours needed for such a colouring will be
called the bounded repetition threshold of Zn. We will show that the bounded
repetition threshold of Z2 is 2.

Now we describe some of the tools used for the construction of the power-free
colourings considered above. According to [4], we call arithmetic subsequence (of
difference d) of an infinite word the subsequence obtained by extracting the let-
ters which are positioned according to an arithmetic progression of difference d.
The study of infinite words whose arithmetic subsequences, for some prescribed
difference, are power-free has been started in [8]. Further results on this subject
can be found in [9,15]. In [8] it is shown that there exists an infinite word on
a 4-letter alphabet such that all its arithmetic subsequences of odd difference
are square-free. As noticed in [15] this word is related to paperfolding words.
There is a large literature on paperfolding words and on the more general class
of Toeplitz words (see, e.g., [1,3,14,18,19] and the references therein). Avgusti-
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novich et al. [4] showed that the factors of arithmetic subsequences of odd differ-
ence of paperfolding words are themselves factors of paperfolding words. Since
all paperfolding words are 4-th power-free [1], one obtains that arithmetic sub-
sequences of odd difference of paperfolding words are 4-th power-free words.

In this paper we study in more details power-freeness of Toeplitz words and
of their arithmetic subwords, obtaining some extension of the results above. In
order to describe our results, we recall some further notion. Partial words were
introduced by Berstel and Boasson [5] in order to study some extension of the
Fine and Wilf Periodicity Theorem. Roughly speaking, a partial word is a word
such that the letters in some positions (called holes) are unknown. Primitive par-
tial words have been studied by Blanchet-Sadri [7]. Given a sequence of partial
words s(n), n ≥ 1, one can construct an infinite word as follows: first concate-
nate infinitely many copies of s(1), thus obtaining an infinite word with holes;
next, ordinately replace the holes by the letters of the infinite word obtained
by concatenating infinitely many copies of s(2), thus obtaining a new infinite
word with holes; and so on. . . If there are infinitely many n such that s(n) does
not start with a hole, then the previous construction converges to an infinite
word with no hole, which is called the Toeplitz word generated by the sequence
s(n). We will show that, if the words s(n), n ≥ 1, are primitive partial words of
maximal length k, then the generated Toeplitz word is k-th power-free. Concern-
ing the arithmetic subsequences of Toeplitz words, we prove a useful structural
property. If the positions of the holes in the words of the generating sequence
of a Toeplitz word U satisfy a suitable hypothesis and d is an integer relatively
prime with their lengths, then any arithmetic subsequence of difference d of U
is a Toeplitz word and its generating sequence can be obtained by rearranging
the letters of the generating sequence according to a particular rule. We notice
that some results related to this one can be found in [4,12].

As a consequence of the two previous results, we obtain that if U is a Toeplitz
word generated by a sequence of primitive partial words of maximal length k
satisfying the condition on the position of the holes considered above, if q is
the least common multiple of the lengths of the generating words, and if d is
any integer which is not a multiple of q, then all arithmetic subsequences of U
of difference d are k-th power-free. This last result gives us a powerful tool to
construct words with power-free arithmetic subsequences.

The paper is organized as follows. In the next section we recall some basic
definitions and properties needed in the sequel. In Sect. 3 we establish the result
on power-freeness of Toeplitz words generated by primitive partial words. Arith-
metic subsequences of Toeplitz words are studied in Sect. 4. In Sect. 5 we prove
that the Thue threshold of Z

3 is 2 and in Sect. 6 we prove that the bounded
square threshold of Z2 is 2. Finally, in Sect. 7 we discuss some open problems.

2 Preliminaries

Let A be a finite nonempty set, or alphabet, and A∗ be the free monoid generated
by A. The elements of A are usually called letters and those of A∗ words. The
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identity element of A∗ is called empty word and denoted by ε. We set A+ =
A∗ \ {ε}. A word w ∈ A+ can be written uniquely as a sequence of letters as
w = w1w2 · · · wn, with wi ∈ A, 1 ≤ i ≤ n, n > 0. The integer n is called the
length of w and denoted by |w|. All words wiwi+1 · · · wj with 1 ≤ i ≤ j ≤ n are
called factors of w. A period of the word w is any positive integer p such that
wi = wi+p for all i = 1, 2, . . . , n − p. For all n ≥ 0, the set of all words of length
n on the alphabet A is denoted by An.

Let k be a positive integer. Any word of the form uk, with u �= ε, is called a
k-th power. In particular, 2-nd and 3-rd powers are usually called squares and
cubes. As is known, a word w is a k-th power if and only if w has a period p
such that |w| = kp. A word is primitive if it is not a k-th power, for all k ≥ 2.

An infinite word U on the alphabet A is any unending sequence of letters.
For all n ≥ 1, we let Un denote the n-th letter of the infinite word U . Thus,
U = U1U2 · · · Un · · · . The set of infinite words on the alphabet A is denoted by
Aω. A bi-infinite word on the alphabet A is any map V : Z → A, where Z denotes
the semiring of relative integers. The image of any n ∈ Z by V is denoted by Vn.
The factors of an infinite (resp., bi-infinite) word U are the words UiUi+1 · · · Uj

with 1 ≤ i ≤ j (resp., i, j ∈ Z and i ≤ j). A period of an infinite (resp., bi-
infinite) word U is any positive integer p such that Ui = Ui+p for all i ≥ 1
(resp., i ∈ Z). If s is a finite word, we let sω denote the infinite word obtained
by concatenating infinitely many copies of s.

A (finite or infinite or bi-infinite) word is said to be k-th power-free if none
of its factors is a k-th power.

Let U be an infinite word, and i and d be two positive integers. The infinite
word V = UiUi+dUi+2d · · · Ui+nd · · · is called an arithmetic subsequence of U of
difference d. Any factor of any arithmetic subsequence of U of difference d is
said to be an arithmetic subword of U of difference d. Arithmetic subsequences
and subwords of bi-infinite words can be defined similarly.

Let A be a k-letter alphabet and n be a positive integer. Any map α : Zn → A
will be called a k-colouring of the lattice points of the n-dimensional space, or,
briefly, a Z

n-word. A bi-infinite word V is a line of α if there exist integers
j1, . . . , jn,m1, . . . ,mn ∈ Z such that gcd(m1, . . . ,mn) = 1 and

Vq = α(j1 + qm1, . . . , jn + qmn) for all q ∈ Z.

This definition [8] is motivated by the fact that, as one can easily verify, the
lines of α are the sequences of letters corresponding to the integer lattice points
of the n-dimensional space R

n which lie on a same straight line. For instance, if
α is the ‘chessboard coloring’ of the plane, that is the 2-coloring of Z2 defined
by α(x, y) = x + y mod 2, then its lines are the bi-infinite words

· · · 01010101 · · · , · · · 00000000 · · · and · · · 11111111 · · ·
Indeed, the first one corresponds to all straight lines with directive numbers
(m1,m2) with m1 + m2 odd, while the other two correspond to the straight
lines with directive numbers (m1,m2) where both m1 and m2 are odd and,
consequently, m1 + m2 is even.
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3 Repetitions in Toeplitz Words

Partial words were introduced by Berstel and Boasson [5]. We call partial word
over the alphabet A any word over the alphabet A∪{?}, where ? is a distinguished
letter, not belonging to A. The occurrences of ? in a partial word are usually
called holes. Let x and y be partial words. We say that x is contained in y and
we write x ⊂ y, if the partial word y can be obtained from x replacing some hole
by letters of A. A partial word x is primitive if there do not exist another partial
word z and an integer n ≥ 2 such that x ⊂ zn. For instance, if x = ab??ab?a
and y = ab?bab?a, then one has x ⊂ y. The word x is not primitive, since
x ⊂ (abaa)2, while the word y is primitive.

The following proposition is a slight modification of a result of [5]. The proof
is identical.

Proposition 1. Let x and y be partial words. One has xk ⊂ y� for some integers
k, � if and only if x ⊂ zn and zm ⊂ y for some partial word z and integers n,m.

The following is a straightforward consequence of the previous proposition.

Corollary 1. Let x be a primitive partial word. If one has xk ⊂ y� for some
partial word y and integers k, �, then xm ⊂ y for some integer m.

The following proposition [7] will be useful in the sequel.

Proposition 2. Let x and y be partial words. If xy is primitive, then yx is
primitive.

Now, we recall the notion of Toeplitz word [14]. Let U be an infinite word
over the alphabet A ∪ {?} containing infinitely many holes and s be a partial
word over the alphabet A ∪ {?}. We let Ts(w) denote the infinite word obtained
by ordinately replacing in U the holes by the letters of sω. For instance, if
U = (aa?)ω and s = b?c?, then Ts(U) = (aabaa?aacaa?)ω.

Now, let s(n), n ≥ 1 be a sequence of non-empty partial words over the
alphabet A. We suppose that each word s(n) contains at least one hole and that
there are infinitely many n such that the initial letter of s(n) is not a hole. We
define a sequence of periodic words as follows:

U (0) = ?ω, U (n) = Ts(n)(U (n−1)), n ≥ 1. (1)

Our assumption on the initial letters of s(n) ensures that the sequence U (n) con-
verges to an infinite word U ∈ Aω. It will be called the Toeplitz word generated
by the sequence s(n). The following lemma, whose proof is left to the reader, will
be useful in the sequel.

Lemma 1. Let U be the Toeplitz word generated by a sequence s(n), n ≥ 1 and
V be the Toeplitz word generated by the sequence s(n), n ≥ 2. Then U can be
obtained by ordinately replacing in (s(1))ω the holes by the letters of V .

Now, we are ready to state the main result of this section.
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Theorem 1. Let U be the Toeplitz word generated by a sequence s(n), n ≥ 1. If
all s(n) are primitive partial words of maximal length k, then U is k-th power-
free.

Proof. We suppose, by contradiction, that U contains a k-th power uk, with
u ∈ A+. With no loss of generality, we assume that uk is the shortest k-th power
occurring in any Toeplitz word satisfying the statement.

The proof requires several steps. The first one consists in showing that |u| is
a multiple of |s(1)|.

Indeed, set s = s(1), p = |s|, q = |u|. By the construction of U , there is a
factor v of U (1) = sω such that v ⊂ up. Since |v| = pq, one derives that s = xy
and v = (yx)q for some partial words x, y. Hence, in view of Proposition 2 and
Corollary 1, one has (yx)m ⊂ u, for a suitable integer m. Replacing the words
by their lengths, one has mp = q, which proves our claim.

As a second step, we show that the word V generated by the sequence s(n),
n ≥ 2, also contains a k-th power.

Let h be the integer such that uk = UhUh+1 · · · Uh+kq−1 and i1, i2, . . . , it be
the positions of the holes of sω in the interval [h, h+kq−1]. In view of Lemma 1,
the word w = Ui1Ui2 · · · Uit

is a factor of V . We shall verify that w is a k-th
power. Indeed, let � denote the number of holes in sm. Then each factor of sω

of length q = mp contains exactly � holes. One derives, in particular, t = k�.
Moreover, one has

ij+� = ij + q, j = 1, 2, . . . , t − q.

Taking into account that q is a period of the word UhUh+1 · · · Uh+kq−1 = uk, one
obtains Uij

= Uij+�
, j = 1, 2, . . . , t − q. This proves that w has period �. Since

|w| = t = k�, we conclude that w = zk, for some word z of length �.
By the minimality of u, one derives � ≥ q = |sm|. But s can contain at most

p − 1 holes, so that � ≤ m(p − 1) < q. This leads to a contradiction. 	

Example 1. A Toeplitz word generated by a sequence of words s(n) ∈ {

0?1?,
1?0?

}
, n ≥ 1, is called a paperfolding word. By Theorem 1, one derives the

known fact [2] that paperfolding words are 4-th power-free.
Let s(n) = 01? for all n ≥ 1. The Toeplitz word generated by the sequence

s(n) is cube-free. More generally, if p > 2 and r(n) = 0p−21? for all n ≥ 1, then
the Toeplitz word generated by the sequence r(n) is p-th power-free.

4 Arithmetic Subsequences of Toeplitz Words

A permutation σ of the set {1, 2, . . . , n} will be called arithmetic if there exists
an integer d such that

σ(i + 1) ≡ σ(i) + d (mod n), i = 1, 2, . . . , n − 1.

One easily verifies that, in such a case, one has σ(j) − σ(i) ≡ (j − i)d (mod n),
for all i, j ∈ {1, 2, . . . , n}. Moreover, the composition of arithmetic permutations
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is an arithmetic permutation. Thus, the set of all arithmetic permutations is a
subgroup of the symmetric group on n objects.

Now, let x and y be two words of length n. We say that x and y are arith-
metically conjugate and we write x ≈ y if there exists an arithmetic permutation
σ of {1, 2, . . . , n} such that

x = x1x2 · · · xn, y = xσ(1)xσ(2) · · · xσ(n), (2)

with x1, x2, . . . , xn letters. Roughly speaking, x and y are arithmetically conju-
gate if y is obtained by rearranging the letters of x according to an arithmetic
permutation. Taking into account that by composing (or inverting) arithmetic
permutations one obtains an arithmetic permutation, one easily checks that the
relation ≈ is an equivalence relation.

The following statement extends Proposition 2 to the case of arithmetic con-
jugacy. For the sake of brevity, the proof is omitted .

Proposition 3. Let x, y ∈ A∗ be arithmetically conjugate partial words. Then
x is primitive if and only if y is primitive.

The following lemma shows a useful application of arithmetic conjugacy to
the analysis of arithmetic subsequences of periodic words.

Lemma 2. Let s be a word of length p and V be an arithmetic subsequence of
difference d of the word sω. If d and p are coprime, then there exists a word r
such that

r ≈ s and V = rω.

We will study Toeplitz words with a generating sequence whose elements lie
in the set

P =
⋃

0≤i≤�

Ai?(A�?)∗A�−i. (3)

Arithmetic subwords of Toeplitz words of this type have been studied in [4,
12] as they are prototypes of uniformly recurrent words with linear arithmetic
complexity. In this section, we will investigate in more details the relationship
between a Toeplitz word with a generating sequence whose elements are in P
and its arithmetic subsequences.

Let U be an infinite word over the alphabet A ∪ {?}. The sequence of the
integers i such that Ui = ?, in increasing order, will be called the hole sequence
of U . One easily verifies that one has s ∈ P if and only if the hole sequence
of sω is an arithmetic progression whose difference divides |s(n)|. The following
lemma shows that, in the case of our interest, the hole sequences of the words
approximating a Toeplitz word are, in fact, arithmetic progressions.

Lemma 3. For all n ≥ 1, let s(n) ∈ P . Then, for all n ≥ 0, the hole sequence of
the infinite word U (n) defined by (1) is an arithmetic progression whose difference
divides the number

∏n
i=1 |s(i)|.
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Now we are ready to prove the main result of this section.

Theorem 2. Let U be the Toeplitz word generated by a sequence of words s(n) ∈
P , n ≥ 1 and V be an arithmetic subsequence of U of difference d. If one has
gcd(d, |s(n)|) = 1 for all n ≥ 1, then V is a Toeplitz word with a generating
sequence r(n) such that for all n ≥ 1, r(n) ≈ s(n).

Proof. Let (im)m≥1 be the arithmetic progression of difference d such that

V = Ui1 Ui2 · · · Uim
· · · .

Moreover, for all n ≥ 0, let U (n) be the infinite word defined by (1) and V (n)

be the arithmetic subsequence V (n) = U
(n)
i1

U
(n)
i2

· · · U
(n)
im

· · · . Fix n ≥ 1, let
(hm)m≥1 be the hole sequence of U (n−1) and (hjm

)m≥1 be the subsequence of
the elements occurring also in the arithmetic progression (im)m≥1. In view of
Lemma 3, (hm)m≥1 is an arithmetic progression whose difference � is coprime
with d. From this fact, one easily derives that (hjm

)m≥1 is an arithmetic pro-
gression of difference d�. This implies that (jm)m≥1 is an arithmetic progression
of difference d.

Let W be the arithmetic subsequence of (s(n))ω obtained by taking the letters
of position jm, m ≥ 1. By Lemma 2, there is a partial word r(n) such that
r(n) ≈ s(n) and W = (r(n))ω. Since the word U (n) is obtained by ordinately
replacing the holes of U (n−1) by the letters of (s(n))ω, the word V (n) will be
obtained by ordinately replacing the holes of V (n−1) by the letters of W , that is
V (n) = Tr(n)(V (n−1)).

One easily verifies that the sequence V (n) converges to V , so that V is the
Toeplitz word with generating sequence r(n), n ≥ 1. 	


From Theorems 1 and 2 and Proposition 3, one easily derives the following

Corollary 2. Let U be the Toeplitz word generated by a sequence of primitive
partial words s(n) ∈ P , n ≥ 1. If k = max{|s(n)|, n ≥ 1}, then every arithmetic
subsequence of U whose difference d is coprime with lcm{|s(n)|, n ≥ 1} is a k-th
power-free infinite word.

Example 2. From the corollary above, one obtains that all arithmetic subse-
quences of odd difference of a paperfolding word are 4-th power-free. However,
this fact has been directly proved in [15] using a result of [4].

Let U be the Toeplitz word generated by the (constant) sequence s(n) = 01?,
n ≥ 1. By the corollary above, all arithmetic subsequences of U whose difference
is not a multiple of 3 are cube-free. More generally, if p > 2 and V is the
Toeplitz word generated by the (constant) sequence s(n) = 0p−21?, n ≥ 1, then
all arithmetic subsequences of U whose difference is not a multiple of p are p-th
power-free.
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5 Thue Threshold

In this section we shall prove that the 3-dimensional Thue threshold is equal
to 2. More precisely, we will exhibit a 2-colouring of the lattice points of the 3-
dimensional space such that any line is a 9-th power-free word. As a consequence,
also the 2-dimensional Thue threshold is equal to 2.

We let Z3 denote the field of the integers modulo 3. The following lemma
gives a useful combinatorial property of the vector space Z

3
3.

Lemma 4. There is a partition (A1, A2, A3) of Z3
3 such that for all j,m ∈ Z

3
3

with m �= 0, there exist k ∈ Z3 and i ∈ {1, 2, 3} such that

j + km ∈ Ai , mi �= 0.

We limit ourselves to list the elements of the classes A1, A2, A3, as the verification
of Lemma 4 merely requires a finite but long and tedious check.

A1 = {x + (k, k, k) | x = (0, 0, 0), (0, 1, 0), (0, 0, 1), k = 0, 1, 2}
A2 = {(i3 + 1, i1, i2) | (i1, i2, i3) ∈ A1}, A3 = {(i3 + 1, i1, i2) | (i1, i2, i3) ∈ A2}.

Remark 1. The previous lemma has an interesting interpretation in terms of
Galois geometry: let AG(3, 3) be the 3-dimensional affine space over the 3-
element field Z3. Then there is a partition (A1, A2, A3) of the points of AG(3, 3)
with the following property: for every line r there is an axis xi, i = 1, 2, 3 such
that r intersects Ai and is not orthogonal to xi. We notice that an analogous
property holds for the 2-dimensional affine space over the 2-element field Z2,
taking the partition (A1, A2) with A1 = {(0, 0), (1, 1)} and A2 = {(0, 1), (1, 0)}.

In Example 2, we have shown an infinite binary word such that all arithmetic
subsequences whose difference is not a multiple of 3 are cube-free. A bi-infinite
word with the same property can be easily obtained via Koenig’s Lemma (see,
e.g., [17]). Now, we define a 2-colouring of the lattice points of the 3-dimensional
space whose lines are 9-th power-free. Let (A1, A2, A3) be the partition of Z

3
3

given by Lemma 4 and let U be a binary bi-infinite word such that all arithmetic
subsequences whose difference is not a multiple of 3 are cube-free. We let π
denote the natural projection π : Z3 → Z

3
3 and define the map α : Z3 → {0, 1}

as follows:
if π(j1, j2, j3) ∈ Ai, then α(j1, j2, j3) = U�ji/3�,

j1, j2, j3 ∈ Z, i ∈ {1, 2, 3}.

Proposition 4. All lines of α are 9-th power-free.

Proof. Actually, it suffices to verify that no line of α contains a cube u3 with |u|
multiple of 3. Indeed, any 9-th power v9 can be written as v9 = u3, with u = v3

and |u| = 3|v|.
Let V be a line of α. Then, there are j1, j2, j3,m1,m2,m3 ∈ Z such that

gcd(m1,m2,m3) = 1 and

Vn = α(j1 + nm1, j2 + nm2, j3 + nm3) for all n ∈ Z. (4)
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By Lemma 4, there are i ∈ {1, 2, 3} and k ∈ Z such that

π(j1 + km1, j2 + km2, j3 + km3) ∈ Ai, mi �≡ 0 (mod 3).

From (4) and the definition of α, it follows that for all n ∈ Z, one has

Vk+3n = α(j1 + km1 + 3nm1, j2 + km2 + 3nm2, j3 + km3 + 3nm3) = Uj′+nmi
,

where j′ = (ji + kmi)/3�. This equation shows that there is a bi-infinite word
W which is simultaneously an arithmetic subsequence of difference mi of U and
an arithmetic subsequence of difference 3 of V . Since mi �≡ 0 (mod 3), the word
W is cube-free. Now suppose, by contradiction, that a cube u3 with |u| = 3�
occurs in V , � ≥ 1. Then the subword made by the letters of this occurrence
whose position is congruent to k (mod 3) would have the form v3 with |v| = �
and would be a factor of W . This yields a contradiction, since W is cube-free.

Thus, no line of α contains a factor of the form u3 with |u| multiple of 3.
This implies, in particular, that all lines of α are 9-th power-free. 	


As a corollary of the proposition above one obtains

Theorem 3. The Thue threshold of Z3 is equal to 2. Thus, the Thue threshold
of Z2 is also equal to 2.

6 Avoiding Long Squares

In this section we will produce a 2-colouring of the lattice points of the plane
such that any line contains only squares of length not larger than 26. In this
case, the results of Sects. 3 and 4 do not seem to help, so that we need an ad-
hoc construction based on paperfolding words. For the sake of brevity, we limit
ourselves to outline the construction.

As a consequence of Koenig’s Lemma, there exists a bi-infinite binary word U
whose factors are all finite paperfolding words. We define the map β : Z2 → {0, 1}
as

β(j1, j2) =

{
U�j1/2� if j1 + j2 is odd,

U�j2/2� if j1 + j2 is even,
(5)

j1, j2 ∈ Z.
Finite factors of paperfolding words are usually called finite paperfolding

words. By exploiting some known properties of paperfolding words we obtain
the following description of the factors of the lines of β.

Lemma 5. Let x be a factor of even length of any line of β. Then one can write

x = b1c1b2c2 · · · bkck,

with b1, b2, . . . , bk, c1, c2, . . . , ck ∈ {0, 1}, k ≥ 0, and the words y = b1b2 · · · bk

and z = c1c2 · · · ck are either finite paperfolding words or words of period 2.
Moreover, at least one of the words y and z is a paperfolding word.
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We need also the following combinatorial property, which we state without
proof, for the sake of brevity.

Proposition 5. Let x, y ∈ {0, 1}∗ be words such that both xy and yx are finite
paperfolding words. If |x|, |y| > 6, then |xy| is even.

Now we are ready to establish the main result of this section.

Proposition 6. Let β be the 2-colouring of the integer lattice points of the plane
defined by (5). No line of β contains a square u2 with |u| > 13.

Proof (outline). Suppose that u2 is a factor of some line of β. Then x = u2 can
be factorized as in Lemma 5. If k = |u| is even, then both y and z are squares.
Since one of them is a paperfolding word and no paperfolding word of length
larger than 10 is a square [1], one derives that |u| = k ≤ 10.

Now suppose that k = |u| is odd, say k = 2� + 1 and � > 6. Since x is a
square, with some computation, one obtains

y = b1b2 · · · bk = c�+1c�+2 · · · ckc1c2 · · · c�. (6)

If y and z are both paperfolding words, then from (6) and Proposition 5 one
derives that k is even, which is a contradiction. If, on the contrary, one of the
words y and z has period 2, then from (6) one derives that both y and z have a
factor of period 2 and length 4, that is one of the words 04, 14, 0101, or 1010.
Since none of them is a paperfolding word, we conclude that neither y nor z are
paperfolding words, obtaining a contradiction. We conclude that � ≤ 6, so that
k ≤ 13. 	

Remark 2. A careful analysis of the proof of the previous proposition shows that
if u2 is a factor of a line of β, then either |u| is an odd integer not larger than 13
or |u| ∈ {2, 6, 10}. In particular, no line of β contains a square whose length is
a multiple of 8. Since any 8-th power is also a square whose length is a multiple
of 8, we conclude that all lines of β are 8-th power-free words.

7 Concluding Remarks

We have proved that the Thue threshold t(n) satisfies the equality t(1) = t(2) =
t(3) = 2 and that the bounded square threshold of Z2 is 2. It would be interesting
to evaluate the Thue threshold and the bounded square threshold of Zn for all
positive integer n. In [15] it is shown that t(n) ≤ 2n. Combining the results
of this paper with the construction of [8], one could obtain the tighter bound
t(3n) ≤ 2n. We conjecture that t(n) = 2 for all n ≥ 1. Actually, since t(n) is a
non-decreasing sequence, it would suffice to verify that t(n) = 2 for arbitrarily
large n. We notice that our proof of the equality t(n) = 2 for n = 3 could
be easily generalized to the case n = p for any prime p provide one is able to
establish, for the affine Galois space AG(p, p), a property analogous to that of
Remark 1. Moreover, we have treated the case of Toeplitz words such that the
elements of the generating sequence belong to the set P , where P is as in (3).
Other interesting unanswered questions are the following:
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1. What is the least integer k such that there exists a 2-colouring of Z2 (resp.,
Z
3) whose lines are k-th power-free?

2. What is the least integer k such that there exists a 2-colouring of Z2 whose
lines do not contain squares of length larger than k ?

We have built a 2-colouring of Z2 such that all lines are 8-th power-free and
do not contain squares of length larger than 26 and a 2-colouring of Z3 such that
all lines are 9-th power-free. However, there is no evidence that these bounds are
optimal.
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Abstract. An automata network is a finite graph where each node holds
a state from some finite alphabet and is equipped with an update func-
tion that changes its state according to the configuration of neighboring
states. More concisely, it is given by a finite map f : Qn → Qn. In this
paper we study how some (sets of) automata networks can be simu-
lated by some other (set of) automata networks with prescribed update
mode or interaction graph. Our contributions are the following. For non-
Boolean alphabets and for any network size, there are intrinsically non-
sequential transformations (i.e. that can not be obtained as composition
of sequential updates of some network). Moreover there is no univer-
sal automaton network that can produce all non-bijective functions via
compositions of asynchronous updates. On the other hand, we show that
there are universal automata networks for sequential updates if one is
allowed to use a larger alphabet and then use either projection onto or
restriction to the original alphabet. We also characterize the set of func-
tions that are generated by non-bijective sequential updates. Following
Tchuente, we characterize the interaction graphs D whose semigroup of
transformations is the full semigroup of transformations on Qn, and we
show that they are the same if we force either sequential updates only,
or all asynchronous updates.

1 Introduction

An automata network is a network of entities each equipped with a local update
function that changes its state according to the states of neighboring entities.
Automata networks have been used to model different kind of networks: gene net-
works, neural networks, social networks, or network coding (see [9] and references
therein). They can also be considered as a model of distributed computation with
various specialized definitions [18,19]. The architecture of an automata network
can be represented via its interaction graph, which indicates which update func-
tions depend on which variables. An important stream of research is to determine
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how the interaction graph affects different properties of the network or to design
networks with a prescribed interaction graph and with a specific dynamical prop-
erty (see [8] for a review of known results). On the other hand, automata networks
are usually associated with an update mode describing how local update func-
tions of each entity are applied at each step of the evolution. In particular, three
categories of update modes can be distinguished: sequential (one node update at
a time), asynchronous (any subset of nodes at a time) or synchronous (all nodes
simultaneously). Studying how changing the update mode affects the properties
of an automata network with fixed local update functions is another major trend
in this field [12,13,15]. Comparing the computational power of sequential and
parallel machines is of course at the heart of computer science, but the question-
ing on update modes is also meaningful for applications of automata networks
in modeling of natural systems where the synchronous update mode is often
considered unrealistic.

For both parameters (interaction graphs and update modes), the set of prop-
erties that could be potentially affected is unlimited. In this paper, instead of
choosing a set of properties to analyze, we adopt an intrinsic approach: we study
how some (sets of) automata networks can be simulated by some other (set of)
automata networks with prescribed update mode or interaction graph.

Notations. We will always consider alphabets of the form [[q]] = {0, . . . , q − 1}
for some q and usually denote by n the number of nodes of the network which
are identified by integers in the interval [1, n]. An automata network is a map
f : [[q]]n → [[q]]n. An element x ∈ [[q]]n is a configuration and xv denotes the
state of node v in configuration x. By extension fv denotes the map x �→ f(x)v.
The rank of f is the size of its image. For any set of coordinates V ⊆ [1, n],
f (V ) : [[q]]n → [[q]]n denotes the following map:

f (V )(x)i =

{
f(x)i if i ∈ V

xi else.

The notation is extended to words of subsets w = (w1, . . . , wk) as follows: f (w) =
f (wk) ◦ · · · ◦ f (w1). For v ∈ [1, n] we overload this notation by f (v) = f ({v}).

We will often consider semigroups of functions under compositions: 〈X〉
where X is a set of functions that denotes the semigroup generated by com-
positions of elements of X. We denote the fact that S1 is a sub-semigroup of S2

by S1 ≤ S2. For any set X, Sym(X) is the set of permutations on X. We denote
the set of all networks f : [[q]]n → [[q]]n as F(n, q). We denote by Sym(n, q) the set
of f ∈ F(n, q) which are bijective and by Sing(n, q) the set of f ∈ F(n, q) which
are non-bijective. For any set F of functions in F(n, q), what they can simulate
(asynchronously, sequentially, synchronously) is denoted as follows:

〈F 〉Asy :=
〈{

f (V ) : f ∈ F, V ⊆ [1, n]
}〉

,

〈F 〉Seq :=
〈{

f (v) : f ∈ F, v ∈ [1, n]
}〉

,

〈F 〉Syn = 〈F 〉 .
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Then we say that F simulates g ∈ F(n, q) asynchronously (sequentially, syn-
chronously, respectively) if g ∈ 〈F 〉Asy (〈F 〉Seq, 〈F 〉Syn, respectively). When
F = {f} we use notations 〈f〉Asy, 〈f〉Seq, 〈f〉Syn, respectively.

Previous Works. Simulation of automata networks is the topic of two main
strands of work. The first stream investigates what a single network can simulate.
The main observation, made in [2], is that there is no sequentially complete
network for F(n, q), i.e. for all f ∈ F(n, q), 〈f〉Seq 
= F(n, q). This was refined in
several ways. Firstly, there is no sequentially complete network for singular (i.e.
non-permutation) transformations: for all f ∈ F(n, q), Sing(n, q) 
≤ 〈f〉Seq [2].
Secondly, for all n ≥ 2 and q ≥ 2 (unless n = q = 2), there exists a sequentially
complete network for permutations: there exists f ∈ F(n, q) such that 〈f〉Seq =
Sym(n, q) [7]. These results illustrate a clear dichotomy between permutations
and non-permutations. Thirdly, the simulation model was extended in [2] to
include situations whereby a large network f ∈ F(m, q) could simulate a smaller
network g ∈ F(n, q) for n ≤ m; notably, there always exists a complete network
of size m = n + 1 which can sequentially simulate any g ∈ F(n, q).

Another strand of work considers simulation by (possibly large) sets of net-
works. Firstly, Tchuente [16] investigated what networks with a prescribed reflex-
ive interaction graph D could simulate synchronously. The main result is that
this set of networks F(D, q) is complete, i.e. 〈F(D, q)〉Syn = F(n, q), if and only if
D is strongly connected and has a vertex of in-degree n. Secondly, in the context
of in-situ computation (a.k.a. memoryless computation), Burckel proved that
any network could be sequentially simulated, if we allow the updates to differ at
each time step; in our language: for all n and q, 〈F(n, q)〉Seq = F(n, q) [4]. This
seminal result was subsequently refined (see [6,10]); notably linear bounds on
the shortest word required to simulate a transformation were obtained in [5,6].

Our Contributions. In this paper, we are further developing both strands of the
theory of simulation of automata networks. We make the following contribu-
tions. We first consider simulation by a single network. Firstly, we show that
for any q ≥ 3 and any n ≥ 2, there exists a network g ∈ F(n, q) which is not
sequentially simulatable. Secondly, we consider asynchronous simulation, and
we show that there is no asynchronously complete network: for all f ∈ F(n, q),
Sing(n, q) 
≤ 〈f〉Asy. This is a clear strengthening of the result in [2] for sequen-
tial simulation. Thirdly, we extend the framework to let a network over a large
alphabet f ∈ F(n, q′) simulate a network g ∈ F(n, q) over a smaller alphabet.
We consider two ways to extend the alphabet, and for each we prove the exis-
tence of sequentially complete networks for q′ = 2q and q′ = q + 1, respectively.
We then consider simulation by large sets of networks. The seminal result in [4]
shows that instructions (updates of the form f (v) for some v ∈ [1, n]) can sim-
ulate any network; in this paper, we determine what singular instructions can
simulate (and even idempotent instructions for q ≥ 3). We finally strengthen
the main result in [16] by showing that it also holds when considering sequential
and asynchronous updates as well.
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Proof. Complete proofs of all lemmas, propositions and theorems can be found
in [3].

2 Sequential Simulation

We say g ∈ F(n, q) is sequentially simulatable if g ∈ 〈f〉Seq for some f ∈
F(n, q). Recall that unless n = q = 2 any g ∈ Sym(n, q) is sequentially simulat-
able since there is a universal f ∈ F(n, q) such that 〈f〉Seq = Sym(n, q) [7]. Con-
cerning non-bijective maps, the situation is radically different for non-Boolean
alphabets as shown in the following theorem. For any function φ ∈ F(n, q), we
denote by O(()φ) the set of its orphans: O(()φ) = {c ∈ [[q]]n : φ−1(c) = ∅}. The
analysis of oprhans configurations under sequential updates is the key behind
the following theorem.

Theorem 1. For any n ≥ 2 and q ≥ 3, there exists h ∈ F(n, q) which is not
sequentially simulatable.

The functions which are not sequentially simulatable produced in the proof
of Theorem 1 have two configurations a and b in [[q]]n with the same image and
another d which is an orphan with the following property: for each coordinate i
where ai and bi differ, di is different from both ai and bi. Note that this situation
is impossible in the Boolean case since if ai 
= bi then necessarily di ∈ {ai, bi}.

F. Bridoux did an exhaustive search in F(n, 2) with n = 2 and n = 3 to
test which one are sequentially simulatable [1]. It turns out that all f ∈ F(3, 2)
are sequentially simulatable. However, some functions in F(2, 2) are not and one
example is the circular permutation 00 → 01 → 11 → 10 → 00 [1, Proposition
12]. More details (including the code of the test program) are available at http://
theyssier.org/san2020.

3 Asynchronous Simulation

In this section, we consider asynchronous simulation, where at each step we allow
any update f (T ) for T ⊆ [1, n]. We then refine the result in [2] that there is no
network that can sequentially simulate all singular networks.

We say that a function h : B → C, where B and C are finite sets, is balanced
if for any c, c′ ∈ C, |h−1(c)| = |h−1(c′)|. In particular, if f ∈ F(n, q) is bijective,
then all its coordinate functions fv : [[q]]n → [[q]] must be balanced.

Theorem 2. For all f ∈ F(n, q), Sing(n, q) 
≤ 〈f〉Asy.

Proof. Suppose, for the sake of contradiction, that Sing(n, q) ≤ 〈f〉Asy. We first
show that not all coordinate functions of f are balanced. There exists S ⊆ [1, n]
such that f (S) has rank qn−1. (Otherwise, no function in 〈f〉Asy has rank qn−1.)
Then there exist a, b ∈ [[q]]n such that

∣∣∣∣(f (S)
)−1

(x)
∣∣∣∣ =

⎧⎪⎨
⎪⎩

2 if x = a

0 if x = b

1 otherwise.

http://theyssier.org/san2020
http://theyssier.org/san2020
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Then let v ∈ S such that av 
= bv. We have

|f−1
v (av)| =

∑
x:xv=av

∣∣∣∣(f (S)
)−1

(x)
∣∣∣∣ = 2 +

∑
x:xv=av,x �=a

1 = qn−1 + 1,

thus fv is not balanced.
Thus, suppose fv is not balanced, and let q0 ∈ [[q]] such that |f−1

v (q0)| < qn−1.
Say a network h ∈ F(n, q) is defective if h−1(x) = ∅ for some x with xv = q0.
Let g ∈ Sing(n, q) not be deficient, and have a nontrivial gv; and suppose g =
f (w1···wk). Let i = max{1 ≤ j ≤ k : v ∈ wj}, then f (wi) is defective, and so is
f (w1···wi). Since f (wi+1···wk) fixes the coordinate v, f (w1···wk) = g is also deficient,
which is the desired contradiction. �

Similarly to Theorem1, the obstacle in Theorem 2 was found in the set of
maps of rank qn − 1. We now show that maps of rank qn − 2 form another
obstruction to having complete simulation in the asynchronous case. Let T (n, q)
be the set of networks in F(n, q) whose rank is not equal to qn − 1. It is clear
that T (n, q) is a semigroup, generated by maps of rank qn or qn − 2.

Proposition 1. For all f ∈ F(n, q), T (n, q) 
≤ 〈f〉Asy.

Proof. Suppose, for the sake of contradiction, that T (n, q) ≤ 〈f〉Asy. Firstly, all
the coordinate functions of f are balanced. Indeed, let g(x) = x + (1, . . . , 1) and
express g = f (w1···wk). Then f (wi) is bijective and hence fv is balanced for all
v ∈ wi; since

⋃k
i=1 wi = [1, n], we obtain that fv is balanced for all v ∈ [1, n].

Secondly, the proof of Theorem2 showed that there is no f (S) of rank qn − 1.
Now, there are two types of networks with rank qn − 2:

– Say g is of type I if there exists a ∈ [[q]]n such that |g−1(a)| = 3 (and hence
any other x 
= a has |g−1(x)| ≤ 1).

– Say h is of type II if there exist a, b ∈ [[q]]n such that |h−1(a)| = |h−1(b)| = 2
(and hence any other x /∈ {a, b} has |h−1(x)| ≤ 1).

By an argument similar to the proof of Theorem2, there is no S ⊆ [1, n] such
that f (S) is of type I. Let g be of type I and let us express it as g = f (w1···wk).
Each f (wl) has rank at least qn − 2, and there exists 1 ≤ i ≤ k such that f (wi) is
singular. By the argument above, f (wi) is of type II and so is h := f (w1···wi), say
|h−1(a)| = |h−1(b)| = 2. Denote g = h′ ◦ h for h′ := f (wi+1···wk). If h′(a) = h′(b),
then g has rank at most qn − 3; otherwise |g−1(h′(a))| = |g−1(h′(b))| = 2 and
hence g is of type II, which is the desired contradiction. �

4 Simulation Using Larger Alphabets

As said earlier, there is no universal automata network in F(n, q) able to sequen-
tially simulate all functions of F(n, q) (actually Theorem 2 gives a stronger nega-
tive result). In this section, we revisit this problem when the simulator is allowed
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Fig. 1. Definition and sequential behavior of ρ : [[2]]3 → [[2]]3 from Theorem3. Label on
arcs represent the coordinate updated.

to use a larger alphabet. In this case we can consider two natural types of sim-
ulations: one requires the simulation to work on any initial configuration of the
simulator and uses a projection onto configurations of the simulated functions;
the other does not use projection, but works only on initial configurations using
the alphabet of the simulated function.

Definition 1. Let n ∈ N, 2 ≤ q < q′ and consider f ∈ F(n, q′). We say that f
is (n,q)-universal by factor if there is a surjection π : [[q′]] → [[q]] such that for
any h ∈ F(n, q) there is a word w ∈ [1, n]∗ such that

∀x ∈ [[q′]]n, π ◦ f (w)(x) = h ◦ π(x)

where π(x1, . . . , xn) = (π(x1), . . . , π(xn)). f is said (n,q)-universal by initializa-
tion if for any h ∈ F(n, q) there is a word w ∈ [1, n]∗ such that

∀x ∈ [[q]]n, f (w)(x) = h(x).

We are going to show that universality can be achieved for each kind of sim-
ulation. In both cases, the larger alphabet allows us to encode more information
than the configuration of the simulated function. This additional information is
used as a global controlling state that commands transformations applied on the
simulated configuration and evolves according to a finite automaton. In the case
of simulation by factor, the encoding is straightforward but the global controlling
state is uninitialized. The key is to use a control automaton with a synchronizing
word (see Fig. 1). In the case of simulation by initialization, the difficulty lies in
the encoding.

The following theorems were obtained by F. Bridoux during his PhD thesis
[1].

Theorem 3. For any q ≥ 2 and n ≥ 3, there exists f ∈ F(n, 2q) which is
(n, q)-universal by factor.
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Proof. We can see any configuration of [[2q]]n as a pair made of a configura-
tion of [[q]]n and a Boolean configuration, so we can as well describe f as a
function acting on [[q]]n × [[2]]n to simplify notations and use the surjective map
π : [[q]]n × [[2]]n → [[q]]n that projects onto the first component. We will actu-
ally choose f which is the identity map on the coordinates 4 to n on the
Boolean component. So, to simplify even further, we will define a function
f : [[q]]n × [[2]]3 → [[q]]n × [[2]]3.

Consider first the function ρ : [[2]]3 → [[2]]3 defined by Fig. 1 and consider the
map Ψ : [[q]]n × [[2]]3 → [[q]]n defined by:

Ψ(x, y)1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 + 1 mod q if y = 101,

1 if x = (0)n and (y = 011 or y = 001),
0 if x = 1(0)n−1 and y = 011,

x1 otherwise,

Ψ(x, y)2 =

{
x2 + 1 mod q if x1 = 0 and y = 111,

x2 otherwise,

Ψ(x, y)3 =

{
x3 + 1 mod q if x1 = x2 = 0 and y = 011,

x3 otherwise,

∀i ∈ [4, n], Ψ(x, y)i =

{
xi + 1 mod q if x1 = x2 = · · · = xi−1 = 0,

xi otherwise.

Then we define f by f(x, y) =
(
Ψ(x, y), ρ(y)

)
. We now prove properties about

f implying that it is (n, q)-universal by factor.

Claim 1. For any (x, y) ∈ [[q]]n × [[2]]3 it holds f ((3)q,2,3,1,1,2,1,3)(x, y) = (x, 101).

Proof. First, let us remark that updating q times coordinate 3 starting from
(x, y), there are two cases:

– y 
= 011 or x1 
= 0 or x2 
= 0 and then the component x is not modified;
– y = 011 and x1 = x2 = 0, and then the modification x3 ← x3 + 1 is applied

q times.

Therefore we have f ((3)q)(x, y) = (x′, y′) with

x′ = (x1, x2, x3 + q, . . . ) = (x1, x2, x3, . . . ) = x.

To show that the update sequence ((3)q, 2, 3, 1, 1, 2, 1, 3) does not modify the
component x, it is sufficient to verify the following:

– coordinate 1 is not updated when y ∈ {101, 011, 001};
– coordinate 2 is not updated when y = 111;
– when coordinate 3 is updated and y = 011, it is updated q times.
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By definition of f ((3)q,2,3,1,1,2,1,3), we obtain:

x000
(3)q−−→ x000

2−→ x000
3−→ x000

1−→ x100
1−→ x000

2−→ x000
1−→ x100

3−→ x101,

x100
(3)q−−→ x101

2−→ x111
3−→ x110

1−→ x010
1−→ x010

2−→ x000
1−→ x100

3−→ x101,

x010
(3)q−−→ x010

2−→ x000
3−→ x000

1−→ x100
1−→ x000

2−→ x000
1−→ x100

3−→ x101,

x110
(3)q−−→ x110

2−→ x110
3−→ x110

1−→ x010
1−→ x010

2−→ x000
1−→ x100

3−→ x101,

x001
(3)q−−→ x000

2−→ x000
3−→ x000

1−→ x100
1−→ x000

2−→ x000
1−→ x100

3−→ x101,

x011
(3)q−−→ x011

2−→ x001
3−→ x000

1−→ x100
1−→ x000

2−→ x000
1−→ x100

3−→ x101,

x101
(3)q−−→ x101

2−→ x111
3−→ x110

1−→ x010
1−→ x010

2−→ x000
1−→ x100

3−→ x101,

x111
(3)q−−→ x110

2−→ x110
3−→ x110

1−→ x010
1−→ x010

2−→ x000
1−→ x100

3−→ x101.

�
Let us now show that, starting from (x, 101), f can realize three kinds of

transformations on x that will turn out to be sufficient to generate all F(n, q).

– Let c ∈ Sym(n, q) be the following circular permutation:

c : ((0)n → 1(0)n−1 → · · · → (q − 1)(0)n−1 → 01(0)n−2 → . . . ).

then for any x ∈ [[q]]n we have f (1,2,2,1,(3,4,...,n))(x, 101) = (c(x), 011) because:

x101
1−→ c(1)(x)101 2−→ c(1)(x)111 2−→ c([1,2])(x)111 1−→ c([1,2])(x)011

3−→ c([1,3])(x)011 4−→ c([1,4])(x)011 5−→ . . .
n−→ c(x)011.

– Consider the transposition k = ((0)n ↔ 1(0)n−1), then we have, for any
x ∈ [[q]]n, f (2,1,1)(x, 101) = (k(x), 011) because:

x101
2−→ x111

1−→ x011
1−→ k(x)011.

– Finally, consider the assignment d = ((0)n → 1(0)n−1), then for any x ∈ [[q]]n

it holds f (2,1,2,1)(x, 101) = (d(x), 001) because:

x101
2−→ x111

1−→ x011
2−→ x001

1−→ d(x)001.

Since functions c, k and d generate F(n, q) (see [14] or [11]), the theorem
follows. �
Theorem 4. For any q ≥ 2 and n ≥ 3q, there is f ∈ F(n, q + 1) which is
(n, q)-universal by initialization.

5 Simulation by Sets of Networks

So far we studied what a single function can simulate. We know shift our interest
to semigroups generated by some sets of functions.
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5.1 Singular Instructions

An instruction is any f (v) for some f ∈ F(n, q) and some v ∈ [1, n]. Burckel
showed that any network is the composition of instructions: 〈F(n, q)〉Seq =〈{

f (v) : f ∈ F(n, q), v ∈ [1, n]
}〉

= F(n, q). As an immediate consequence, any
permutation in Sym(n, q) is the composition of permutation instructions:
Sym(n, q) is exactly

〈{
f (v) ∈ Sym(n, q) : f ∈ F(n, q), v ∈ [1, n]

}〉
. We now deter-

mine what singular instructions generate: let

S(n, q) :=
〈{

f (v) ∈ Sing(n, q) : f ∈ F(n, q), v ∈ [1, n]
}〉

.

Proposition 2. The semigroup S(n, q) generated by singular instructions con-
sists of all networks f such that there exist a, b ∈ [[q]]n with f(a) = f(b) and
dH(a, b) = 1.

Any network f can be seen as a vertex colouring of the Hamming graph
H(n, q) (x colored by f(x)). From the proposition above, networks in S(n, q) cor-
respond to improper colouring. Since the chromatic number of H(n, q) is equal
to q, we deduce that any network with rank at most q − 1 can be generated by
singular instructions. However, the network f(x) = (x1 + . . . + xn, 0, . . . , 0) can-
not be generated by singular instructions, since it generates a proper colouring
of the Hamming graph.

A network f is idempotent if f2 = f . Idempotents are pivotal in the theory
of semigroups, for they are the identity elements of the subgroups of a given
semigroup. In particular it is interesting to know whether a semigroup S is
generated by its set of idempotents, because then any element s ∈ S can be
expressed as a product of consecutively distinct idempotents: s = e1e2 . . . ek. We
remark that if f ∈ S(n, q) is idempotent and has rank qn − 1, then it must be
an assignment instruction.

Theorem 5. S(n, q) is generated by assignment instructions for q ≥ 3.

The previous result could be proved using the so-called fifteen-puzzle. In the
original puzzle, an image is cut into a four-by-four grid of tiles; one of the tiles
is removed, thus creating a hole; the remaining fifteen tiles are scrambled by
sliding a tile into the hole. The player is then given the scrambled image, and
has to reconstruct it by repeatedly sliding a tile in the hole.

Clearly, this game can be played on any simple graph D, where a hole is
created at a vertex (say h), and one can “slide” one vertex into the hole, the
hole thus moving to that vertex. If the hole goes back to its original place h,
then we have created a permutation of V (D)\h. The set of all possible permuta-
tions is closed under composition and hence it forms a group, called the puzzle
group G(D,h). Wilson [17] fully characterised that group for 2-connected simple
graphs; we give a simpler version of the theorem below.

Theorem 6. (Wilson’s fifteen-puzzle theorem). Let D be a 2-connected
simple graph, then G(D,h) ∼= G(D,h′) for all vertices h, h′ ∈ V (D). Moreover,
if D is the undirected cycle, then G(D,h) is trivial. Otherwise, the following
hold.
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1. If D is not bipartite and has at least eight vertices, then G(D,h) =
Sym(V (D) \ h).

2. If D is bipartite, then G(D,h) = Alt(V (D) \ h).

Using assignment instructions (a → b) to simulate a network f of rank qn −1
can be viewed as playing the fifteen-puzzle on the Hamming graph H(n, q): the
first (a1 → b1) places a hole in vertex a1 and any subsequent (ak → bk) slides
the vertex ak into the hole bk (and the hole moves to ak instead). Since H(n, q)
is not bipartite for q ≥ 3 (and it has at least nine vertices for n ≥ 2), we can
apply Wilson’s theorem and, after a bit more work, prove Theorem5 that way.
However, the hypercube H(n, 2) is bipartite, then the puzzle group is only the
alternating group. Thus, S(n, 2) is not generated by assignment instructions,
and in particular f = (010 · · · 0 ↔ 110 · · · 0) ◦ (000 · · · 0 → 100 · · · 0) cannot be
generated by assignment instructions.

5.2 Simulation by Graphs

The interaction graph of f ∈ F(n, q) is the (directed graph) which has vertex
set V = [1, n] and has an arc from u to v if and only if fv depends essentially on
u, i.e. there exists a, b ∈ [[q]]n such that aV \u = bV \u and fv(a) 
= fv(b). For any
graph D with n nodes, we denote the set of networks in F(n, q) whose interaction
graph is a subgraph of D as F(D, q).

A graph is reflexive if for any vertex v, (v, v) is an arc in D. Note that for any
reflexive graph D it holds 〈F(D, q)〉Seq ⊆ 〈F(D, q)〉Asy = 〈F(D, q)〉Syn . The first
inclusion is trivial; the equality follows from the fact that for any f ∈ F(D, q)
and any S ⊆ [1, n], f (S) belongs to F(D, q) as well. Moreover, it is clear that
if 〈F(H, q)〉Seq = F(n, q), then H is reflexive (otherwise, 〈F(H, q)〉Seq would not
contain any permutation). The reflexive graphs which can simulate the whole
of F(n, q) synchronously were classified by Tchuente in [16]. In fact, the same
graphs can simulate the whole of F(n, q) asynchronously or sequentially.

Theorem 7. Let D be a reflexive graph on n vertices. Then the following are
equivalent.

1. 〈F(D, q)〉Seq = F(n, q).
2. 〈F(D, q)〉Asy = F(n, q).
3. 〈F(D, q)〉Syn = F(n, q).
4. D is strongly connected and it has a vertex of in-degree n.

A permutation of variables is any network f := φ̄ defined by fi(x) = xφ(i)

for some φ ∈ Sym([1, n]). We first show that we can permute variables freely if
the graph is strongly connected (and is reflexive for the sequential case).

Lemma 1. The following are equivalent for a reflexive graph D.

1. 〈F(D, q)〉Seq contains all permutations of variables of F(n, q).
2. 〈F(D, q)〉Asy contains all permutations of variables of F(n, q).
3. D is strong.
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Proof (Proof of Theorem 7). Clearly, 1 implies 2, which in turn is equivalent to 3.
We prove 2 implies 4. Let D such that 〈F(D, q)〉Asy = F(n, q). By Lemma 1, D
is strong. We now prove that D has a vertex of in-degree n. Otherwise, let
f ∈ F(D, q) of rank qn − 1. Let a ∈ O(()f) and b with |f−1(b)| = 2 (and hence
|f−1(x)| = 1 for any other x). We then have∑

x∈[[q]]n

f(x) mod qn = b − a 
= 0.

On the other hand, it is easily seen that for any y ∈ [[q]], |f−1
v (y)| is a multiple

of qn−dv where dv is the in-degree of v in D, hence∑
x∈[[q]]n

fv(x) mod q =
∑

y∈[[q]]

|f−1
v (y)|y mod q = 0.

Doing this componentwise for all v, we obtain
∑

x∈[[q]]n f(x) = 0, which is the
desired contradiction.

We prove 4 implies 1. We only need to show that all instructions in F(n, q)
belong to 〈F(D, q)〉Seq. Let u be a vertex of in-degree n, then we already have
any instruction updating u. Let v be another vertex, and g be an instruction
updating v, then g = (u ↔ v)◦h◦(u ↔ v), where h is the instruction updating u
such that hu = gv ◦(u ↔ v). Then (u ↔ v) ∈ 〈F(D, q)〉Seq according to Lemma 1.
Thus, any instruction can be generated. �

6 Future Work

The contrast between the complete sequential simulator for Sym(n, q) and the
existence of non-bijective functions that are not sequentially simulatable in the
non-Boolean case is striking. We would like first to settle the Boolean case:
we conjecture that all functions of F(n, 2) are sequentially simulatable for large
enough n. For q ≥ 3, in order to better understand the set of sequentially simulat-
able networks, one could for instance analyze how much synchronism is required
to simulate them (how large are the sets V in the asynchronous updates f (V )

used to simulate them). In particular, one may ask whether, for all n, there exists
some network with n entities that require a synchronous update f ([1,n]) in order
to be simulated asynchronously. Besides, the networks considered in Sects. 2, 3
and 4 have an unconstrained interaction graph. The situation could be very dif-
ferent when restricting all networks to particular a family of interaction graphs
(bounded degree, bounded tree-width, etc.). Finally, still concerning interaction
graphs, the characterization of Theorem 7 is about reflexive graphs. We would
like to extend it to any graph (not necessarily reflexive).
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1 Introduction

LaSer, [18], the formal language server, allows a user to enter a question about
an independent language and provides an answer either in real time or by gen-
erating a program that can be executed at the user’s site. Typical examples of
independent languages are codes in the classic sense, such as prefix codes and
error-detecting languages, or DNA-computing related codes. Typical questions
about independent languages are the satisfaction, maximality and construction
questions. For example, the satisfaction question is to decide, given an inde-
pendence I and a regular language L, whether L is independent with respect
to I.

We present some theoretical and implementational aspects of LaSer, as well
as some ongoing progress and research plans.

2 Transducer Independences Allowed in LaSer

Let R be a binary relation, that is, a subset of Σ∗ ×Σ∗, where Σ is an alphabet.
A language L is R-independent, [21,22], if

(x, y) ∈ R and x, y ∈ L implies x = y. (1)
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Examples of R-independent languages are error-detecting languages for various
error combinations, variable length codes, such as prefix codes and suffix codes,
as well as DNA-related languages [2,5,6,10,12–14,23]. LaSer allows users to
represent rational relations via transducers1, and regular languages via NFAs2.
The satisfaction question is whether L(a) is R(t)-independent, given an NFA a
and a transducer t. If the answer is NO, a witness word pair (x, y) is computed
such that x �= y and one of (x, y) and (y, x) is in R(t). The maximality question
is whether L(a) is a maximal R(t)-independent language knowing that L(a) is
R(t)-independent. If the answer is NO, a witness word x /∈ L(a) is computed
such that L(a) ∪ {x} is R(t)-independent. The construction question is to make
an n-element language (if possible) that is R(t)-independent, given transducer t,
integer n > 0 and the size of the alphabet.

If t is a transducer then the following language class

Pt = {L | L satisfies (1) for R = R(t)}

is called the independence, or property, described by t. In this case any language
L ∈ Pt is said to satisfy Pt . For example, the independence “prefix codes” is
described by the transducer px and the independence “2-synchronization-error
detecting languages” is described by the transducer id2 (see Fig. 1).

0px : 1 0sx : 1

a/a

a/λ

a/λ

a/λ

a/λ a/a

0sub1 : 1 0id2 : 1 2

a/a

a/a′

a/a a/a

λ/a,
a/λ

a/a

λ/a,
a/λ

a/aa/a

Fig. 1. Various transducers. An arrow with label a/a denotes multiple transitions: one
with label a/a for each a ∈ Σ, and similarly for labels a/λ. An arrow with label a/a′

denotes multiple transitions: one with label a/a′ for all a, a′ ∈ Σ with a �= a′. Let x
be any word. We have: px(x) = the set of proper prefixes of x, equivalently, R(px) =
the set of word pairs (x, y) such that y is a proper prefix of x; sx(x) = set of proper
suffixes of x; sub1(x) = set of words resulting by substituting at most one symbol in x
with another one; id2(x) = set of words resulting by inserting and/or deleting at most
2 symbols in x.

Transducer independences are closed under intersection, that is, if Pt1 and Pt2

are transducer independences, then also Pt1 ∩Pt2 is a transducer independence.

1 See [1,20], for instance, for transducer concepts.
2 NFA = Nondeterministic Finite Automaton.
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This is useful when we are interested in languages L satisfying two or more prop-
erties, such as the combined property of being a prefix and 1-substitution detect-
ing code. As prefix codes are described by the transducer px and 1-substitution
detecting codes are described by the transducer sub1 then also the combined
property is described by a transducer. This implies that LaSer can answer the
satisfaction, maximality and construction questions for the combined property.

LaSer’s backend is based on the Python package FAdo [8], which implements
automata, transducers, and independences described by transducer objects in
the module codes.py [17]. The choice to use FAdo is based on the facts that
its installation is very simple, it contains a rich set of easy to use methods,
and is written in Python which in turn provides a rich availability of high level
methods.

3 Rational Independence Expressions

Three examples of independences that are not of the form Pt are the following.

– The class of UD codes (uniquely decodable/decipherable codes). LaSer sup-
ports this class.

– The class of comma-free codes: that is, all languages L satisfying the equation

LL ∩ Σ+LΣ+ = ∅. (2)

– The class of language pairs (L1, L2) satisfying the equation

L1
sdi← L2 = ∅. (3)

Here the site directed insertion operation x
sdi← y between words x, y, intro-

duced in [3], is such that z ∈ x
sdi← y if x = x1uvx2, y = uwv, z = x1uwvx2,

where u, v are nonempty. This operation models site-directed mutagenesis,
an important technique for introducing a mutation into a DNA sequence.

That “UD codes” and “comma-free codes” are not transducer independences
can be shown using dependence theory: every transducer independence is a 2-
independence, but the “comma-free codes” independence, for instance, is a 3-
independence and not a 2-independence—see [12,15]. In general, intersecting
(combining) the above independences with a transducer independence results
into a new independence that is not of the form Pt for some transducer t.
LaSer does not handle non-transducer independences, with the exception of “UD
codes” for which specific algorithms are employed. More specifically, for the sat-
isfaction question LaSer uses the quadratic-time elegant algorithm of [9]. For
the maximality question LaSer uses Schützenberger’s theorem that maximality
of L is equivalent to the condition that every word in Σ∗ is subword (part) of
some word of L∗ [2]. A specific algorithm is also used in [23] for the satisfac-
tion question of the combination of the UD code and two other DNA-related
independences.
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We now discuss possible approaches of representing non-transducer inde-
pendences as finite objects in a way that these objects can be manipulated by
algorithms which can answer questions about the independences being repre-
sented. Some approaches are discussed in [15,19]. It is important to note that
there is a distinction between the terms “property” and “independence”. A (lan-
guage) property is simply a class (set) of languages. A (language) independence
is a property P for which the concept of maximality is defined, that is, P must
satisfy

if L ∈ P then also L′ ∈ P for all L′ ⊆ L

(see [15] for details). A general type of independences can be defined via rational
language equations ϕ(L) = ∅, where ϕ(L) is an independence expression involv-
ing the variable L. An independence expression ϕ is defined inductively as follows:
it is L or a language constant, or one of ϕ1ϕ2, ϕ1∪ϕ2, ϕ1∩ϕ2, (ϕ1)∗, t(ϕ1), θ(ϕ1),
where ϕ1, ϕ2 are independence expressions, t is a transducer constant, and θ is
an antimorphic permutation3 constant. A rational language equation is an expres-
sion of the form ϕ(L) = ∅, where ϕ(L) is an independence expression containing
the variable L and the language constants occurring in ϕ(L) represent regular
languages. A language L is ϕ-independent if it satisfies the equation ϕ(L) = ∅.
The independence Pϕ described by ϕ is the set of ϕ-independent languages.

Example 1. Every transducer independence Pt such that t is an input-altering
transducer4 is described by the rational language equation

t(L) ∩ L = ∅, (4)

where we have used the standard notation t(L) = {y | (x, y) ∈ R(t), x ∈ L}.
The independence “comma-free codes” is described by the rational language
equation (2). The independence “θ-free languages”, [10], is described by the
rational language equation

LL ∩ Σ+θ(L)Σ+ = ∅.

	

The satisfaction question for independences Pϕ is implemented in [19], where
parsing of expressions ϕ(L) is implemented using Python’s lark library, and
evaluation of ϕ(L) for given L = L(a) is implemented using the FAdo package.

4 Further Independences

What about independences described by equations like (3)? This is a non-
transducer independence. Various general types of independences are defined
3 An antimorphic permutation θ maps the alphabet Σ onto Σ and extends to words

anti-morphically: θ(xy) = θ(y)θ(x). A typical example of this is the DNA involution
on the alphabet {a, c, g, t} such that θ(a) = t, θ(c) = g, θ(g) = c, θ(t) = a. In this
case, θ(aac) = gtt.

4 This is a transducer t such that w /∈ t(w) for all words w. For example, px and sx

in Fig. 1 are input-altering transducers.
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in [5,11,12,22]. Equation (3) however involves an independence expression with
two language variables: L1 and L2. In analogy to transducer independences
that are R-independences, for binary relations R, one can consider indepen-
dences with respect to higher degree relations5. Consider the ternary relation

SDI = {(x, y, z) | z ∈ x
sdi← y}, which is realized by the transducer sdi in Fig. 2.

A language pair (L1, L2) is SDI-independent if

0 1 2 3 4

(a, λ, a)

(a, a, a)

(a, a, a)

(λ, a, a)

(a, a, a)

(a, a, a) (a, λ, a)

(λ, a, a) (a, a, a) (a, λ, a)

Fig. 2. The 3-tape transducer sdi realizing the set of all word triples (x, y, z) such
that x = x1uvx2, y = uwv and z = x1uwvx2, for some nonempty words u, v; that is,

z ∈ x
sdi← y.

sdi(L1, L2 : 3) = ∅.

Above we have made the following notation: for any k-tape transducer t, for any
i ∈ {1, . . . , k}, and for any list of k − 1 languages L1, . . . , Lk−1, the expression
t(L1, . . . , Lk−1 : i) denotes the set of all words w that result if we consider the
i-th tape as output tape and the rest k − 1 tapes as input tapes such that the
input k − 1 words are from the k − 1 languages. Thus, we can talk about the
independence described by the equation

t(L1, . . . , Lk−1 : i) = ∅.

Given a k-tape transducer t and k − 1 NFAs accepting the languages
L1, . . . , Lk−1, the satisfaction question can be decided if we construct the trans-
ducer resulting by intersecting t with the NFAs at the k−1 positions other than
i, and then testing whether the resulting transducer has a path from an initial
to a final state.

5 Looking Ahead

We propose to investigate further the rational language equations defined here
as well as in [15]. Topics of interest are maximality, embedding and expressibil-
ity6 as well as enhancement and implementation of algorithms involved. Some of
5 See references [4,7], for instance, for higher degree relations.
6 What independences are and are not describable by the independence-describing

method.
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these topics could be complex. For example, the maximality question for trans-
ducer independences can be answered by a simple algorithm, but the question is
PSPACE hard. The embedding question is to construct a maximal independent
language containing the given independent language L(a). For transducer inde-
pendences described by Eq. (4), the embedding question is addressed in [16]. The
maximality and embedding questions for non-transducer independences appear
to be far more complex. For the satisfaction question of independences described
by rational language equations, a useful question is to define and implement wit-
nesses of non-satisfaction. For example, a witness of non-satisfaction for equa-
tion (2) would be a word triple (x, y, z) such that x, y, z ∈ L and xy = uzv for
some nonempty words u and v.
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Abstract. The talk will explain a recent balancing result according to
which a context-free grammar in Chomsky normal form of size m that
produces a single string w of length n (such a grammar is also called a
straight-line program) can be transformed in linear time into a context-
free grammar in Chomsky normal form for w of size O(m), whose unique
derivation tree has depth O(log n). This solves an open problem in the
area of grammar-based compression, improves many results in this area
and greatly simplifies many existing constructions. Similar balancing
results can be formulated for various grammar-based tree compression
formalism like top DAGs and forest straight-line programs. The talk
is based on joint work with Moses Ganardi and Artur Jeż. An extended
abstract appeared in [11]; a long version of the paper can be found in [12].

1 Grammar-Based String Compression

In grammar-based compression a combinatorial object (e.g. a string or tree)
is compactly represented using a grammar of an appropriate type. In many
grammar-based compression formalisms such a grammar can be exponentially
smaller than the object itself. A well-studied example of this general idea is
grammar-based string compression using context-free grammars that produce
only one string each, which are also known as straight-line programs, SLPs for
short. Formally, we define an SLP as a context-free grammar G in Chomsky
normal form such that (i) G is acyclic and (ii) for every nonterminal A there is
exactly one production, where A is the left-hand side. The size |G| of the SLP
G is the number of nonterminals in G and the depth of G (depth(G) for short)
is the height of the unique derivation tree of G. Since we assume that G is in
Chomsky normal form, we have depth(G) ≥ log n if n is the length of the string
produced by G.

The goal of grammar-based string compression is to compute from a given
string an SLP of small size. Grammar-based string compression is tightly related
to dictionary-based compression: the famous LZ78 algorithm can be viewed as
a particular grammar-based compressor. Moreover, the number of phrases in the
LZ77-factorization is a lower bound for the smallest SLP for a string [24], and
an LZ77-factorization of length m can be converted to an SLP of size O(m·log n)
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where n is the length of the string [8,18,19,24]. For various other aspects of
grammar-based string compression see [8,20].

2 Balancing String Straight-Line Programs

An advantage of grammar-based compression is that SLPs are well-suited for
further algorithmic processing. There is an extensive body of literature on algo-
rithms for SLP-compressed strings, see e.g. [20] for a survey. For many of these
algorithms, the depth of the input SLP is an important parameter. Let us give
a simple example: in the random access problem for an SLP-compressed string s
an SLP G for s is given. Let n be the length of s. The goal is to produce from G a
data structure that allows us to compute for a given position i (1 ≤ i ≤ n) the i-
th symbol of s. As observed in [6] one can solve this problem in time O(depth(G))
(assuming arithmetic operations on numbers from the interval [0, n] need con-
stant time): in the preprocessing phase one computes for every nonterminal A
of G the length nA of the string produced from A; this takes time O(G) and
produces a data structure of size O(G) (assuming a number from [0, n] fits into a
memory location). In the query phase, one computes for a given position i ∈ [1, n]
the path from the root to the i-th leaf in the derivation tree of G. Only the cur-
rent nonterminal A and a relative position in the string produced from A has
to be stored. Using the pre-computed numbers nA the whole computation needs
time O(depth(G)). Recall that depth(G) ≥ log n. In [6] it is shown that one can
compute from G a data structure of size O(|G|) which allows to access every
position in time O(log n), irrespective of the depth of G. The algorithm in [6] is
quite complicated and used several sophisticated data structures. An alternative
approach to obtain access time O(log n) is to balance the input SLP G in the
preprocessing phase, i.e., to reduce its depth. This is the approach that we will
follow.

It is straightforward to show that any string s of length n can be produced by
an SLP of size O(n) and depth O(log n). A more difficult problem is to balance a
given SLP: assume that the SLP G produces a string of length n. Several authors
have shown that one can restructure G in time O(|G| · log n) into an equivalent
SLP H of size O(|G| · log n) and depth O(log n) [8,19,24]. Applied to the random
access problem, these balancing procedures would yield access time O(log n) at
the cost of building a data structure of size O(|G|·log n) during the preprocessing.
Our main result shows that SLP balancing is in fact possible with a constant
blow-up in SLP-size:

Theorem 1. Given an SLP G producing a string of length n one can construct
in linear time an equivalent SLP H of size O(|G|) and depth O(log n).

As a corollary we obtain a very simple and clean algorithm for the random access
problem with access time O(log n) that uses a data structure of size O(m) (in
words of bit length log n). We can also obtain an algorithm for the random
access problem with access time O(log n/log log n) using a data structure with
O(m · logε n) words for any ε > 0; previously this bound was only shown for
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SLPs of height O(log n). [1] The paper [11] contains a list of further applications
of Theorem 1, which include the following problems on SLP-compressed strings:
rank and select queries [1], subsequence matching [2], computing Karp-Rabin
fingerprints [4], computing runs, squares, and palindromes [17], real-time traver-
sal [14,23] and range-minimum queries [15]. In all these applications we either
improve existing results or significantly simplify existing proofs by replacing
depth(G) by O(log n) in time/space bounds.

3 Proof Strategy

The proof of Theorem 1 consists of two main steps. Take an SLP G for the string
s of length n and let m be the size of G. We consider the derivation tree t for
G; it has size O(n). The SLP G can be viewed as a DAG for t of size m. We
decompose this DAG into node-disjoint paths such that each path from the root
to a leaf intersects O(log n) paths from the decomposition. Each path from the
decomposition is then viewed as a string of integer-weighted symbols, where the
weights are the lengths of the strings derived from nodes that branch off from the
path. For this weighted string we construct an SLP of linear size that produces
all suffixes of the path in a certain weight-balanced way. Plugging these SLPs
together yields the final balanced SLP.

Some of the ideas in our algorithm can be traced back to the area of parallel
algorithms: the path decomposition for DAGs is related to the centroid path
decomposition of trees [9], where it is the key technique in several parallel algo-
rithms on trees. Moreover, the SLP of linear size that produces all suffixes of
a weighted string can be seen as a weight-balanced version of the optimal prefix
sum algorithm.

Our balancing procedure involves simple arithmetics on string positions, i.e.,
numbers of order n. Therefore we need machine words of bit-length Ω(log n) in
order to achieve a linear running time in Theorem 1; otherwise the running time
increases by a multiplicative factor of order log n. Note that such an assumption
is realistic and standard in the field: machine words of bit length Ω(log n) are
needed, say, for indexing positions in the represented string. On the other hand,
our procedure works in the pointer model regime.

4 Balancing Forest Straight-Line Programs
and Top DAGs

Grammar-based compression has been generalized from strings to ordered node-
labelled trees. In fact, the representation of a tree t by its smallest directed
acyclic graph (DAG) is a form of grammar-based tree compression. This DAG is
obtained by merging nodes where the same subtree of t is rooted. It can be seen
as a regular tree grammar that produces only t. A drawback of DAG-compression
is that the size of the DAG is lower-bounded by the height of the tree t. Hence,
for deep narrow trees (like for instance caterpillar trees), the DAG-representation
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cannot achieve good compression. This can be overcome by representing a tree t
by a linear context-free tree grammar that produces only t. Such grammars are
also known as tree straight-line programs in the case of ranked trees (where the
number of children of a node is uniquely determined by the node label) [7,21,22]
and forest straight-line programs in the case of unranked trees [13]. The latter are
tightly related to top DAGs [3,5,10,13,16], which are another tree compression
formalism, also akin to grammars. Our balancing technique works similarly for
these compression formalisms:

Theorem 2. Given a top DAG/forest straight-line program/tree straight-line
program G producing the tree t one can compute in time O(|G|) a top DAG/forest
straight-line program/tree straight-line program H for t of size O(|G|) and depth
O(log |t|).
For top DAGs, this solves an open problem from [5], where it was shown that
from an unranked tree t of size n, whose minimal DAG has size m (measured in
number of edges in the DAG), one can construct in linear time a top DAG for t
of size O(m · log n) and depth O(log n). It remained open whether the additional
factor log n in the size bound can be avoided. A negative answer for the specific
top DAG constructed in [5] was given in [3]. On the other hand, Theorem 2
yields another top DAG of size O(m) and depth O(log n). To see this note that
one can easily convert the minimal DAG of t into a top DAG of roughly the
same size, which can then be balanced. This also gives an alternative proof of
a result from [10], according to which one can construct in linear time a top
DAG of size O(n/logσn) and depth O(log n) for a given tree of size n containing
σ many different node labels.

Let us finally mention that Theorems 1 and 2 are instances of a general
balancing result that applies to a large class of circuits over algebraic structures,
see [12] for details.
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Extended Abstract

The theory of codes of strings takes its origin in the theory of information devel-
oped by Shannon in the 1950s. Since then, it has evolved in several different
directions. Among them, we can mention the theory of entropy, a branch of
probability theory, and the theory of error-correcting codes, more related to
commutative algebra. Due to the nature of the involved concepts, the theory of
codes exhibits both theoretical and practical features. The former are related
to combinatorics on words, automata theory and formal languages (see [12] for
some classical references), while the latter apply in finding efficient methods for
transmitting and storing data.

In the 1960s, the interest in image processing, pattern recognition and pattern
matching motivated the research on families of matrices with entries taken from
a finite alphabet, as a two-dimensional counterpart of strings. Significant work
has been done to transfer formalisms and results from formal language theory
to a two-dimensional setting (see for example [2,7,13,19–21,30]). Several classes
of two-dimensional objects have been introduced and investigated, namely poly-
ominoes, labelled polyominoes, directed polyominoes, and rectangular labelled
polyominoes. This paper focusses on this last kind of polyominoes, which we will
refer to as pictures.

Recently, we are seeing a renewed interest in two-dimensional languages in
different frameworks (see for example [15–18,23,28,29,31]). The motivations of
this paper are mainly theoretical. Nevertheless, as formal language theory had
very significant impact in several applications, we do not exclude that theoretical
results on two-dimensional languages may be exploited for practical applications.
Besides researchers who investigate open questions in the aforementioned fields
of image processing, pattern recognition and pattern matching, researchers in
other scientific areas are interested in the investigation on pictures. Please note
that some families of picture languages are of particular meaning in physics; as
a matter of fact, they represent the evolution of noteworthy discrete systems
(see [25]). Moreover, the recognizability of picture languages by finite models is
connected to the study of some properties of symbolic dynamical systems (see
[24]).
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Extending results from formal language theory to two dimensions is often
a non-trivial task, and sometimes a very challenging one. The two-dimensional
structure may give rise to new problems, even in some basic concepts (see [3,20]).
As an example, the generalization of the classical operation of string concatena-
tion to two dimensions, leads to the definition of two different operations between
pictures, the horizontal and the vertical concatenations. Differently from the
string case, these concatenations are partial operations and, as a very remark-
able aspect, they do not induce a monoid structure on the set of all pictures over
a given alphabet. Please note that the monoid structure of the set of all strings
over a given alphabet has played an important role in the theory of formal lan-
guages. Another basic definition on strings, the one of prefix of a string, opens
new scenarios when generalized to pictures. It can be extended to pictures in a
natural way; a prefix of a picture is a rectangular portion in the top-left corner
of the picture. Nevertheless, if a prefix is removed from a picture, the remaining
part is no longer a picture. On the contrary, if a prefix is deleted from a string,
the remaining part is still a string and this is a big advantage.

In the literature, we find several attempts to generalize the notion of code
to two-dimensional objects. A set C of two-dimensional objects over a given
alphabet Σ, is a code if every two-dimensional object over Σ can be tiled without
holes or overlaps in at most one way with copies of elements of C. Most of
the results show that we lose important properties when moving from one to
two dimensions. A major result due to D. Beauquier and M. Nivat states that
the problem whether a finite set of polyominoes is a code is undecidable; the
same result also holds for dominoes (see [11]). Some particular cases have been
studied in [1]. Codes of directed polyominoes with respect to some concatenation
operation are considered in [22]; some special decidable cases are detected. Codes
of labeled polyominoes, called bricks, as well as codes of directed figures are
studied in [27] and in [26], respectively. In these papers, further undecidability
results are proved. Doubly-ranked monoids are introduced in [14] with the aim
of extending syntactic properties to two dimensions; in this framework a notion
of picture code is introduced and studied. More recently, non-overlapping codes
have been considered in [10].

In this paper, we consider the definition of picture code that has been intro-
duced in [3]. Here, the pictures are composed using the operation of tiling star
defined in [30]. The tiling star of a set of pictures X is the set X∗∗ of all pictures
that are tilable by elements of X, i.e. all pictures that can be covered by pictures
of X without holes or overlapping. Then, X is a code if any picture in X∗∗ is
tilable in a unique way. Again, it is not decidable whether a finite language of
pictures is a code. Consequently, it is a goal to find decidable subclasses of picture
codes. Taking the families of codes of strings as starting point, many families
of two-dimensional codes have been introduced (see [3–6,8,9]). The investiga-
tion mainly focussed on their combinatorial properties, their construction, their
decidability, and the notions of maximality and completeness in this setting.

The generalization of the notion of prefix code of strings to two-dimensions
leads to two different definitions of codes, namely the prefix and the strong prefix
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codes of pictures. In these definitions, pictures must be considered in relation
to a given scanning direction; e.g. from the top-left corner toward the bottom-
right one. The families of prefix and strong prefix picture codes inherit several
properties from the family of prefix string codes. For example, the results in [5]
present a recursive procedure to construct all finite maximal strong prefix codes
of pictures, starting from the singleton pictures, i.e. those which contain only
one alphabet symbol. This construction generalizes the tree representation of
prefix codes of strings (cf. [12]). Subsequently, the codes of pictures with finite
deciphering delay have been introduced, in analogy to the case of strings. More
recently, three new classes of picture codes have been introduced in [8,9]: the
comma-free, the cylindric and the toroidal codes. They extend the notions of
comma-free and circular code of strings to two dimensions. Again, the genera-
lization can be achieved in more than one way. Notably, these definitions share
the property to be “non-oriented”, in the sense that they do not require to set
a specific scanning direction.

In this paper, we shall introduce some of the aforementioned families of pic-
ture codes and discuss their properties. Classes of two-dimensional codes will be
compared each other and with their one-dimensional counterpart. The results
highlight new scenarios which also help one in understanding some hidden fea-
tures in the one-dimensional setting.
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This abstract covers two areas of data management research in which formal lan-
guage theory plays a central role, namely in Information Extraction and Graph
Databases.

Information Extraction. Automata-based foundations of Information Extraction
(e.g., [9,16,34]) have become a popular research topic over the last years. One
framework that has been studied in this context is that of document spanners
[16]. Document spanners model information extraction tasks as functions that
map input text documents to a relation of spans, i.e., intervals of start and end
positions in the text. A particular interesting class of spanners is the class of
regular spanners, which is based on regular languages with capture variables.
This class satisfies a number of interesting complexity and expressiveness prop-
erties and therefore caused a revival of automata- and formal language tech-
niques in database research. Examples of such work are on the enumeration of
answers [1,18], expressiveness [20,21,33], complexity issues [22,29,32], integra-
tion of weights [15], and distributed evaluation [14]. That said, the document
spanners framework is not the only one that is studied in this context, and there
are other elegant frameworks that can express information extraction functions
beyond the spanner framework, e.g., [9,34].

Graph Databases. Formal languages have played a central role in Graph Data-
bases since the SIGMOD 1987 paper of Cruz et al. [12], which is one of the first
and most influential papers on the topic. Indeed, this paper introduced regular
expressions for querying paths (later named regular path queries or RPQs), which
are still used in graph query languages today [13,19,24]. This early work on
Graph Databases only allowed RPQs to match simple paths in graphs, i.e., paths
without repeated nodes. However, after discovering that this restriction already
makes simple queries difficult to evaluate [30], it was largely abandoned by the
research community, and a huge body of research on fundamental problems
followed, in which RPQs were allowed to match all paths. This line of work is
too extensive to discuss here, but its state until 2013 is nicely surveyed by Barceló
[7]. It still produces high-quality and exciting results today (e.g., [8,17]).

W. Martens—Supported by grant MA 4938/4–1 from the Deutsche Forschungsgemein-
schaft and grant I-1502-407.6/2019 of the German-Israeli Foundation for Scientific
Research and Development.

c© Springer Nature Switzerland AG 2020
M. Anselmo et al. (Eds.): CiE 2020, LNCS 12098, pp. 306–309, 2020.
https://doi.org/10.1007/978-3-030-51466-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51466-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-51466-2_28


Formal Languages in Information Extraction and Graph Databases 307

Perhaps ironically, the simple paths and the similar trail restriction (which
only allows paths without repeated edges) resurfaced on the systems side of
graph databases. Indeed, an early incarnation1 of SPARQL 1.1 [24] used (a
variant of) the simple path restriction, whereas the default semantics of Cypher
[13] uses the trail restriction. This new development on the practical side of graph
query languages motivated several research groups to build a scientific basis that
can be used to guide the design of RPQs in graph query languages [5,6,26,27].
Furthermore, it seems that, in order to understand RPQ evaluation in practical
graph query languages, it is very useful to combine fundamental research with
query log analysis [10,11,28].

To conclude, it seems that the research communities’ efforts to connect theory
and practice (which go far beyond what I’ve been able to mention here, see, e.g.
[2–4,25,31,35]) are paying off, in the sense that we are now experiencing an
increased interaction between researchers and practitioners in the Graph Query
Language (GQL) Standard initiative [23] and the process that has led to it.2 The
GQL initiative was recently inaugurated as an official ISO project that aims at
becoming an international standard for graph database querying. Furthermore,
the story does not stop here at all—a large number of initiatives is currently
brainstorming on next-generation logical foundations of graph databases and
their query languages, schema languages for graphs, etc.
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Abstract. We study and provide exposition to several phenomena that
are related to the perceptron’s compression. One theme concerns modi-
fications of the perceptron algorithm that yield better guarantees on the
margin of the hyperplane it outputs. These modifications can be useful
in training neural networks as well, and we demonstrate them with some
experimental data. In a second theme, we deduce conclusions from the
perceptron’s compression in various contexts.

Keywords: Machine learning · Compression · Convex separation

1 Introduction

The perceptron is an abstraction of a biological neuron that was introduced in
the 1950’s by Rosenblatt [31], and has been extensively studied in many works
(see e.g. the survey [27]). It receives as input a list of real numbers (various
electrical signals in the biological case) and if the weighted sum of its input is
greater than some threshold it outputs 1 and otherwise −1 (it fires or not in the
biological case).

Formally, a perceptron computes a function of the form sign(w · x − b) where
w ∈ R

d is the weight vector, b ∈ R is the threshold, · is the standard inner product,
and sign : R → {±1} is 1 on the non-negative numbers. It is only capable of
representing binary functions that are induced by partitions ofRd by hyperplanes.

Definition 1. A map Y : X → {±1} over a finite set X ⊂ R
d is (lin-

early)1 separable if there exists w ∈ R
d such that sign(w · x) = Y (x) for all

1 We focus on the linear case, when the threshold is 0. A standard lifting that adds a coor-
dinate with 1 to every vector allows to translate the general (affine) case to the linear
case. This lifting may significantly decrease the margin; e.g., the map Y on X = {999,
1001} ⊂Rdefined byY (999) = 1 andY (1001) = −1 hasmargin 1 in the affine sense, but
the lift to (999, 1) and (1001, 1) in R

2 yields very small margin in the linear sense. This
solution may therefore cause an unnecessary increase in running time. This tax can
be avoided, for example, if one has prior knowledge of R = maxx∈X ‖x‖. In this case,
setting the last coordinate to be R does not significantly decrease the margin. In fact,
it can be avoided without any prior knowledge using the ideas in Algorithm 3 below.
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x ∈ X . When the Euclidean norm of w is ‖w‖ = 1, the number marg(w, Y ) =
minx∈X Y (x)w · x is the margin of w with respect to Y . The number marg(Y ) =
supw∈Rd:‖w‖=1 marg(w, Y ) is the margin of Y . We call Y an ε-partition if its
margin is at least ε.

Variants of the perceptron (neurons) are the basic building blocks of general
neural networks. Typically, the sign function is replaced by some other activation
function (e.g., sigmoid or rectified linear unit ReLu(z) = max{0, z}). Therefore,
studying the perceptron and its variants may help in understanding neural net-
works, their design and their training process.

Overview. In this paper, we provide some insights into the perceptron’s behav-
ior, survey some of the related work, deduce some geometric applications, and
discuss their usefulness in other learning contexts. Below is a summary of our
results and a discussion of related work, partitioned to five parts numbered
(i) to (v). Each of the results we describe highlights a different aspect of the
perceptron’s compression (the perceptron’s output is a sum of small subset of
examples). For more details, definitions and references, see the relevant sections.

(i) Variants of the perceptron (Sect. 2). The well-known perceptron algo-
rithm (see Algorithm 1 below) is guaranteed to find a separating hyperplane
in the linearly separable case. However, there is no guarantee on the hyper-
plane’s margin compared to the optimal margin ε∗. This problem was already
addressed in several works, as we now explain (see also references within). The
authors of [9] and [23] defined a variant of the perceptron that yields a margin
of the form Ω(ε∗/R2); see Algorithm 2 below. The authors of [10] defined the
passive-aggressive perceptron algorithms that allow e.g. to deal with noise, but
provided no guarantee on the margin of the output. The authors of [22] defined
a variant of the perceptron that yields provable margin under the assumption
that a lower bound on the optimal margin is known. The author of [17] designed
the ALMA algorithm and showed that it provides almost optimal margin under
the assumption that the samples lie on the unit sphere. It is worth noting that
normalizing the examples to be on the unit sphere may significantly alter the
margin, and even change the optimal separating hyperplane. The author of [37]
defined the minimal overlap algorithm which guarantees optimal margin but is
not online since it knows the samples in advance. Finally, the authors of [36]
analyzed gradient descent for a single neuron and showed convergence to the
optimal separating hyperplane under certain assumptions (appropriate activa-
tion and loss functions). We provide two new ideas that improve the learning
process. One that adaptively changes the “scale” of the problem and by doing
so improves the guarantee on the margin of the output (Algorithm 3), and one
that yields almost optimal margin (Algorithms 4).

(ii) Applications for neural networks (Sect. 3). Our variants of the per-
ceptron algorithm are simple to implement, and can therefore be easily applied
in the training process of general neural networks. We validate their benefits by
training a basic neural network on the MNIST dataset.
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(iii) Convex separation (Sect. 4). We use the perceptron’s compression to
prove a sparse separation lemma for convex bodies. This perspective also suggests
a different proof of Novikoff’s theorem on the perceptron’s convergence [30]. In
addition, we interpret this sparse separation lemma in the language of game
theory as yielding sparse strategies in a related zero-sum game.

(iv) Generalization bounds (Sect. 5). An important aspect of a learning
algorithm is its generalization capabilities; namely, its error on new examples
that are independent of the training set (see the textbook [33] for background
and definitions). We follow the theme of [18], and observe that even though the
(original) perceptron algorithm does not yield an optimal hyperplane, it still
generalizes.

(v) Robust concepts (Sect. 6). The robust concepts theme presented by
Arriaga and Vempala [3] suggests focusing on well-separated data. We notice that
the perceptron fits well into this framework; specifically, that its compression
yields efficient dimension reductions. Similar dimension reductions were used in
several previous works (e.g. [3–6,16,21]).

Summary. In parts (i)–(ii) we provide a couple of new ideas for improving the
training process and explain their contribution in the context of previous work.
In part (iii) we use the perceptron’s compression as a tool for proving geometric
theorems. We are not aware of previous works that studied this connection.
Parts (iv)–(v) are mostly about presenting ideas from previous works in the
context of the perceptron’s compression. We think that parts (iv) and (v) help
to understand the picture more fully.

2 Variants of the Perceptron

Deciding how to train a model from a list of input examples is a central consider-
ation in any learning process. In the case of the perceptron algorithm the input
examples (x1, y1), (x2, y2), . . . with xi ∈ R

d and yi ∈ {±1} are traversed while
maintaining a hypothesis w(t) in a way that reduces the error on the current
example:

initialize: w(0) = �0 and t = 0
while ∃i with yiw

(t) · xi ≤ 0 do
w(t+1) = w(t) + yixi

t = t + 1
end
return w(t)

Algorithm 1: The perceptron algorithm

The perceptron algorithm terminates whenever its input sample is linearly
separable, in which case its output represents a separating hyperplane. Novikoff
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analyzed the number of steps T required for the perceptron to stop as a function
of the margin of the input sample [30].

The standard analysis of the perceptron convergence properties uses the opti-
mal separating hyperplane w∗ (later in Sect. 4 we present an alternative analysis
that does not use it):

w∗ = argmaxw∈Rd:‖w‖=1marg(w,S),

where we think of S as the map from {x1, . . . , xm} to {±1} defined by xi �→ yi.2

Novikoff’s analysis consists of the following two parts. Let ε∗ = marg(w∗, S)
and R = maxi ‖xi‖.

Part I: The Projection Grows Linearly in Time. In each iteration, the projection
of w(t) on w∗ grows by at least ε∗, since yixi · w∗ ≥ ε∗. By induction, we get
w(t) · w∗ ≥ ε∗t for all t ≥ 0.

Part II: The Norm Grows Sub-Linearly in Time. In each iteration,

‖w(t)‖2 = ‖w(t−1)‖2 + 2yixi · w(t−1) + ‖xi‖2 ≤ ‖w(t−1)‖2 + R2

(the term 2yixi ·w(t−1) is negative by choice). So by induction ‖w(t)‖ ≤ R
√

t for
all t.

Combining the two parts,

1 ≥ w(t) · w∗

‖w(t)‖‖w∗‖ ≥ ε∗

R

√
t,

which implies that the number of iterations of the algorithm is at most (R/ε∗)2.
As discussed in Sect. 1, Algorithm 1 has several drawbacks. Here we describe

some simple ideas that allow to improve it. Below we describe three algorithms,
each is followed by a theorem that summarizes its main properties.

In the following, X ⊂ R
d is a finite set, Y is a linear partition, ε∗ = marg(Y )

is the optimal margin, and R = maxx∈X ‖x‖ is the maximal norm of a point.
In the first variant that already appeared in [9,23], the suggestion is to replace

the condition yiw
(t) · xi < 0 by yiw

(t) · xi < β for some a priori chosen β > 0.
that may change over time. As we will see, different choices of β yield different
guarantees.

initialize: w(0) = �0 and t = 0
while ∃i with yiw

(t) · xi < β do
w(t+1) = w(t) + yixi

t = t + 1
end
return w(t)

Algorithm 2: The β-perceptron algorithm

2 We assume that S is consistent with a function (does not contain identical points
with opposite labels).
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Theorem 1 ([9,23]). The β-perceptron algorithm performs at most 2β+R2

(ε∗)2

updates and achieves a margin of at least βε∗

2β+R2 .

Proof. We only replaced the ≤ 0 condition in the while loop by a < β condition,
for some β > 0. As before, by induction

‖w(t)‖2 = ‖w(t−1)‖2 + 2yixi · w(t−1) + ‖xi‖2 ≤ (2β + R2)t

and

1 ≥ w(t) · w∗

‖w(t)‖‖w∗‖ ≥ ε∗
√

2β + R2

√
t

where R = maxi ‖xi‖. The number of iterations is thus at most 2β+R2

(ε∗)2 . In addi-
tion, by choice, for all i,

yiw
(t) · xi ≥ β.

So, since

‖w(t)‖ ≤
√

(2β + R2)t ≤ 2β + R2

ε∗ ,

we get

marg(w(t), S) ≥ βε∗

2β + R2
.��

To remove the dependence on R in the output’s margin above, we propose
to rescale β according to the observed examples.

initialize: w(0) = �0 and t = 0 and β = 0
while ∃i with yiw

(t) · xi ≤ β do
w(t+1) = w(t) + yixi

t = t + 1
if β < ‖xi‖2 then

β = 4‖xi‖2
end

end
return w(t)

Algorithm 3: The R-independent perceptron algorithm

Theorem 2. The R-independent perceptron algorithm performs at most 10R2

(ε∗)2

updates and achieves a margin of at least ε∗
3 .

Proof. This version of the algorithm guarantees a margin of ε∗/3 coupled with a
running time comparable to the original algorithm without knowing R. Indeed,
to bound the running time, observe that before a change in β occurs, there could
be at most 2β+R2

ε2 errors (as before for the relevant β and R). The amount of
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changes in β is at most log(R/r)�, where r = mini ‖xi‖. The overall running
time is at most

�log(R/r)�∑

k=1

2 · 4 |xik |2 + (2 |xik |)2
(ε∗)2

≤ 2 ·
�log(R/r)�∑

k=1

3 · 4kr2

(ε∗)2

≤ 6 · 4/3 · 4�log(R/r)� r2

(ε∗)2
= O((R/ε∗)2).��

Finally, if one would like to improve upon the ε∗
3 guarantee, we suggest to

change β with time. To run the algorithm, we should first decide how well do
we want to approximate the optimal margin. To do so, we need to choose the
parameter α ∈ (1, 2); the closer α is to 2, the better the approximation is (see
Theorem 3).

initialize: w(0) = �0 and t = 0 and β = 0 and α ∈ (1, 2)
while ∃i with yiw

(t) · xi ≤ β do
w(t+1) = w(t) + yixi

t = t + 1
β = 0.5((t + 1)α − tα − 1)

end
return w(t)

Algorithm 4: The ∞-perceptron algorithm

Theorem 3. If R ≤ 1, the ∞-perceptron algorithm performs at most
(1/ε∗)2/(2−α) updates and achieves a margin of at least αε∗

2 .

Proof. For simplicity, we assume here that R = maxi ‖xi‖ = 1. The idea is as
follows. The analysis of the classical perceptron relies on the fact that ‖w(t)‖2 ≤ t
in each step. On the other hand, in an “extremely aggressive” version of the
perceptron that always updates, one can only obtain a trivial bound ‖w(t)‖2 ≤ t2

(as w(t) can be the sum of t unit vectors in the same direction). The update rule
in the version below is tailored so that a bound of ‖w(t)‖2 ≤ tα for α ∈ (1, 2) is
maintained.

Here we use that for t ≥ 2,

‖w(t)‖2 ≤ ‖w(t−1)‖2 + (tα − (t − 1)α − 1) + ‖xi‖2.
By induction, for all t ≥ 0,

‖w(t)‖2 ≤ tα.

This time

1 ≥ w(t) · w∗

‖w(t)‖‖w∗‖ ≥ ε∗t
tα/2

.

So, the running time is at most (1/ε∗)2/(2−α).
The output’s margin is at least

0.5((t + 1)α − tα − 1)
tα/2

. (1)
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This is a decreasing function for t > 0, since its derivative is at most zero.
Since (t + 1)α − tα ≥ αtα−1 for t ≥ 0, the output’s margin is at least

0.5α
(1/ε∗)2(α−1)/(2−α) − 1

(1/ε∗)α/(2−α)
= 0.5αε∗ − (ε∗)α/(2−α).

So we can get arbitrarily close to the true margin by setting α = 2(1 − δ) for
some small 0 < δ < 0.5 of our choice. This gives margin

(1 − δ)ε∗ − (ε∗)(2−δ)/δ ≥ ε∗(1 − δ − (ε∗)1/δ
)
.

The running time, however, becomes (1/ε∗)1/δ.
When ε∗ is very close to 1, the lower bound on the margin above may not be

meaningful. We claim that the margin of the output is still close to ε∗ even in
this case. To see this, let w̃ be a hyperplane with margin ε̃ = (1 − δ ln(1/δ))ε∗.
We can carry the argument above with w̃ instead of w∗, and get that the margin
is at least

ε̃
(
1 − δ − (ε̃)1/δ

)
> (1 − 2δ − δ ln(1/δ))ε∗.

So we can choose δ small enough, without knowing any information on ε∗, and
get an almost optimal margin. ��
Remark 1. The bound on the running time is sharp, as the following example
shows. The two points (

√
1 − ε2, ε), (

√
1 − ε2,−ε) with labels 1,−1 are linearly

separated with margin Ω(ε). The algorithm stops after Ω
(
(1/ε)2/(2−α)

)
iterations

(if ε is small enough and α close enough to 2).

Remark 2. Algorithms 3 and 4 can be naturally combined to a single algorithm
that arrives arbitrarily close to the optimal margin without assuming that R ≤ 1.

3 Application for Neural Networks

Our results explain some choices that are made in practice, and can potentially
help to improve them. Observe that if one applies gradient descent on a neuron
of the form ReLu(w·x) with loss function of the form ReLu(β−yxw·x) with β = 0
then one gets the same update rule as in the perceptron algorithm. Choosing
β = 1 corresponds to using the hinge loss to drive the learning process. The fact
that β = 1 yields provable bounds on the output’s margin of a single neuron
suggests a formal evidence that supports the benefits of the hinge loss.

Moreover, in practice, β is treated as a hyper-parameter and tuning it is a
common challenge that needs to be addressed in order to maximize performance.
We proposed a couple of new options for choosing and updating β throughout
the training process that may contribute towards a more systematic approach
for setting β (see Algorithms 4 and 3). Theorems 2 and 3 explain the theoretical
advantages of these options in the case of a single neuron.

We also provide some experimental data. Our experiments verify that our
suggestions for choosing β can indeed yield better results. We used the MNIST



On the Perceptron’s Compression 317

database [24] of handwritten digits as a test case with no preprocessing. We
used a simple and standard neural network with one hidden layer consisting
of 800/300 neurons and 10 output neurons (the choice of 800 and 300 is the
same as in Simard et al. [35] and Lecun et al. [24]). We trained the network by
back-propagation (gradient descent). The loss function of each output neuron
of the form ReLu(w · G(x)), where G(x) is the output of the hidden layer, is
ReLu(−yxw · G(x) + β) for different β’s. This loss function is 0 if w provides a
correct and confident (depending on β) classification of x and is linear in G(x)
otherwise. This choice updates the network even when the network classifies
correctly but with less than β confidence. It has the added value of yielding
simple and efficient calculations compared to other choices (like cross entropy or
soft-max).3

We tested four values of β as shown in Fig. 1. In two tests, the value of β is
fixed in time4 to be 0 and 1. In two tests, β changes with the time t in a sub-
linear fashion. This choice can be better understood after reading the analysis
of Algorithm 4. Roughly speaking, the analysis predicts that β should be of the
form t1−c for c > 0, and that the smaller c is, the smaller the error will be. This
prediction is indeed verified in the experiments; it is evident that choosing β in
a time-dependent manner yields better results. For comparison, the last row of
the table shows the error of the two-layer MLP of the same size that is driven by
the cross-entropy loss [35]. In fact, our network of 300 neurons performed better
than all the general purpose networks with 300 neurons even with preprocessing
of the data that appear in http://yann.lecun.com/exdb/mnist/ (Fig. 2).

test error
β = 0 no convergence
β = 1 1.5 %

β ≈ t0.4 1.44 %
β ≈ t0.75 1.35 %

cross-entropy [35] 1.6 %

Fig. 1. One hidden layer with 800 neu-
rons

test error
β ≈ t0.75 1.49 %

mean square error [24] 4.7 %
MSE, [distortions] [24] 3.6 %

deskewing [24] 1.6 %

Fig. 2. One hidden layer with 300 neu-
rons

Finally, a natural suggestion that emerges from our work is to add β > 0
as a parameter for each individual neuron in the network, and not just to the
loss function. Namely, to translate the input to a ReLu neuron by β. The value
3 An additional added value is that with this loss function there is a dichotomy,

either an error occurred or not. This dichotomy can be helpful in making decisions
throughout the learning process. For example, instead of choosing the batch-size to
be of fixed size B, we can choose the batch-size in a dynamic but simple way: just
wait until B errors occurred.

4 Time is measured by the number of updates.

http://yann.lecun.com/exdb/mnist/
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of β may change during the learning process. Figuratively, this can be thought
of as “internal clocks” of the neurons. A neuron changes its behavior as time
progresses. For example, the “older” the neuron is, the less it is inclined to
change.

4 Convex Separation

Linear programming (LP) is a central paradigm in computer science and math-
ematics. LP duality is a key ingredient in many algorithms and proofs, and is
deeply related to von Neumann’s minimax theorem that is seminal in game
theory [29]. Two related and fundamental geometric properties are Farkas’
lemma [12], and the following separation theorem.

Theorem 4 (Convex separation theorem). For every non empty convex
sets K,L ⊂ R

d, precisely one of the following holds: (i) dist(K,L) = inf{‖p−q‖ :
p ∈ K, q ∈ L} = 0, or (ii) there is a hyperplane separating K and L.

We observe that the following stronger version of the separation theorem
follows from the perceptron’s compression (a similar version of Farkas’ lemma
can be deduced as well).

Lemma 1 (Sparse Separation). For every non empty convex sets K,L ⊂ R
d

so that sup{‖p − q‖ : p ∈ K, q ∈ L} = 1 and every ε > 0, one of the following
holds:

1. dist(K,L) < ε.
2. There is a hyperplane H = {x : w · x = b} separating K from L so that its

normal vector is “sparse”:
(i) w·p−b

‖w‖ > ε
30 for all p ∈ K,

(ii) w·q−b
‖w‖ < − ε

30 for all q ∈ L, and
(iii) w is a sum of at most (10/ε)2 points in K and −L.

Proof. Let K,L be convex sets and ε > 0. For x ∈ R
d, let x̃ in R

d+1 be the same
as x in the first d coordinates and 1 in the last (we have ‖x̃‖ ≤ ‖x‖ + 1). We
thus get two convex bodies K̃ and L̃ in d+1 dimensions (using the map x �→ x̃).

Run Algorithm 2 with β = 1 on inputs that positively label K̃ and negatively
label L̃. This produces a sequence of vectors w(0), w(1), . . . so that ‖w(t)‖ ≤ √

6t
for all t. For every t > 0, the vector w(t) is of the form w(t) = k(t) − �(t) where
k(t) is a sum of t1 elements of K̃ and �(t) is a sum of t2 elements of L̃ so that
t1 + t2 = t. In particular, we can write 1

t w
(t) = α(t)p(t) − (1 − α(t))q(t) for

α(t) ∈ [0, 1] where p(t) ∈ K̃ and q(t) ∈ L̃ (note that the last coordinate of w(t)

equals 2α(t) − 1
2 ).

If the algorithm does not terminate after T steps for T satisfying
√

6/T < ε/4
then it follows that ‖ 1

T w(T )‖ < ε/4. In particular, |α(T ) − 1/2| < ε/8 and so

ε

4
> ‖α(t)p(t) − (1 − α(t))q(t)‖ >

‖p(t) − q(t)‖
2

− ε

4
,
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which implies that dist(K,L) < ε.
In the complementing case, the algorithm stops after T < (10/ε)2 rounds.

Let w be the first d coordinates of w(T ) and b be its last coordinate. For all
p ∈ K,

w · p + b

‖w‖ ≥ 1
‖w(T )‖ ≥ 1√

6T
>

ε

30
.

Similarly, for all q ∈ L we get w·q+b
‖w‖ < − ε

30 . ��
The lemma is strictly stronger than the preceding separation theorem. Below,

we also explain how this perspective yields an alternative proof of Novikoff’s
theorem on the convergence of the perceptron [30]. It is interesting to note that
the usual proof of the separation theorem relies on a concrete construction of
the separating hyperplane that is geometrically similar to hard-SVMs. The proof
using the perceptron, however, does not include any “geometric construction”
and yields a sparse and strong separator (it also holds in infinite dimensional
Hilbert space, but it uses that the sets are bounded in norm).

Alternative Proof of the Perceptron’s Convergence. Assume without
loss of generality that all of examples are labelled positively (by replacing x
by −x if necessary). Also assume that R = maxi ‖xi‖ = 1. As in the proof
above, let w(0), w(1), . . . be the sequence of vectors generated by the perceptron
(Algorithm 1). Instead of arguing that the projection on w∗ grows linearly with
t, argue as follows. The vectors v(1), v(2), . . . defined by v(t) = 1

t w
(t) are in the

convex hull of the examples and have norm at most ‖v(t)‖ ≤ 1√
t
. Specifically,

for every w of norm 1 we have v(t) · w ≤ 1√
t

and so there is an example x so
that x · w ≤ 1√

t
. This implies that the running time T satisfies 1√

T
≥ ε∗ since

for every example x we have x · w∗ ≥ ε∗.

A Game Theoretic Perspective. The perspective of game theory turned out
to be useful in several works in learning theory (e.g. [13,28]). The ideas above
have a game theoretic interpretation as well. In the associated game there are
two players. A Point player whose pure strategies are points v in some finite
set V ⊂ R

d so that max{‖v‖ : v ∈ V } = 1, and a Hyperplane player whose
pure strategies are w for w ∈ R

d with ‖w‖ = 1. For a given choice of v and
w, the Hyperplane player’s payoff is of P (v, w) = v · w coins (if this number is
negative, then the Hyperplane player pays the Point player). The goal of the
Point player is thus to minimize the amount of coins she pays. A mixed strategy
of the Point player is a distribution μ on V , and of the Hyperplane player is a
(finitely supported) distribution κ on {w : ‖w‖ = 1}. The expected gain is

P (μ, κ) = E(v,w)∼μ×κP (v, w).

Claim (Sparse Strategies). Let ε∗ be the minimax value of the game:

ε∗ = sup
κ

inf
μ

P (μ, κ) ≥ 0.
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There is T ≥ 1
3(ε∗)2 (if ε∗ = 0 then T = ∞) and a sequence of mixed strategies

μ1, μ2, . . . , μT of the Point player so that for all t ≤ T , the support size of μt is
at most t and for every mixed strategy κ of the Hyperplane player,

P (μt, κ) ≤
√

3/t.

Proof. Let v(t) = 1
t w

(t)/t be as in the proof of Lemma 1 above, when we replace
K by V and L by ∅. We can interpret v(t) as a mixed-strategy μt of the Point
player (the uniform distribution over some multi-subset of V of size t). Specifi-
cally, for every κ and t > 0,

P (μt, κ) = Ew∼κv(t) · w ≤ ‖v(t)‖ ≤
√

3/t.

Denote by T the stopping time. If T = ∞ then indeed P (μt, κ) tends to zero as
t → ∞. If T < ∞, we have v · v(T ) ≥ 1

T for all v ∈ V . We can interpret v(T ) as
a non trivial strategy for the Hyperplane player: let

w̃ =
v(T )

‖v(T )‖ .

Thus, for every μ,

P (μ, w̃) ≥ 1
T‖v(T )‖ ≥ 1√

3T
.

In particular, ε∗ ≥ 1√
3T

and so

T ≥ 1
3(ε∗)2

.��

The last strategy in the sequence μ1, μ2, . . . guarantees the Point player a loss
of at most 3ε∗. This sequence is naturally and efficiently generated by the percep-
tron algorithm and produces a strategy for the Point player that is optimal up to
a constant factor. The ideas presented in Sect. 2 allow to reduce the constant 3
to as close to 1 as we want, by paying in running time (see Algorithm 4).

5 Generalization Bounds

Generalization is one of the key concepts in learning theory. One typically for-
malizes it by assuming that the input sample consists of i.i.d. examples drawn
from an unknown distribution D on R

d that are labelled by some unknown
function c : R

d → {±1}. The algorithm is said to generalize if it outputs an
hypothesis h : Rd → {±1} so that PrD[h �= c] is as small as possible.

We focus on the case that c is linearly separable. A natural choice for h in
this case is given by hard-SVM; namely, the halfspace with maximum margin on
the input sample. It is known that if D is supported on points that are γ-far from
some hyperplane then the hard-SVM choice generalizes well (see Theorem 15.4
in [33]). The proof of this property of hard-SVMs uses Rademacher complexity.

We suggest that using the perceptron algorithm, instead the hard-SVM solu-
tion, yields a more general statement with a simpler proof. The reason is that
the perceptron can be interpreted as a sample compression scheme.
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Theorem 5 (similar to [18]). Let D be a distribution on R
d. Let c : Rd →

{±1}. Let x1, . . . , xm be i.i.d. samples from D. Let S = ((x1, c(x1)), . . . ,
(xm, c(xm)). If

Pr
S

[marg(S) < ε] < δ/2 (2)

for some ε, δ > 0, then

Pr
S

[

PD[π(S) �= c] ≤ 50
log

(
ε2m

)
+ log(2/δ)

ε2m

]

≥ 1 − δ

where π is the perceptron algorithm.

The theorem can also be interpreted of as a local-to-global statement in the
following sense. Assume that we know nothing of c, but we get a list of m samples
that are linearly separable with significant margin (this is a local condition that
we can empirically verify). Then we can deduce that c is close to being linearly
separable. The perceptron’s compression allows to deduce more general local-
to-global statements, like bounding the global margin via the local/empirical
margins (this is related to [32]).

Condition (2) holds when the expected value of one over the margin is
bounded from above (and may hold when c is not linearly separable). This
assumption is weaker than the assumption in [33] on the behavior of hard-SVMs
(that the margin is always bounded from below).

For the proof of Theorem 5 we will need the following.

Definition 2 (Selection schemes). A selection scheme of size d consists of a
compression map κ and a reconstruction map ρ such that for every input sample
S:

– κ maps S to a sub-sample of S of size at most d.
– ρ maps κ(S) to a hypothesis ρ(κ(S)) : X → {±1}; this is the output of the

learning algorithm induced by the selection scheme.

Following Littlestone and Warmuth, David et al. showed that every selection
scheme does not overfit its data [11]: Let (κ, ρ) be a selection scheme of size d.
Let S be a sample of m independent examples from an arbitrary distribution D
that are labelled by some fixed concept c, and let K(S) = ρ (κ (S)) be the output
of the selection scheme. For a hypothesis h, let LD(h) = PrD[h �= c] denote the
true error of h and LS(h) = 1

m

∑m
i=1 1h(xi) 
=c(xi) denote the empirical error of h.

Theorem 6 ([11]). For every δ > 0,

Pr
S

[
|LD (K (S)) − LS (K (S))| ≥

√
ε · LS (K (S)) + ε

]
≤ δ,

where

ε = 50
d log (m/d) + log(1/δ)

m
.
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Proof (Theorem 5). Consider the following selection scheme of size 1/ε2 that
agrees with the perceptron on samples with margin at least ε: If the input sample
S has marg(S) ≥ ε, apply the perceptron (which gives a compression of size
1/ε2). Else, compress it to the emptyset and reconstruct it to some dummy
hypothesis. The theorem now follows by applying Theorem 6 to this selection
scheme and by the assumption that marg(S) ≥ ε for 1 − δ/2 of the space (note
that LS(K(S)) = 0 when marg(S) ≥ ε). ��

6 Robust Concepts

Here we follow the theme of robust concepts presented by Arriaga and Vem-
pala [3]. Let X ⊂ R

d be of size n so that maxx∈X ‖x‖ = 1. Think of X as
representing a collection of high resolution images. As in many learning scenar-
ios, some assumptions on the learning problem should be made in order to make
it accessible. A typical assumption is that the unknown function to be learnt
belongs to some specific class of functions. Here we focus on the class of all ε-
separated partitions of X ; these are functions Y : X → {±1} that are linearly
separable with margin at least ε. Such partitions are called robust concepts in [3]
and correspond to “easy” classification problems.

Arriaga and Vempala demonstrated the difference between robust concepts
and non-robust concept with the following analogy; it is much easier to dis-
tinguish between “Elephant” and “Dog” than between “African Elephant” and
“Indian Elephant.” They proved that random projections can help to perform
efficient dimension reduction for ε-separated learning problems (and more gen-
eral examples). They also described “neuronal” devices for performing it, and
discussed their advantages. Similar dimension reductions were used in several
other works in learning e.g. [4,6,15,16,21].

We observe that the perceptron’s compression allows to deduce a simultane-
ous dimension reduction. Namely, the dimension reduction works simultaneously
for the entire class of robust concepts. This follows from results in Ben-David
et al. [5], who studied limitations of embedding learning problems in linearly
separated classes.

We now explain this in more detail. The first step in the proof is the following
theorem.

Theorem 7 ([5]). The number of ε-separated partitions of X is at most (2(n+
1))1/ε2

.

Proof. Given an ε-partition of the set X , the perceptron algorithm finds a sep-
arating hyperplane after making at most 1/ε2 updates. It follows that every
ε-partition can be represented by a multiset of X together with the correspond-
ing signs. The total number of options is at most (n + 1)1/ε2 · 21/ε2

. ��
The theorem is sharp in the following sense.

Example 1. Let e1, . . . , en ∈ R
n be the n standard unit vectors. Every subset of

the form (ei)i∈I for I ⊂ [n] of size k is Ω(1/
√

k)-separated, and there are
(
n
k

)

such subsets.
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The example also allows to lower bound the number of updates of any
perceptron-like algorithm. If there is an algorithm that given Y : X → {±1}
of margin ε is able to find w so that Y (x) = sign(w · x) for x ∈ X that can be
described by at most K of the points in X then K should be at least Ω(1/ε2).

The upper bound in the theorem allows to perform dimension reduction
that simultaneously works well on the entire concept class. Let A be a k ×
d matrix with i.i.d. entries that are normally distributed (N(0, 1))5 with k ≥
C log(n/δ)/ε4 where C > 0 is an absolute constant. Given A, we can consider

AX = {Ax : x ∈ X} ⊂ R
k

in a potentially smaller dimension space. The map x �→ Ax is almost surely one-
to-one on X . So, every subset of X corresponds to a subset of AX and vice versa.
The following theorem shows that it preserves all well-separated partitions.

Theorem 8 (implicit in [5]). With probability of at least 1−δ over the choice
of A, all ε-partitions of X are ε/2-partitions of AX and all ε/2-partitions of AX
are ε/4-partitions of X .

The proof of the above theorem is a simple application of Theorem 7 together
with the Johnson-Lindenstrauss lemma.

Lemma 2 ([19]). Let x1, ..., xN ∈ R
d with ‖xi‖ ≤ 1 for all i ∈ [N ]. Then, for

every ε > 0 and 0 < δ < 1/2,

P

[
∃i, j ∈ [N ] |(Axi · Axj) − (xi · xj)| > ε

]
< δ,

where k = O(log(N/δ)/ε2) and A is a k × d matrix with i.i.d. entries that are
N(0, 1).
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Abstract. Automata networks are a very general model of interacting
entities, with applications to biological phenomena such as gene regu-
lation. In many contexts, the order in which entities update their state
is unknown, and the dynamics may be very sensitive to changes in this
schedule of updates. Since the works of Aracena et al., it is known that
update digraphs are pertinent objects to study non-equivalent block-
sequential update schedules. We prove that counting the number of
equivalence classes, that is a tight upper bound on the synchronism sen-
sitivity of a given network, is #P-complete. The problem is nevertheless
computable in quasi-quadratic time for oriented cacti, and for oriented
series-parallel graphs thanks to a decomposition method.

1 Introduction

Since their introduction by McCulloch and Pitts in the 1940s through the well
known formal neural networks [20], automata networks (ANs) are a general
model of interacting entities in finite state spaces. The field has important con-
tributions to computer science, with Kleene’s finite state automata [17], linear
shift registers [14] and linear networks [12]. At the end of the 1960s, Kauffman
and Thomas (independently) developed the use of ANs for the modeling of bio-
logical phenomena such as gene regulation [16,28], providing a fruitful theoretical
framework [26].

ANs can be considered as a collection of local functions (one per component),
and influences among components may be represented as a so called interac-
tion digraph. In many applications the order of components update is a priori
unknown, and different schedules may greatly impact the dynamical properties
of the system. It is known since the works of Aracena et al. in [4] that update
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1 23 4
⊕ ⊕f1(x) = 0

f2(x) = x4

f3(x) = x1 ∨ ¬x4

f4(x) = x3

Fig. 1. Example of an AN f on the Boolean alphabet [q] = {1, 2} (conventionally
renamed {0, 1}), its interaction digraph, and a {⊕, �}-labeling labB = labB′ cor-
responding to the two equivalent update schedules B = ({1, 2, 3}, {4}) and B′ =
({1, 3}, {2, 4}).

digraphs (consisting of labeling the arcs of the interaction digraphs with ⊕ and
�) capture the correct notion to consider a biologically meaningful family of
update schedules called block-sequential in the literature. Since another work of
Aracena et al. [3] a precise characterization of the valid labelings has been known,
but their combinatorics remains puzzling. After formal definitions and known
results in Sects. 2 and 3, we propose in Sect. 4 an explanation for this difficulty,
through the lens of computational complexity theory: we prove that counting the
number of update digraphs (valid {⊕,�}-labelings) is #P-complete. In Sect. 5
we consider the problem restricted to the family of oriented cactus graphs and
give a O(n2 log n log log n) time algorithm, and finally in Sect. 6 we present a
decomposition method leading to a O(n2 log2 n log log n) algorithm for oriented
series-parallel graphs.

2 Definitions

Given a finite alphabet [q] = {1, . . . , q}, an automata network (AN) of size n
is a function f : [q]n → [q]n. We denote xi the component i ∈ [n] of some
configuration x ∈ [q]n. ANs are more conveniently seen as n local functions
fi : [q]n → [q] describing the update of each component, i.e. with fi(x) = f(x)i.
The interaction digraph captures the effective dependencies among components,
and is defined as the digraph Gf = ([n], Af ) with

(i, j) ∈ Af ⇐⇒ fj(x) �= fj(y) for some x, y ∈ [q]n with xi′ = yi′ for all i′ �= i.

It is well known that the schedule of components update may have a great
impact on the dynamics [5,13,21,23]. A block-sequential update schedule B =
(B1, . . . , Bt) is an ordered partition of [n], defining the following dynamics

f (B) = f (Bt) ◦ · · · ◦ f (B2) ◦ f (B1) with f (Bi)(x)j =

{
fj(x) if j ∈ Bi

xj if j /∈ Bi

i.e., parts are updated sequentially one after the other, and components within
a part are updated in parallel. For the parallel update schedule Bpar = ([n]),
we have f (Bpar) = f . Block-sequential update schedules are a classical family of
update schedules considered in the literature, because they are perfectly fair:
every local function is applied exactly once during each step. Equipped with an
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update schedule, f (B) is a discrete dynamical system on [q]n. In the following
we will shortly say update schedule to mean block-sequential update schedule.

It turns out quite intuitively that some update schedules will lead to the
same dynamics, when the ordered partitions are very close and the difference
relies on components far apart in the interaction digraph (see an example on
Fig. 1). Aracena et al. introduced in [4] the notion of update digraph to capture
this fact. To an update schedule one can associate its update digraph, which is a
{⊕,�}-labeling of the arcs of the interaction digraph of the AN, such that (i, j)
is negative (�) when i is updated strictly before j, and positive (⊕) otherwise.
Formally, given an update schedule B = (B1, . . . , Bt),

∀(i, j) ∈ Af : labB((i, j)) =

{
⊕ if i ∈ Bti and j ∈ Btj with ti ≥ tj ,

� if i ∈ Bti and j ∈ Btj with ti < tj .

Remark 1. Loops are always labeled ⊕, hence we consider our digraphs loopless.

The following result has been established: given two update schedules, if the
relative order of updates among all adjacent components are identical, then the
dynamics are identical. It leads naturally to an equivalence relation on update
schedules, at the heart of the present work.

Theorem 1 ([4]). Given an AN f and two update schedules B,B′, if labB =
labB′ then f (B) = f (B′). Hence we denote B ≡ B′ if and only if labB = labB′ .

It is very important to note that, though every update schedule corresponds
to a {⊕,�}-labeling of Gf , the reciprocal of this fact is not true. For example, a
cycle with all arcs labeled � would lead to a contradiction where components are
updated strictly before themselves. Aracena et al. gave a precise characterization
of valid update digraphs (i.e. the ones corresponding to at least one update
schedule).

Theorem 2 ([3]). A labeling function lab : A → {⊕,�} is valid if and only if
there is no cycle (i0, i1, . . . , ik), with i0 = ik, of length k > 0 such that both:

– ∀ 0 ≤ j < k : lab((ij , ij+1)) = ⊕ ∨ lab((ij+1, ij)) = �,
– ∃ 0 ≤ j < k : lab((ij+1, ij)) = �.

In words, the multidigraph where the orientation of negative arcs is reversed,
does not contain a cycle with at least one negative arc (forbidden cycle).

As a corollary, one can decide in polynomial time whether a labeling is valid
(Valid-UD Problem is in P). We are interested in the following.

Update Digraphs Counting (#UD)
Input: a digraph G = (V,A).
Output: #UD(G) = |{lab : A → {�,⊕} | lab is valid}|.

The following definition is motivated by Theorem2.
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Definition 1. Given a digraph G = (V,A), let Ḡ = (V, Ā) denote the undirected
multigraph underlying G, i.e. with an edge {i, j} ∈ Ā for each (i, j) ∈ A.

Remark 2. We can restrict our study to connected digraphs (that is, such that Ḡ
is connected), because according to Theorem 2 the only invalid labelings contain
(forbidden) cycles. Given some G with V1, . . . , Vk its connected components,
and G[Vi] the subdigraph induced by Vi, we straightforwardly have #UD(G) =∏

i∈[k] #UD(G[Vi]), and this decomposition can be computed in linear time from
folklore algorithms.

Theorem 3. #UD is in #P.

Proof. The following non-deterministic algorithm runs in polynomial time
(Valid-UD Problem is in P), and its number of accepting branches equals
#UD(G):

1. guess a labeling lab : A → {⊕,�} (polynomial space),
2. accept if lab is valid, otherwise reject.

��

3 Further Known Results

The consideration of update digraphs has been initiated by Aracena et al. in
2009 [4], with their characterization (Theorem2) in [3]. In Sect. 4 we will present
a problem closely related to #UD that has been proven to be NP-complete in
[3], UD Problem, and bounds that we can deduce on #UD (Corollary 1, from
[2]). In [1] the authors present an algorithm to enumerate update digraphs, and
prove its correctness. They also consider a surprisingly complex question: given
an AN f , knowing whether there exist two block-sequential update schedules
B,B′ such that f (B) �= f (B′), is NP-complete. The value of #UD(G) is known to
be 3n − 2n+1 + 2 for bidirected cycles on n vertices [23], and to equal n! if and
only if the digraph is a tournament on n vertices [2].

4 Counting Update Digraphs Is #P-complete

The authors of [3] have exhibited an insightful relation between valid labelings
and feedback arc sets of a digraph. We recall that a feedback arc set (FAS) of
G = (V,A) is a subset of arcs F ⊆ A such that the digraph (V,A \ F ) is acyclic,
and its size is |F |. This relation is developed inside the proof of NP-completeness
of the following decision problem. We reproduce it as a Lemma.

Update Digraph Problem (UD Problem)
Input: a digraph G = (V,A) and an integer k.
Question: does there exist a valid labeling of size at most k?

The size of a labeling is its number of ⊕ labels. It is clear that minimizing the
number of ⊕ labels (or equivalently maximizing the number of � labels) is the
difficult direction, the contrary being easy because lab(a) = ⊕ for all a ∈ A is
always valid (and corresponds to the parallel update schedule Bpar).
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3 2

1
⊕⊕⊕

Fig. 2. F = {(1, 2), (2, 3), (3, 1)} is a FAS, but the corresponding labeling is not valid:
component 3 is updated prior to 2, 1 not prior to 2, and 3 not prior to 1, which is
impossible.

Lemma 1 (appears in [3, Theorem 16]). There exists a bijection between
minimal valid labelings and minimal feedback arc sets of a digraph G = (V,A).

Proof (sketch). To get the bijection, we simply identify a labeling lab with its
set of arcs labeled ⊕, denoted Flab = {a ∈ A | lab(a) = ⊕}. ��

Any valid labeling corresponds to a FAS, and every minimal FAS corresponds
to a valid labeling, hence the following bounds hold. The strict inequality for the
lower bound comes from the fact that labeling all arcs ⊕ does not give a minimal
FAS, as noted in [2] where the authors also consider the relation between update
digraphs (valid labelings) and feedback arc sets, but from another perspective.

Corollary 1 ([3]). For any digraph G, let #FAS(G) and #MFAS(G) be the num-
ber of FAS and minimal FAS of G, then #MFAS(G) < #UD(G) ≤ #FAS(G).

From Lemma 1 and results on the complexity of FAS counting problems pre-
sented in [22], we have the following corollary (minimum FAS are minimal, hence
the identity is a parsimonious reduction from the same problems on FAS).

Corollary 2. Counting the number of valid labelings of minimal size is #P-
complete, and of minimum size is #·OptP[log n]-complete.

However the correspondence given in Lemma 1 does not hold in general: there
may exist some FAS F such that lab with Flab = F is not a valid labeling (see
Fig. 2 for an example). As a consequence we do not directly get a counting reduc-
tion to #UD. It nevertheless holds that #UD is #P-hard, with the following
reduction.

Theorem 4. #UD is #P-hard.

Proof. We present a (polynomial time) parsimonious reduction from the problem
of counting the number of acyclic orientations of an undirected graph, proven to
be #P-hard in [18].

Given an undirected graph G = (V,E), let ≺ denote an arbitrary total order
on V . Construct the digraph G′ = (V,A) with A the orientation of E according
to ≺, i.e. (u, v) ∈ A ⇐⇒ {u, v} ∈ E and u ≺ v. An example is given on Fig. 3
(left). A key property is that G′ is acyclic, because A is constructed from an
order ≺ on V (a cycle would have at least one arc (u, v) with v ≺ u).
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1
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5

1

2
3

4

5
�

�
�

�

⊕
⊕

Fig. 3. Left: an undirected graph G (instance of acyclic orientation counting), and the
obtained digraph G′ (instance of update digraph counting). Right: a valid labeling A
of G′, and the corresponding orientation O of G.

We claim that there is a bijection between the valid labelings of G′ and the
acyclic orientations of G: to a valid labeling lab : A → {⊕,�} of G′ we associate
the orientation

O = {(u, v) | (u, v) ∈ A and lab((u, v)) = ⊕}
∪ {(v, u) | (u, v) ∈ A and lab((u, v)) = �}.

First remark that O is indeed an orientation of E: each edge of E is trans-
formed into an arc of A, and each arc of A is transformed into an arc of O. An
example is given on Fig. 3 (right). Now observe that O is exactly obtained from
G′ by reversing the orientation of arcs labeled � by lab. Furthermore, a cycle in
O must contain at least one arc labeled � by lab, because G′ is acyclic and ⊕
labels copy the orientation of G′. The claim therefore follows directly from the
characterization of Theorem 2. ��

5 Quasi-quadratic Time Algorithm for Oriented Cacti

The difficulty of counting the number of update digraphs comes from the inter-
play between various possible cycles, as is assessed by the parsimonious reduction
from acyclic orientations counting problem to #UD. Answering the problem for
an oriented tree with m arcs is for example very simple: all of the 2m label-
ings are valid. Cactus undirected graphs are defined in terms of very restricted
entanglement of cycles, which we can exploit to compute the number of update
digraphs for any orientation of its edges.

Definition 2. A cactus is a connected undirected graph such that any vertex (or
equivalently any edge) belongs to at most one simple cycle (cycle without vertex
repetition). An oriented cactus G is a digraph such that Ḡ is a cactus.

Cacti may intuitively be thought as trees with cycles. This is indeed the idea
behind the skeleton of a cactus introduced in [9], via the following notions:

– a c-vertex is a vertex of degree two included in exactly one cycle,
– a g-vertex is a vertex not included in any cycle,
– remaining vertices are h-vertices,
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h

h

g

c

c g

h c

c

h

g

c

c

c

Fig. 4. An oriented cactus G, with {c, g, h}-vertex labels. Graft arcs are dashed, cycles
forming directed cycles are dotted, and cycles not forming directed cycles are solid.
Theorem 5 counts #UD(G) = 2123(23 − 1)(25 − 1)(24 − 2) = 48 608.

and a graft is a maximal subtree of g- and h-vertices with no two h-vertices
belonging to the same cycle. Then a cactus can be decomposed as grafts and
cycles (two classes called blocks), connected at h-vertices according to a tree skele-
ton. These notions directly apply to oriented cacti (see an example on Fig. 4).

Theorem 5. #UD is computable in time O(n2 log n log log n) for oriented
cacti.

Proof. The result is obtained from the skeleton of an oriented cactus G, since
potential forbidden cycles are limited to within blocks of the skeleton. From this
independence, any union of valid labelings on blocks is valid, and we have the
product

#UD(G) =
∏

H∈G
2|H| ∏

H∈�C
(2|H| − 1)

∏
H∈C

(2|H| − 2)

where G is the set of grafts of G, �C is the set of cycles forming directed cycles,
C is the set of cycles not forming directed cycles, and |H| is the number of arcs
in block H. Indeed, grafts cannot create forbidden cycles hence any {⊕,�}-
labeling will be valid, cycles forming a directed cycle can create exactly one
forbidden cycle (with � labels on all arcs), and cycles not forming a directed
cycle can create exactly two forbidden cycles (one for each possible direction of
the cycle). In a first step the skeleton of a cactus can be computed in linear
time [9]. Then, since the size n of the input is equal (up to a constant) to the
number of arcs, the size of the output contains O(n) bits (upper bounded by the
number of {⊕,�}-labelings), thus naively we have O(n) terms, each of O(n) bits,
and the O(n log n log log n) Schönhage–Strassen integer multiplication algorithm
gives the result. ��
Remark 3. Assuming multiplications to be done in constant time in the above
result would be misleading, because we are multiplying integers having a number
of digits in the magnitude of the input size. Also, the result may be slightly
strengthened by considering the O(n log n 22 log∗ n) algorithm by Fürer in 2007.

6 Series-Parallel Decomposition Method

In this section we present a divide and conquer method in order to solve #UD,
i.e. in order to count the number of valid labelings (update digraphs) of a given
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digraph. What will be essential in this decomposition method is not the orienta-
tion of arcs, but rather the topology of the underlying undirected (multi)graph
Ḡ. The (de)composition is based on defining two endpoints on our digraphs,
and composing them at their endpoints. It turns out to be closely related to
series-parallel graphs first formalized to model electric networks in 1892 [19].
In Subsect. 6.1 we present the operations of composition, and in Subsect. 6.2 we
show how it applies to the family of oriented series-parallel graphs.

6.1 Sequential, Parallel, and Free Compositions

Let us first introduce some notations and terminology on the characterization
of valid labelings provided by Theorem2. Given lab : A → {⊕,�}, we denote
G̃lab = (V, Ã) the multidigraph obtained by reversing the orientation of negative
arcs:

(i, j) ∈ Ã ⇐⇒ (i, j) ∈ A and lab((i, j)) = ⊕,
or (j, i) ∈ A and lab((j, i)) = �.

For simplicity we abuse the notation and still denote lab the labeling of the arcs
of G̃lab (arcs keep their label from G to G̃lab). From Theorem 2, lab is a valid
labeling if and only if G̃lab does not contain any cycle with at least one arc
labeled �, called forbidden cycle (it may contain cycles with all arcs labeled ⊕).
A path from i to j in G̃lab is called negative if it contains at least one arc labeled
�, and positive otherwise.

Definition 3. A source-sink labeled graph (ss-graph) (G,α, β) is a multigraph
G with two distinguished vertices α �= β. A triple (G,α, β) with G a digraph such
that (Ḡ, α, β) is a ss-graph, is called an oriented ss-graph (oss-graph).

We can decompose the set of update digraphs (denoted UD(G) = {lab : A →
{⊕,�} | lab is valid}) into an oss-graph (G,α, β), based on the follow sets.

UD(G)+α→β = {lab ∈ UD(G) | there exists a path from α to β in G̃lab,

and all paths from α to β in G̃lab are positive}
UD(G)−

α→β = {lab ∈ UD(G) | there exists a negative path from α to β in G̃lab}
UD(G)∅

α→β = {lab ∈ UD(G) | there exist nopath from α to β in G̃lab}

We define analogously UD(G)+β→α, UD(G)−
β→α, UD(G)∅

β→α, and partition UD(G)
as:

1. UD(G)+,+
α,β = UD(G)+α→β ∩ UD(G)+β→α

2. UD(G)+,∅
α,β = UD(G)+α→β ∩ UD(G)∅

β→α

3. UD(G)−,∅
α,β = UD(G)−

α→β ∩ UD(G)∅

β→α

4. UD(G)∅,+
α,β = UD(G)∅

α→β ∩ UD(G)+β→α

5. UD(G)∅,−
α,β = UD(G)∅

α→β ∩ UD(G)−
β→α

6. UD(G)∅,∅
α,β = UD(G)∅

α→β ∩ UD(G)∅

β→α

Notice that the three missing combinations, UD(G)+,−
α,β , UD(G)−,+

α,β and UD(G)−,−
α,β ,

would always be empty because such labelings contain a forbidden cycle. For
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α

u

β

(G, α, β)

α′ β′

(G′, α′, β′)

α β′

((G, α, β), (G′, α′, β′))

α β

((G, α, β), (G′, α′, β′))

α β

((G, α, β), G′)

Fig. 5. Example of series and parallel compositions, and a free composition at u, β′.

convenience let us denote S = {(+,+), (+, ∅), (−, ∅), (∅,+), (∅,−), (∅, ∅)}.
Given any oss-graph (G,α, β) we have

#UD(G) =
∑

(s,t)∈S

#UD(G)s,t
α,β (1)

where #UD(G)s,t
α,β = |UD(G)s,t

α,β |. Oss-graphs may be thought as black boxes,
we will compose them using the values of #UD(G)s,t

α,β , regardless of their inner
topologies.

Definition 4. We define three types of compositions (see Fig. 5).

– The series composition of two oss-graphs (G,α, β) and (G′, α′, β′) with V ∩
V ′ = ∅, is the oss-graph S((G,α, β), (G′, α′, β′)) = (D,α, β′) with D the one-
point join of G and G′ identifying components β, α′ as one single component.

– The parallel composition of two oss-graphs (G,α, β) and (G′, α′, β′) with V ∩
V ′ = ∅, is the oss-graph P((G,α, β), (G′, α′, β′)) = (D,α, β) with D the two-
points join of G and G′ identifying components α, α′ and β, β′ as two single
components.

– The free composition at v, v′ of an oss-graph (G = (V,A), α, β) and a
digraph G′ = (V ′, A′) with V ∩ V ′ = ∅, v ∈ V , v′ ∈ V ′, is the oss-graph
F((G,α, β), G′) = (D,α, β) with D the one-point join of G and G′ identify-
ing v, v′ as one single component.

Remark that the three types of compositions from Definition 4 also apply to
(undirected) ss-graph (Ḡ, α, β). Series and free compositions differ on the end-
points of the obtained oss-graph, which has important consequences on counting
the number of update digraphs, as stated in the following results. We will see in
Theorem 6 from Subsect. 6.2 that both series and free compositions are needed
in order to decompose the family of (general) oriented series-parallel graphs (to
be defined).

Lemma 2. For (D,α, β′) = S((G,α, β), (G′, α′, β′)), the values of #UD(D)s,t
α,β′

for all (s, t) ∈ S can be computed in time O(n log n log log n) (with n the binary
length of the values) from the values of #UD(G)s,t

α,β and #UD(G′)s,t
α′,β′ for all

(s, t) ∈ S.

Proof (sketch). The result is obtained by considering the 36 couples of some
UD(G)s,t

α,β and some UD(G′)s′,t′
α′,β′ , each combination giving an element of UD(D)s′′,t′′

α,β′

for some (s′′, t′′) ∈ S. ��
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Lemma 3. For (D,α, β) = P((G,α, β), (G′, α′, β′)), the values of #UD(D)s,t
α,β

for all (s, t) ∈ S can be computed in time O(n log n log log n) (with n the binary
length of the values) from the values of #UD(G)s,t

α,β and #UD(G′)s,t
α′,β′ for all

(s, t) ∈ S.

Proof (sketch). The proof is analogous to Lemma2, except that some couples
may create invalid labelings. ��

Note that Remark 3 also applies to Lemmas 2 and 3. For the free composition
the count is easier.

Lemma 4. For (D,α, β) = F((G,α, β), G′), we have #UD(D)s,t
α,β = #UD(G)s,t

α,β

#UD(G′) for all (s, t) ∈ S.

Proof. The endpoints of the oss-graph (D,α, β) are the endpoints of the oss-
graph (G,α, β), and it is not possible to create a forbidden cycle in the union of a
valid labeling on G and a valid labeling of G′, therefore the union is always a valid
labeling of D, each one belonging to the part (s, t) of (D,α, β) corresponding to
the part (s, t) ∈ S of (G,α, β). ��

6.2 Application to Oriented Series-Parallel Graphs

The series and parallel compositions of Definition 4 correspond exactly to the
class of two-terminal series-parallel graphs from [25,29].

Definition 5. A ss-graph (G,α, β) is two-terminal series-parallel (a ttsp-graph)
if and only if one the following holds.

– (G,α, β) is a base ss-graph with two vertices α, β and one edge {α, β}.
– (G,α, β) is obtained by a series or parallel composition1 of two ttsp-graphs.

In this case G alone is called a blind ttsp-graph.

Adding the free composition allows to go from two-terminal series-parallel
graphs to (general) series-parallel graphs [11,29]. More precisely, it allows exactly
to add tree structures to ttsp-graphs, as we argue now (ttsp-graphs do not con-
tain arbitrary trees, its only acyclic graphs being simple paths; e.g. one cannot
build a claw from Definition 5).

Definition 6. A multigraph G is series-parallel (sp-graph) if and only if all its
2-connected components are blind ttsp-graphs. A digraph G such that Ḡ is an
sp-graph, is called an oriented sp-graph (osp-graph).

The family of sp-graphs corresponds to the multigraphs obtained by series,
parallel and free compositions from base ss-graphs.

Theorem 6. G is an sp-graph if and only if (G,α, β) is obtained by series,
parallel and free compositions from base ss-graphs, for some α, β.
1 With Definition 4 applied to (undirected) ss-graphs.
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Proof (sketch). Free compositions allow to build all sp-graphs, because it offers
the possibility to create the missing tree structures of ttsp-graphs: arbitrary
1-connected components linking 2-connected ttsp-graphs. Moreover free compo-
sitions do not go beyond sp-graphs, since the obtained multigraphs still have
treewidth 2. ��
Theorem 7. #UD is solvable in time O(n2 log2 n log log n) on osp-graphs
(without promise).

Proof (sketch). This is a direct consequence of Lemmas 2, 3 and 4, because all
values are in O(2n) (the number of {⊕,�}-labelings) hence on O(n) bits, the
values of #UD(G)s,t

α,β are trivial for oriented base ss-graphs, and we perform
O(n log n) compositions (to reach Formula 1). The absence of promise comes
from a linear time recognition algorithm in [29] for ttsp-graphs, which also pro-
vides the decomposition structure. ��

Again, Remark 3 applies to Theorem 7.

7 Conclusion

Our main result is the #P-completeness of #UD, i.e. of counting the number
of non-equivalent block-sequential update schedules of a given AN f . We proved
that this count can nevertheless be done in O(n2 log n log log n) time for oriented
cacti, and in O(n2 log2 n log log n) time for oriented series-parallel graphs. This
last result has been obtained via a decomposition method providing a divide-
and-conquer algorithm.

Remark that cliques or tournaments are intuitively difficult instances of
#UD, because of the intertwined structure of potential forbidden cycles. It
turns out that K4 is the smallest clique that cannot be build with series, parallel
and free decompositions, and that series-parallel graphs (Definition 6) correspond
exactly to the family of K4-minor-free graphs [11] (it is indeed closed by minor
[27]). In further works we would like to extend this characterization and the
decomposition method to (di)graphs with multiple endpoints.

The complexity analysis of the algorithms presented in Theorems 5 and 7 may
be improved, and adapted to the parallel setting using the algorithms presented
in [7,15]. One may also ask for which other classes of digraphs is #UD(G) com-
putable efficiently (in polynomial time)? Since we found such an algorithm for
graphs of treewidth 2, could it be that the problem is fixed parameter tractable
on bounded treewidth digraphs? Rephrased more directly, could a general tree
decomposition (which, according to the proof of Theorem6, is closely related to
the series-parallel decomposition for treewidth 2) be exploited to compute the
solution to #UD? Alternatively, what other types of decompositions one can
consider in order to ease the computation of #UD(G)?

Finally, from the multiplication obtained for one-point join of two graphs
(Lemma 4 on free composition), we may ask whether #UD(G) is an evaluation
of the Tutte polynomial? From its universality [8], it remains to know whether
there is a deletion-contradiction reduction. However defining a Tutte polynomial
for directed graphs is still an active area of research [6,10,24,30].
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Abstract. We consider the problem of computing online the Longest
Previous Factor array LPF [1, n] of a text T of length n. For each
1 ≤ i ≤ n, LPF [i] stores the length of the longest factor of T with
at least two occurrences, one ending at i and the other at a previous
position j < i. We present an improvement over the previous solution by
Okanohara and Sadakane (ESA 2008): our solution uses less space (com-
pressed instead of succinct) and runs in O(n log2 n) time, thus being
faster by a logarithmic factor. As a by-product, we also obtain the first
online algorithm computing the Longest Common Suffix (LCS) array
(that is, the LCP array of the reversed text) in O(n log2 n) time and
compressed space. We also observe that the LPF array can be repre-
sented succinctly in 2n bits. Our online algorithm computes directly the
succinct LPF and LCS arrays.

Keywords: Longest Previous Factor · Online · Compressed data
structures

1 Introduction

This paper focuses on the problem of computing the Longest Previous Factor
(LPF) array which stores, for each position i in a string S, the length of the
longest factor (substring) of S that ends both at i and to the left of i in S. While
the notion of Longest Previous Factor has been introduced in [10], an array with
the same definition already appeared in McCreight’s suffix tree construction
algorithm [18] (the head array) and recently in [12] (the π array).

The concept of LPF array is close to that of Longest Common Prefix (LCP )
and Permuted Longest Common Prefix (PLCP) arrays, structures that are usu-
ally associated with the suffix array (SA) data structure to speed up particular
queries on strings (for example, pattern matching).
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The problem of searching for the longest previous factor is fundamental in
many applications [10], including data compression and pattern analysis. For
example, the LPF array can be used to derive the Ziv-Lempel factorization [25],
a very powerful text compression tool based on longest previous factors [9,10].

Methods to compute the LPF array [6,9,10,21] can be broadly classified
into two categories: batch (offline) and online algorithms. For instance, in [10]
the authors give two offline linear-time algorithms for computing the Longest
Previous Factor (LPF) array. The idea of the first algorithm is that, given SA,
for any position i, they only need to consider the suffixes starting to the left of
i in S which are closest to the suffix starting at position i in SA. In the second
algorithm (see also [7] for a similar in spirit but independent work), the authors
use a similar idea, but they take advantage of the fact that this variant processes
the suffix array in one pass and requires less memory space.

In [11], the authors show how an algorithm similar to the one of [9,10] can
compute the LPF array in linear running time by reading SA left-to-right (that
is, online on SA) using a stack that reduces the memory space to O(

√
n) for a

string of length n in addition to the SA, LCP and LPF arrays. This algorithm
requires less than 2

√
2n + O(1) integer cells in addition to its input and output.

Unlike batch algorithms, an online algorithm for the problem should report
the longest match just after reading each character. The online version of the
problem can be defined as follows: given a history T [1, i − 1], and the next
character c = T [i], the goal is to find the longest substring that matches the
current suffix: T [j, . . . , j + l − 1] = T [i − l + 1, . . . , i], and report the position
and the length of the matched substring. This process must be performed for all
i = 1, . . . , n.

Okanohara and Sadakane in [21] propose an online algorithm that relies on
the incremental construction of Enhanced Suffix Arrays (ESA) [1] in a similar
way to Weiner’s suffix tree construction algorithm [24]. They employ compressed
full-text indexing methods [20] to represent ESA dynamically in succinct space.
Their algorithm requires n log σ + o(n log σ) + O(n) + σ log n bits of working
space1, O(n log3 n) total time, and O(log3 n) delay per character, where n is the
input size and σ is the alphabet size.

Another online construction of the LCP array, in this case of a string collec-
tion, appears in [8]. In this work, the authors show how to update the LCP of a
string collection when all strings are extended by one character.

Our work is a direct improvement over Okanohara and Sadakane’s [21] algo-
rithm. The bottleneck in their strategy is the use of a dynamic Range Minimum
Query (RMQ) data structure over the (dynamic) LCP array. In this paper, we
observe that the RMQ is not needed at all since we can update our structures
by computing, with direct character comparisons, just irreducible LCP values.
Since it is well-known that the sum of such values amounts to O(n log n), this
yields a logarithmic improvement over the algorithm described in [21]. On the
other hand, our strategy offers a worse delay of O(n log n) per input character.

1 In their analysis they do not report the term σ log n, which however should be
included since they use a prefix sum structure over the alphabet’s symbols.



Faster Online Computation of the Succinct Longest Previous Factor Array 341

2 Definitions

A string S = s1s2 . . . sn is a sequence of n = |S| symbols from alphabet Σ =
[1, σ], with σ ≤ n. A text T is a string beginning with special symbol # = 1,
not appearing elsewhere in T . A factor (or substring) of a string S is written
as S[i, j] = si · · · sj with 1 ≤ i ≤ j ≤ n. When defining an array A, we use the
same notation A[1, k] to indicate that A has k entries enumerated from 1 to k.

In this work we use text indices based on the principle of co-lexicographically
sorting the prefixes of a text, rather than lexicographically sorting its suffixes.
This is the same approach adopted in [21] and is required by the online left-to-
right nature of the problem we consider. Given a string S ∈ Σn, we denote by
< the standard co-lexicographic ordering among the prefixes of S.

The Prefix array PA[1, n] of a string S[1, n] [23] is an array containing the
permutation of the integers 1, 2, . . . , n that arranges the ending positions of the
prefixes of S into co-lexicographical order, i.e., for all 1 ≤ i < j ≤ n, S[1, PA[i]] <
S[1, PA[j]]. The Inverse Prefix array IPA[1, n] is the inverse permutation of PA,
i.e., IPA[i] = j if and only if PA[j] = i.

The C-array of a string S is an array C[1, σ] such that C[i] contains the
number of characters lexicographically smaller than i in S, plus one (S will
be clear from the context). It is well-known that this array can be kept within
σ log n+o(σ log n) bits of space on a dynamic string by using succinct searchable
partial sums [3,14], which support all operations in O(log n) time.

The co-lexicographic Burrows-Wheeler Transform BWT [1, n] of a text T is a
reversible transformation that permutes its symbols as BWT [i] = T [PA[i] + 1]
if PA[i] < n, and BWT [i] = # otherwise [5].

The Longest Common Suffix array LCS[1, n] of a string S [17] is an array
storing in LCS[i] the length of the longest common suffix shared by the (i−1)-th
and i-th co-lexicographically smallest text prefixes if i > 1, and LCS[1] = 0 oth-
erwise. Function LCS(i, j) generalizes this array: given a string S[1, n], LCS(i, j)
denotes the longest common suffix between S[1, PA[i]] and S[1, PA[j]]. The Per-
muted Longest Common Suffix array PLCS[1, n] of a string S stores LCS values
in string order, rather than co-lexicographic order: PLCS[i] = LCS[IPA[i]].

Function S.rankc(i), where c ∈ Σ, returns the number of characters equal to
c in S[1, i−1]. Similarly, function S.selectc(i) returns the position of S containing
the i-th occurrence of c.

Given BWT [1, n] of a text T [1, n], the LF mapping is a function BWT.LF (i)
that, given the BWT position containing character T [j] (with j = PA[i] +
1), returns the BWT position i′ of character T [j + 1]. This function can be
implemented with a rank operation on BWT and one access to the C array.
Similarly, the FL mapping is the reverse of LF: this is the function BWT.FL(i)
that, given the BWT position containing character T [j] (with j = PA[i] + 1),
returns the BWT position i′ of character T [j − 1] (assume for simplicity that
j > 1; otherwise, BWT [i] = #). This function can be implemented with a select
operation on BWT and a search on the C array.
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3 Succinct PLCS and LPF Arrays

We start by formally introducing the definition of LPF array.

Definition 1 (Longest Previous Factor array). The Longest Previous Fac-
tor array LPF [1, n] of a string S[1, n] is the array containing, at each location
LPF [i], the largest integer k such that there exists j < i for which the longest
common suffix between S[1, j] and S[1, i] has length k.

Kasai et al. [16] observe that the Permuted Longest Common Prefix array is
almost increasing: PLCP [i + 1] ≥ PLCP [i] − 1. Of course, this still holds true
for the Permuted Longest Common Suffix array that we consider in our work.
Specifically, the symmetric relation PLCS[i + 1] ≤ PLCS[i] + 1 holds. In the
next lemma we observe that the same property is true also for the LPF array.

Lemma 1. For any i < n, it holds LPF [i + 1] ≤ LPF [i] + 1.

Proof. Let LPF [i] = k. Then, k is the largest integer such that the substring
T [i−k +1, i] starts at another position j < i−k +1. Assume, for contradiction,
that LPF [i + 1] = k′ > k + 1. Then, this means that s = T [(i + 1) − k′ + 1, i +
1] occurs at another position j′ < (i + 1) − k′ + 1. But then, also the prefix
T [(i + 1) − k′ + 1, i] of s occurs at j′. This is a contradiction, since the length of
T [(i + 1) − k′ + 1, i] is k′ − 1 > k = LPF [i]. ��

Note that PLCS[1] = LPF [1] = 0, thus the two arrays can be encoded and
updated succinctly with the same technique, described in Lemma 2.

Lemma 2. Let A[1, n] be a non-negative integer array satisfying properties (a)
A[1] = 0 and (b) A[i + 1] ≤ A[i] + 1 for i < n. Then, there is a data structure of
2n + o(n) bits supporting the following operations in O(log n/log log n) time:

(1) access any A[i],
(2) append a new element A[n + 1] at the end of A, and
(3) update: A[i] ← A[i] + Δ,

provided that operations (2) and (3) do not violate properties (a) and (b). Run-
ning time of operation (2) is amortized (O(n log n/log log n) in the worst case).

Proof. We encode A as a bitvector A′ of length at most 2n bits, defined as
follows. We start with A′ = 01 and, for i = 2, . . . , n we append the bit sequence
0A[i−1]+1−A[i]1 to the end of A′. The intuition is that every bit set increases the
previous value A[i−1] by 1, and every bit equal to 0 decreases it by 1. Then, the
value A[i] can be retrieved simply as 2i − A′.select1(i). Clearly, A′ contains n
bits equal to 1 since for each 1 ≤ i ≤ n we insert a bit equal to 1 in A′. Since the
total number of 1s is n and A is non-negative, A′ contains at most n bits equal to
0 as well. It follows that A′ contains at most 2n bits in total. In order to support
updates, we encode the bitvector with the dynamic string data structure of
Munro and Nekrich [19], which takes at most 2n+o(n) bits of space and supports
queries and updates in O(log n/log log n) worst-case time. We already showed
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how operation (1) reduces to select on A′. Let Δ = A[n]+1−A[n+1]. To support
operation (2), we need to append the bit sequence 0Δ1 at the end of A′. In the
worst case, this operation takes O(Δ log n/log log n) = O(n log n) time. However,
the sum of all Δ is equal to the total number of 0s in the bitvector; this implies
that, over a sequence of n insertions, this operation takes O(log n/log log n)
amortized time. Finally, operation A[i] ← A[i] + Δ can be implemented by
moving the bit at position A′.select1(i) by Δ positions to the left, which requires
just one delete and one insert operation on A′ (O(log n/log log n) time). Note
that this is always possible, provided that the update operation does not violate
properties (a) and (b) on the underlying array A. ��

4 Online Algorithm

We first give a sketch of our idea, and then proceed with the details. Similarly to
Okanohara and Sadakane [21], we build online the BWT and the compressed LCS
array of the text, and use the latter component to output online array LPF. This
is possible by means of a simple observation: after reading character T [i], entry
LPF [i] is equal to the maximum between LCS[IPA[i]] and LCS[IPA[i] + 1].
As in [21], array LCS is represented in compressed form by storing PLCS (in
2n + o(n) bits, Lemma 2) and a sampling of the prefix array PA which, together
with BWT, allows computing any PA[i] in O(log2 n) time. Then, we can retrieve
any LCS value in O(log2 n) time as LCS[i] = PLCS[PA[i]].

The bottleneck of Okanohara and Sadakane’s strategy is the update of LCS.
This operation requires being able to compute the longest common suffix between
two arbitrary text’s prefixes T [1, PA[i]] and T [1, PA[j]] (see [21] for all the
details). By a well-known relation, this value is equal to min(LCS[i, j]) (assume
i < j w.l.o.g.). In Okanohara and Sadakane’s work, this is achieved using a
dynamic Range Minimum Query (RMQ) data structure on top of LCS. The
RMQ is a balanced tree whose leaves cover Θ(log n) LCS values each and there-
fore requires accessing O(log n) LCS values in order to compute min(LCS[i, j]),
for a total running time of O(log3 n). We note that this running time cannot
be improved by simply replacing the dynamic RMQ structure of [21] with more
recent structures. Brodal et al. in [4] describe a dynamic RMQ structure sup-
porting queries and updates in O(log n/log log n) time, but the required space is
O(n) words. Heliou et al. in [13] reduce this space to O(n) bits, but they require,
as in [21], O(log n) accesses to the underlying array.

Our improvement over Okanohara and Sadakane’s algorithm stems from the
observation that the RMQ structure is not needed at all, as we actually need to
compute by direct symbol comparisons just irreducible LCS values:

Definition 2. LCS[i] is said to be irreducible if and only if either i = 0 or
BWT [i] 	= BWT [i − 1] hold.

Irreducible LCS values enjoy the following property:

Lemma 3 ([15], Thm. 1). The sum of all irreducible LCS values is at most
2n log n.
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As a result, we will spend overall just O(n log2 n) time to compute all irre-
ducible LCS values. This is less than the time O(n log3 n) needed in [21] to
compute O(n) minima on the LCS.

4.1 Data Structures

Dynamic BWT. Let T [1, i] be the text prefix seen so far. As in [21], we keep
a dynamic BWT data structure to store the BWT of T [1, i]. In our case, this
structure is represented using Munro and Nekrich’s dynamic string [19] and takes
nHk + o(n log σ) + σ log n + o(σ log n) bits of space, for any k ∈ o(logσ n). The
latter two space components are needed for the C array encoded with succinct
searchable partial sums [3,14]. The structure supports rank, select, and access
in O(log n/log log n) time, while appending a character at the end of T and
computing the LF and FL mappings are supported in O(log n) time (the bottle-
neck are succinct searchable partial sums, which cannot support all operations
simultaneously in O(log n/log log n) time by current implementations [3,14]).

Dynamic Sparse Prefix Array. As in Okanohara and Sadakane’s solution, we also
keep a dynamic Prefix Array sampling. Let D = 
log n� be the sample rate. We
store in a dynamic sequence PA′ all integers xj = j/D such that j mod D = 0,
for j ≤ i (i.e. we sample one out of D text positions and re-enumerate them
starting from 1). Letting j1 < · · · < jk be the co-lexicographic order of the
sampled text positions seen so far, the corresponding integers are stored in PA′

in the order xj1 , . . . , xjk . In the next paragraph we describe the structure used
to represent PA′ (as well as its inverse), which will support queries and updates
in O(log n) time. We use again Munro and Nekrich’s dynamic string [19] to keep
a dynamic bitvector BPA of length i (i being the length of the current text
prefix) that marks with a bit set sampled entries of PA. Since we sample one
out of D = 
log n� text’s positions and the bitvector is entropy-compressed,
its size is o(n) bits. At this point, any PA[j] can be retrieved by returning
D · PA′[BPA.rank1(j) + 1] if BPA[j] = 1 or performing at most D LF mapping
steps otherwise, for a total running time of O(log2 n). Note that, by the way we
re-enumerate sampled text positions, the sequence PA′ is a permutation.

Dynamic Sparse Inverse Prefix Array. The first difference with Okanohara
and Sadakane’s solution is that we keep the inverse of PA′ as well, that is, a
(dynamic) sparse inverse prefix array: we denote this array by IPA′ and define
it as IPA′[PA′[j]] = j, for all 1 ≤ j ≤ |PA′|. First, note that we insert integers
in PA′ in increasing order: x = 1, 2, 3, . . . . Inserting a new integer x at some
position t in PA′ has the following effect in IPA′: first, all elements IPA′[k] ≥ t
are increased by 1. Then, value t is appended at the end of IPA′.

Example 1. Let PA′ and IPA′ = (PA′)−1 be the following permutations: PA′ =
〈3, 1, 2, 4〉 and IPA′ = 〈2, 3, 1, 4〉. Suppose we insert integer 5 at position 2 in PA′.
The updated permutations are: PA′ = 〈3, 5, 1, 2, 4〉 and IPA′ = 〈3, 4, 1, 5, 2〉.
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Policriti and Prezza in [22] show how to represent a permutation of size k and
its inverse upon insertions and access queries in O(log k) time per operation and
O(k) words of space. The idea is to store PA′ in a self-balancing tree, sorting its
elements by the inverse permutation IPA′. Then, IPA′ is represented simply as
a vector of pointers to the nodes of the tree. By enhancing the tree’s nodes with
the corresponding sub-tree sizes, the tree can be navigated top-down (to access
PA′) and bottom-up (to access IPA′) in logarithmic time. Since we sample one
out of D = 
log n� positions, the structure takes O(n) bits of space.

To compute any IPA[j], we proceed similarly as for PA. We compute the
sampled position j − δ (with δ ≥ 0) preceding j in the text, we find the cor-
responding position t on PA as t = BPA.select(IPA′[(j − δ)/D]), and finally
perform δ ≤ D steps of LF mapping to obtain IPA[j]. Note that, without loss
of generality, we can consider position 1 to be always sampled since IPA[1] = 1
is constant. To sum up, computing any IPA[j] requires O(log2 n) time, while
updating PA′ and IPA′ takes O(log n) time.

Dynamic PLCS Vector. We also keep the dynamic PLCS vector, stored using
the structure of Lemma 2. When extending the current text prefix T [1, i] by
character T [i + 1], LCS changes in two locations: first, a new value is inserted
at position IPA[i + 1]. Then, the value LCS[IPA[i + 1] + 1] (if this cell exists)
can possibly increase, due to the insertion of a new text prefix before it in co-
lexicographic order. As a consequence, PLCS changes in two places as well: (i) a
new value PLCS[i+1] = LCS[IPA[i+1]] is appended at the end, and (ii) value
PLCS[PA[IPA[i + 1] + 1]] (possibly) increases. Both operations are supported
in O(log n) (amortized) time by Lemma 2.

The way these new PLCS values are calculated is where our algorithm differs
from Okanohara and Sadakane’s [21], and is described in the next section.

4.2 Updating the LCS Array

In this section we show how to update the LCS array (stored in compressed
format as described in the previous sections).

Algorithm. We show how to compute the new LCS value to be inserted at
position IPA[i + 1] (after extending T [1, i] with T [i + 1]). The other update, to
LCS[IPA[i + 1] + 1], is completely symmetric so we just sketch it. Finally, we
analyze the amortized complexity of our algorithm.

Let a = T [i + 1] be the new text symbol, and let k be the position such that
BWT [k] = #. We recall that the BWT extension algorithm works by replacing
BWT [k] with the new character a = T [i + 1], and by inserting # at position
C[a] + BWT.ranka(k) = IPA[i + 1]. We also recall that the location of the first
occurrence of a symbol a preceding/following BWT [k] = # can be easily found
with one rank and one select operations on BWT.

Now, consider the BWT of T [1, i]. We distinguish three main cases (in [21],
all these cases were treated with a single Range Minimum Query):
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(a) BWT [1, k] does not contain occurrences of character a. Then, T [1, i + 1]
is the co-lexicographically smallest prefix ending with a, therefore the new
LCS value to be inserted at position IPA[i + 1] is 0.

(b) BWT [k−1] = a. Then, prefix T [1, PA[k−1]+1] (ending with BWT [k−1] =
a) immediately precedes T [1, i + 1] in co-lexicographic order. It follows that
the LCS between these two prefixes is equal to 1 plus the LCS between
T [1, PA[k − 1]] and T [1, i], i.e. 1 + LCS[IPA[i]]. This is the new LCS value
to be inserted at position IPA[i + 1].

(c) The previous letter equal to a in BWT [1, k] occurs at position j < k−1. The
goal here is to compute the LCS � = LCS(j, k) between prefixes T [1, PA[k]]
and T [1, PA[j]]. Integer �+1 is the new LCS value to be inserted at position
IPA[i + 1]. We distinguish two further sub-cases.

(c.1) String BWT [k+1, i] does not contain occurrences of character a. Then, we
compare the two prefixes T [1, PA[k]] and T [1, PA[j]] right-to-left simply
by repeatedly applying function FL from BWT positions j and k. The
number of performed symbol comparisons is LCS(j, k).

(c.2) There is an occurrence of a after position k. Let q > k be the smallest posi-
tion such that BWT [q] = a. Table 1 reports an example of this case. Then,
T [1, PA[j]+1] and T [1, PA[q]+1] are adjacent in co-lexicographic order,
thus we can compute �′ = LCS(j, q) as follows. Letting j′ = BWT.LF (j)
and q′ = BWT.LF (q) = j′ + 1 (that is, the co-lexicographic ranks of
T [1, PA[j]+1] and T [1, PA[q]+1], respectively), we have �′ = LCS[q′]−1.
Since j < k < q, we have LCS(j, k) = � ≥ �′. In order to compute
� = LCS(j, k), the idea is to skip the first �′ comparisons (which we know
will return a positive result), and only compare the remaining �− �′ char-
acters in the two prefixes, that is, compare the two prefixes T [1, PA[k]−�′]
and T [1, PA[j]− �′]. This can be achieved by finding the co-lexicographic
ranks of these two prefixes, that is IPA[PA[k] − �′] and IPA[PA[j] − �′]
respectively, and applying the FL function from these positions to extract
the � − �′ remaining matching characters in the prefixes. The number of
performed symbol comparisons is � − �′ = LCS(j, k) − LCS(j, q).

As noted above, the other update to be performed at position LCS[IPA[i +
1] + 1] is completely symmetric so we just sketch it here. The cases where
BWT [k, i] does not contain occurrences of a or where BWT [k + 1] = a cor-
respond to cases (a) and (b). If the first occurrence of a following position k
appears at position q > k + 1, on the other hand, we distinguish two further
cases. The case where BWT [1, k] does not contain occurrences of a is handled
as case (c.1) above (by direct character comparisons between two text prefixes).
Otherwise, we find the first occurrence of a = BWT [j] before position k and
proceed as in case (c.2), by finding the LCS �′ between the suffixes T [1, PA[q]]
and T [1, PA[j]], and comparing prefixes T [1, PA[k] − �′] and T [1, PA[q] − �′].

Amortized Analysis. In the following, by symbol comparisons we indicate the
comparisons performed in case (c) to compute LCS values (by means of iterating
the FL mapping). For simplicity, we count only comparisons resulting in a match
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between the two compared characters: every time we encounter a mismatch, the
comparison is interrupted; this can happen at most 2n times (as we update at
most two LCS values per iteration), therefore it adds at most O(n log n) to our
final running time (as every FL step takes O(log n) time).

We now show that the number of symbol comparisons performed in case (c)
is always upper-bounded by the sum of irreducible LCS values.

Definition 3. A BWT position k > 1 is said to be a relevant run break if and
only if:

(i) BWT [k − 1] 	= BWT [k],
(ii) there exists j < k − 1 such that BWT [j] = BWT [k], and
(iii) if BWT [k − 1] = #, then k > 2 and BWT [k − 2] 	= BWT [k].

Condition (i) requires k to be on the border of an equal-letter BWT run.
Condition (ii) requires that there is a character equal to BWT [k] before position
k − 1, and condition (iii) states that # does not contribute in forming relevant
run breaks (e.g. in string a#a, the second occurrence of a is not a relevant run
break; however, in ac#a the second occurrence of a is). Intuitively, condition
(iii) is required since extending the text by one character might result in two
runs of the same letter separated by just # to be merged (e.g. aaa#a becomes
aaaaa after replacing # with a). Without condition (iii), after such a merge we
could have characters inside a run that are charged with symbol comparisons.

In Lemma 4 we prove that our algorithm maintains the following invariant:

Invariant 1. Consider the structures BWT and LCS for T [1, i] at step i. More-
over, let k be a relevant run break, and let j < k − 1 be the largest position such
that BWT [k] = BWT [j]. Then:

1. Position k is charged with ck = LCS(j, k) symbol comparisons, and
2. Only relevant run breaks are charged with symbol comparisons.

Lemma 4. Invariant 1 is true after every step i = 1, . . . , n of our algorithm.

Proof. After step i = 1, we have processed just T [1] and the property is trivially
true as there are no relevant run breaks. Assume by inductive hypothesis that
the property holds at step i, i.e. after building all structures (BWT, LCS) for
T [1, i]. We show that the application of cases (a-c) maintains the invariant true.

Case (a) does not perform symbol comparisons. Moreover, it does not destroy
any relevant run break. The only critical case is BWT [k+1] = a, since replacing
BWT [k] = # with a destroys the run break at position k + 1. However, note
that k + 1 cannot be a relevant run break, since BWT [1, k] does not contain
occurrences of a. It follows that case (a) maintains the invariant.

Also case (b) does not perform symbol comparisons and does not destroy any
relevant run break. The only critical case is BWT [k + 1] = a, since replacing
BWT [k] = # with a destroys the run break at position k+1. However, note that
k + 1 cannot be a relevant run break, since BWT [k − 1] = a and BWT [k + 1] =
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a are separated by BWT [k] = #, which by definition does not contribute in
forming relevant run breaks. It follows that case (b) maintains the invariant.

(c.1) Consider the BWT of T [1, i], and let k be the terminator position:
BWT [k] = #. Note that, by Definition 3, k is not a relevant run break since no
other position contains the terminator, and thus by Invariant 1 it is not charged
yet with any symbol comparison. Case (c.1) compares the k-th and j-th co-
lexicographically smallest text prefixes, where j < k−1 is the previous occurrence
of a in the BWT. Clearly, the number of comparisons performed is exactly
ck = LCS(j, k): we charge this quantity to BWT position k. Then, we update the
BWT by (i) replacing BWT [k] = # with a, which makes k a valid relevant run
break since BWT [k−1] 	= a, BWT [j] = BWT [k], and j < k−1 and (ii) inserting
# in some BWT position, which (possibly) shifts position k to k′ ∈ {k, k + 1}
(depending whether # is inserted before or after k) but does not alter the value
of ck = LCS(j, k′), so k′ is a relevant run break and is charged correctly as of
Invariant 1. Finally, note that (1) the new BWT position containing # is not
charged with any symbol comparison (since we just inserted it), (2) that, if two
runs get merged after replacing # with T [i + 1] then, thanks to Condition (iii)
of Definition 3 and Invariant 1 at step i, no position inside a equal-letter run
is charged with symbol comparisons, and (3) if the new # is inserted inside a
equal-letter run at, thus breaking it as at1#at2 with t = t1 + t2 and t1 > 0,
then the position following # is not charged with any symbol comparison. (1–3)
imply that we still charge only relevant run breaks with symbol comparisons:
Invariant 1 is therefore true at step i + 1.

(c.2) Consider the BWT of T [1, i], and let k, j, q, with j < k − 1 < k < q,
be the terminator position (BWT [k] = #) and the immediately preceding and
following positions containing a = BWT [j] = BWT [q]. Note that q is a rele-
vant run-break, charged with cq = LCS(j, q) symbol comparisons by Invariant 1.
Assume that LCS(j, k) ≥ LCS(k, q): the other case is symmetric and we discuss
it below. Then, LCS(k, q) = LCS(j, q) = cq. First, we “lift” the cq = LCS(j, q)
symbol comparisons from position q and re-assign them to position k. By defi-
nition, case (c.2) of our algorithm performs LCS(j, k) − LCS(j, q) symbol com-
parisons; we charge also these symbol comparisons to position k. After replacing
BWT [k] with letter a, position k becomes a relevant run break, and is charged
with cq + (LCS(j, k) − LCS(j, q)) = LCS(j, k) = ck symbol comparisons. Posi-
tion q, on the other hand, is now charged with 0 symbol comparisons; note that
this is required if q = k + 1 (as in the example of Table 1), since in that case q is
no longer a relevant run break (as we replaced # with a). Finally, we insert #
in some BWT position which, as observed above, does not break Invariant 1.

The other case is LCS(j, k) < LCS(k, q). Then LCS(j, k) = LCS(j, q), and
therefore case (c.2) does not perform additional symbol comparisons to compute
LCS[IPA[i + 1]]. On the other hand, the symmetric of case (c.2) (i.e. the case
where we update LCS[IPA[i + 1] + 1]) performs LCS(k, q) − LCS(j, q) symbol
comparisons if q > k + 1 (none otherwise); these are all charged to position
q and, added to the LCS(j, q) comparisons already charged to q, sum up to
LCS(k, q) comparisons. This is correct, since in that case q remains a relevant
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run break. If, on the other hand, q = k+1, then no additional comparisons need
to be made to update LCS[IPA[i + 1] + 1], and we simply lift the LCS(j, q)
comparisons from q (which is no longer a relevant run break) and charge them to
k (which becomes a relevant run break). This is correct, since k is now charged
with LCS(j, q) = LCS(j, k) symbol comparisons. ��

Table 1. The example illustrates case (c.2). Column L is the BWT. The other columns
contain the sorted text prefixes. Left: structures for T [1, i] = #abaaabbaababa. We are
about to extend the text with letter a. Positions k, j, q contain # (to be replaced with
a) and the immediately preceding and succeeding BWT positions containing a. To find
LCS(j, q), apply LF to j, q, obtaining positions j′ and q′. Then, LCS(j, q) = LCS[q′]−
1 = 2, emphasized in italic. At this point, LCS(j, k) is computed by comparing the
j-th and k-th smallest prefixes outside the italic zone (found using IPA and PA). In the
example, we find 1 additional match (underlined). It follows that the new LCS to be
inserted between positions j′ and q′ is 1 + LCS(j, k) = 1 + (LCS(j, q) + 1) = 4. Right:
structures updated after appending a to the text. In bold on column LCS: the new
LCS value inserted (LCS[IPA[i + 1]] = 4) and the one updated by the symmetric of
case (c.2) (LCS[q′] = 3; in this example, the value doesn’t change). In bold on column
F: last letters of the j′-th and q′-th smallest text’s prefixes, interleaved with T [1, i+1].

Lemma 5. At any step i = 1, . . . , n, let k1, . . . , kr be the relevant run breaks
and ck1 , . . . , ckr

be the symbol comparisons charged to them, respectively. Then,∑r
t=1 ckt

≤ 2i log i.

Proof. By definition of ckt
, we have ckt

= LCS(j, kt) ≤ LCS(kt − 1, kt) =
LCS[kt], where j < kt − 1 is the largest position to the left of kt − 1 containing
symbol BWT [kt]. Moreover, note that {k1, . . . , kr} is a subset of the BWT run
breaks {k : BWT [k − 1] 	= BWT [k]}, therefore each LCS[kt] is irreducible.
Let S be the sum of irreducible LCS values. By applying Lemma3, we obtain:

r∑

j=1

ckt
≤

r∑

j=1

LCS[kt] ≤ S ≤ 2i log i
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We obtain our main result:

Theorem 2 (Online succinct LPF and LCS arrays). The succinct LPF
and LCS arrays of a text T ∈ [1, σ]n can be computed online in O(n log2 n) time
and O(n log n) delay per character using nHk + o(n log σ) + O(n) + σ log n +
o(σ log n) bits of working space (including the output), for any k ∈ o(logσ n).

Proof. After LCS and IPA have been updated at step i, we can compute
LPF [i] simply as LPF [i] = max{LCS[IPA[i]], LCS[IPA[i] + 1]} in O(log2 n)
time. This value can be appended at the end of the succinct representa-
tion of LPF (Lemma 2) in O(log n) amortized time (which in the worst case
becomes O(n log n)). Updating BWT, PA′, and IPA′ takes O(log n) time per
character. The most expensive part is updating the structures representing
LCS: at each step we need to perform a constant number of accesses to
arrays PA, IPA, and LCS, which alone takes O(log2 n) time per character.
Updating PLCS takes O(log n) amortized time per character (which in the
worst case becomes O(n log n)) by Lemma 2. By Lemma 5 we perform over-
all O(n log n) symbol comparisons, each requiring two FL steps and two BWT
accesses, for a total of O(n log2 n) time. Note that a single comparison between
two text prefixes cannot extend for more than n characters, therefore in the
worst case a single step takes O(n log n) time. This is our delay per charac-
ter. To conclude, in Sect. 4.1 we showed that our data structures take at most
nHk + o(n log σ) + O(n) + σ log n + o(σ log n) bits of space. ��

Finally we note that, at each step i, we can output also the location of the
longest previous factor: this requires just one access to the prefix array PA.

5 Conclusions

We improved the state-of-the-art algorithm, from Okanohara and Sadakane [21],
computing online the (succinct) LPF and LCS arrays of the text. Our improve-
ment stems from the observation that a dynamic RMQ structure over the LCS
array is not needed, as the LCS can be updated by performing a number of
character comparisons that is upper-bounded by the sum of irreducible LCS
values. Future extensions of this work will include reducing the delay of our
algorithm (currently O(n log n)). We observe that it is rather simple to obtain
O(log2 n) delay at the cost of randomizing the algorithm by employing an online
Karp-Rabin fingerprinting structure such as the one described in [2]: once fast
fingerprinting is available, one can quickly find the LCS between any two text
prefixes by binary search. It would also be interesting to reduce the overall run-
ning time of our algorithm. This, however, does not seem straightforward to
achieve, as it would require finding a faster implementation of a dynamic com-
pressed prefix array (and its inverse) and finding a faster way of updating LCS
values (possibly, with a faster dynamic succinct RMQ structure).
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Abstract. Computing text-to-pattern distances is a fundamental prob-
lem in pattern matching. Given a text of length n and a pattern of length
m, we are asked to output the distance between the pattern and every
n-substring of the text. A basic variant of this problem is computation
of Hamming distances, that is counting the number of mismatches (dif-
ferent characters aligned), for each alignment. Other popular variants
include �1 distance (Manhattan distance), �2 distance (Euclidean dis-
tance) and general �p distance. While each of those problems trivially
generalizes classical pattern-matching, the efficient algorithms for them
require a broader set of tools, usually involving both algebraic and com-
binatorial insights. We briefly survey the history of the problems, and
then focus on the progress made in the past few years in many spe-
cific settings: fine-grained complexity and lower-bounds, (1 + ε) multi-
plicative approximations, k-bounded relaxations, streaming algorithms,
purely combinatorial algorithms, and other recently proposed variants.

1 Hamming Distance

A most fundamental problem in stringology is that of pattern matching: given
pattern P and text T , find all occurrences of P in T where by occurrence we
mean a substring (a consecutive fragment) of T that is identical to P . A huge
efforts have been put into advancement of understanding of pattern matching
by the community. One particular variant to consider is finding occurrences or
almost-occurrences of P in T . For this, we need to specify almost-occurrences:
e.g. introduce some form of measure of distance between words, and then look
for substrings of T which are close to P . We are interested in measures that
are position-based, that is they are defined over strings of equal length, and are
based upon distances between letters on corresponding positions (thus e.g. edit
distance is out of scope of this survey). Consider for example

Definition 1 (Hamming distance). For strings A, B of equal length, their
Hamming distance is defined as

Ham(A,B) = |{i : A[i] �= B[i]}|.
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Hence, the Hamming distance counts the number of mismatches between two
words. This leads us to the core problem considered in this survey.

Definition 2 (Text-to-pattern Hamming distance). For a text T [1, n] and
a pattern P [1,m], the text-to-pattern Hamming distance asks for an output array
O[1, n − m + 1] such that

O[i] = Ham(P, T [i, i + m − 1]).

Observe that this problem generalizes the detection of almost-occurrences – one
can scan the output array and output positions with small distance to the pat-
tern.

1.1 Convolution in Text-to-Pattern Distance

Convolution of two vectors (arrays) is defined as follow

Definition 3 (Convolution). For 0-based vectors A and B we define their
convolution (A ◦ B) as a vector:

(A ◦ B)[k] =
∑

i+j=k

A[i] · B[j].

Such a definition has a natural interpretation e.g. in terms of polynomial product:
if we interpret a vector as coefficients of a polynomial that is A(x) =

∑
i A[i] ·xi

and B(x) =
∑

i B[i] · xi, then (A ◦ B) are coefficients of A(x) · B(x).
Convolution over integers is computed by Fast Fourier transform (FFT) in

time O(n log n). This requires actual embedding of integers into field, e.g. Fp or
C. This comes at a cost, if e.g. we were to consider text-to-pattern distance over
(non-integer) alphabets that admit only field operations, e.g. matrices or geo-
metric points. Convolution can be computed using a “simpler” set of operations,
that is just with ring operations in e.g. Zp using Toom-Cook multiplication [35],
which is a generalization of famous divide-and-conquer Karatsuba algorithm [20].
However, not using FFT makes the algorithm slower, with Toom-Cook algorithm
taking time O(n2

√
2 log n log n), and increases the complexity of the algorithm.

Fischer and Paterson in [16] observed that convolution can be used to com-
pute text-to-pattern Hamming distance for small alphabets. Consider the fol-
lowing observation: for binary P and T , denote by P ′ the reversed P . Then we
have the following property:

Ham(P, T [i, i + m − 1]) =
∑

j

(
T [i + j](1 − P [j]) + (1 − T [i + j])P [j]

)

=
∑

j+k=m+1+i

(
T [j]P ′[k] + T [j]P ′[k]

)

= (T ◦ P ′)[m + 1 + i] + (T ◦ P ′)[m + 1 + i]
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where e.g. T denotes negating every entry of T . Thus the whole algorithm is
done by computing two convolutions in time O(n log m).1 This approach in fact
generalizes to arbitrary size alphabets by following observation: “contribution”
of single c ∈ Σ to number of mismatches for all positions can be computed with
single convolution. This results in O(|Σ|n log m) time algorithm.

The natural question is whether faster (than naive quadratic-time) algo-
rithms for large alphabets exist. The answer is affirmative, by (almost simulta-
neous) results of Abrahamson [1] and Kosaraju [24]. The insight is that for any
letter c ∈ |Σ|, we can compute its “contribution” twofold:

– by FFT in time O(n log m),
– or in time O(t) per each of n alignments, where t is the number of occurrences

of c in lets say pattern.

The insight is that we apply the former for letters that appear often (“dense”
case) and latter for sparse letters. Since there can be at most m/T letters that
appear at least T times in pattern each, the total running time is O(n log m ·
m
T +Tn) which is minimized when T =

√
m log m with run-time O(n

√
m log m).

This form of mixing combinatorial and algebraical insights is typical for the
type of problems considered in this paper, and we will see more of it in the fol-
lowing sections. As a side-note, the complexity of O(n

√
m log m) remains state-

of-the-art.

1.2 Relaxation: k-Bounded Distances

The lack of progress in Hamming text-to-pattern distance complexity sparked
interest in searching for relaxations of the problem, in hope of reaching linear (or
almost linear) run-time. For example if we consider reporting only the values not
exceeding a certain threshold value k, then we have the so-called k-approximated
distance. The motivation comes from the fact that if we are looking for almost-
occurrences, then if the distance is larger than a certain threshold value, the text
fragment is too dissimilar to pattern and we are safe to discard it.

The very first solution to this problem was shown by Landau and Vishkin [26]
working in time O(nk), using an essentially combinatorial approach of taking
O(1) time per mismatch per alignment using LCP queries (Longest Common
Prefix queries), where LCP(i, j) returns maximal k such that T [i, i+k] = P [j, j+
k]. This solution requires preprocessing of T and P with e.g. suffix tree, which
is a standard tool-set of stringology. This solution still is slower than naive
algorithm for k = m1/2+δ, but has the nice property of using actually O(n) time
for constant k. This technique is also known as kangaroo jumps.

This initiated a series of improvements to the complexity, with algorithms of
complexity O(n

√
k log k) and O((k3 log k + m) · n/m) by Amir et al. [4]. First

algorithm is an adaptation of general algorithm of Abrahamson with balancing

1 Its log m not log n by standard trick of reducing the problem to �n/m� instances
with pattern P of length m and text of length 2m.
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of “sparse” vs. “dense” case done w.r.t. k instead of m (some further combina-
torial insights are required to make the cases work with proper run-time). Such
trade-off has this nice property that for k = m the complexity matches that of
Abrahamson’s algorithm. Second algorithm is more interesting, since it shows
that for non-trivial values of k (in this case, k = O(m1/3)) near-linear time
algorithms are possible.

The later complexity was then improved to O((k2 log k+m poly log m)·n/m)
by Clifford et al. [13]. We now discuss the techniques of this algorithm, starting
with kernelization technique.

Definition 4 ([13]). An integer π > 0 is an x-period of a string S[1,m], if
Ham(S[π + 1,m], S[1,m − π]) ≤ x and π is minimal such integer.

Such definition should be compared with regular definition of a period, where π
is a period of string S if S[π + 1,m] = S[1,m − π].

We then observe the following:

Lemma 1 ([13]). If � is a 2x-period of the pattern, then any two occurrences of
the pattern in the text with at most x mismatches are at offset distance at least
�.

The first step of the algorithm is to determine some small O(k)-period of the pat-
tern. This actually does not require any specialized machinery and can be done
with a 2-approximate algorithm for text-to-pattern Hamming distance (multi-
plicative approximations are a topic of the following section). We then distinguish
two cases, where small means O(k).

No small k-period. This is an “easy” case, where a filtering step allows us to
keep only O(n/k) alignments that are candidates for ≤ k-distance matches. A
“kangaroo jumps” technique of Landau and Vishkin allows us to verify each
one of them in O(k) time, resulting in linear time spent in this case.

Small 2k-period. This is a case where we can deduce some regularity properties.
Denote the 2k-period as �. First, P can be decomposed into � words from its
arithmetic progressions of positions, with step � and every possible offset.
From the definition of � being 2k-period, we know that the total number
of runs in those words is small. The more interesting property is that even
though the text T can be arbitrary, if T is not regular enough it can be
discarded (and this actually concerns any part of the text that is not regular).
More precisely, there is a substring of text that is regular enough and contains
all the alignments of P that are at Hamming distance at most k (assuming
n = 2m, which we can always guarantee).
What remains is to observe that finding �, compressing of P into arithmetic
progressions and finding compressible region T ′ of T all can be done in Õ(n)
time, and that all of alignments of text to pattern correspond to alignments
of those arithmetic progressions, and can be solved in O(k2) time.

Final step in the sequence of improvements to this problem was done by
Gawrychowski and Uznański [17]. They observe that the algorithm from [13]
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can be interpreted in terms of reduction: instance of k-bounded text-to-pattern
Hamming distance with T and P is reduced to new T ′ and P ′, where T ′ and
P ′ are possibly of the same length, but have total number of runs in their Run-
length encoding (RLE) representation bounded as O(k). The algorithm from [13]
then falls back to brute force O(k2) time computation. While O(k2−δ) algorithm
for RLE-compressed pattern matching would falsify 3-SUM conjecture (c.f. [10]),
some structural properties of the instances can be leveraged based on the fact
that they are RLE-compressed from inputs of length m. A balancing argument
(in style of one from [4] or [1]) follows, allowing to solve this sub-problem in
time O(k

√
m log m). The final complexity for the whole algorithm becomes then

Õ((m + k
√

m) · n/m).

1.3 Relaxation: 1 ± ε Approximation

Another way to relax to text-to-pattern distance is to consider multiplicative
approximation when reporting number of mismatches. The very elegant argu-
ment made by Karloff [21] states the following.

Observation 1. Consider a randomly chosen projection ϕ : Σ → {0, 1} (each
letters mapping is chosen independently and uniformly at random) and words
A,B. Then

E[Ham(ϕ(A), ϕ(B))] =
1
2
Ham(A,B),

where ϕ(A) denotes applying ϕ to each letter of A separately.

Thus the algorithm consists of: (i) choosing independently at random K ran-
dom projections; (ii) for each projection, computing text-to-pattern Hamming
distance over projected input; (iii) averaging answers. A concentration argument
then follows, giving standard K = O( log n

ε2 ) independent repetitions guarantee-
ing that average recovers actual Hamming distance with (1 ± ε) multiplicative
guarantee, with high probability. This gives total run-time Õ(n/ε2).

The 1
ε2 dependency was believed to be inherent, as is the case for

e.g. space complexity of sketching of Hamming distance, cf. [8,19,38]. How-
ever, for approximate pattern matching that was refuted in Kopelowitz and
Porat [22,23], where randomized algorithms were provided with complexity
O(n

ε log n log m log 1
ε log |Σ|) and O(n

ε log n log m) respectively. The second men-
tioned algorithm is actually surprisingly simple: instead of projecting onto binary
alphabet, random projections Σ → [u] are used, where u = O(ε−1). Such pro-
jections collapse in expectation only an ε-fraction of mismatches, introducing
systematic 1+ ε multiplicative error. A simple Markov bound argument follows,
that since expected error is within desired bound, taking few (lets say log n)
repetitions and taking median guarantees recovery of good approximate answer
with high probability. What remains to observe is that exact counting of text-to-
pattern distance over projected alphabet takes u repetitions of convolution, so
the total runtime is Õ(n/ε). An alternative exposition to this result was provided
in [34].
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2 Other Norms

A natural extension to counting mismatches is to consider other norms (e.g.
�1, �2, general �p norm or �∞ norm), or to move beyond norms (so called threshold
pattern matching c.f. Atallah and Duket [6] or dominance pattern matching c.f.
Amir and Farach [3]).

Definition 5 (�p distance). For two strings of equal length over integer alpha-
bet and constant p > 0, their �p distance is defined as

‖A − B‖p =
(∑

i

∣∣∣A[i] − B[i]
∣∣∣
p)1/p

.

Definition 6 (�∞ distance). For two strings of equal length over integer alpha-
bet, their �∞ distance is defined as

‖A − B‖∞ = max
i

∣∣∣A[i] − B[i]
∣∣∣.

2.1 Exact Algorithms

To see that the link between convolution and text-to-pattern distance is relevant
when considering other norms, consider the case of computing �2 distances. We
are computing output array O[] such that O[i] =

∑
j(T [i+ j]−P [j])2. However,

this is equivalent to computing, for every i simultaneously, value
∑

j T [i + j]2 +∑
j P [j]2 − 2

∑
j T [i+ j]P [j]. While the terms

∑
j T [i+ j]2 and

∑
j P [j]2 can be

easily precomputed in O(n) time, we observe (following [29]) that
∑

j T [i+j]P [j]
is essentially convolution. Indeed, consider P ′ such that P ′[j] = P [m + 1 − j],
and then what follows.

We now consider �1 distance. Using techniques similar to Hamming distance,
the O(n

√
n log n) complexity algorithms were developed independently in 2005

by Clifford et al. [11] and Amir et al. [5] for reporting all �1 distances. The
algorithms use a balancing argument, starting with observation that alphabet
can be partitioned into buckets, where each bucket is a consecutive interval of
alphabet. The contribution of characters from the same interval is counted in
one phase, and contribution of characters from distinct intervals is counted in
second phase.

Interestingly, no known algorithm for exact computation of text-to-pattern
�p distance for arbitrary value of p is known. By the folklore observation, for
any even p we can reduce it to convolution and have O(n log m) time algorithm
(c.f. Lipsky and Porat [29], with O hiding p2 dependency). By the results of
Labib et al. [25] any odd-value integer p admits Õ(n

√
m log m) time algorithm

(the algorithm is given implicitly, by providing a reduction from �p to Hamming
distance, with Õ hiding (log m)O(p) dependency).
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2.2 Approximate and k-Bounded Algorithms

Once again, the topic spurs interest in approximation algorithm for distance
functions. In [29] a deterministic algorithm with a run time of O( n

ε2 log m log U)
was given, while later in [17] the complexity has been improved to a (random-
ized) O(n

ε log2 n log m log U), where U is the maximal integer value on the input.
Later [34] it was shown that such complexity is in fact achievable (up to poly-log
factors) with a deterministic solution. All those solutions follow similar frame-
work of linearity-preserving reductions, which has actually broader applications.
The framework is as follow: imagine we want to approximate some distance
function d : Σ × Σ → R. We build small number of pairs of projections,
L1, . . . , Lt, R1, . . . , Rt, with the following property: d(x, y) ≈ ∑

i Li(x) · Ri(x).2

Given such formulation, by linearity, text-to-pattern of A and B using distance
function d is approximated by a linear combination of convolutions of Li(A)
and Ri(B). The complexity of the solutions follows from the number of different
projections that need to be used.

For �∞ distances, in [29] a Õ(n/ε) time approximate solution was given,
while in Lipsky and Porat [27] a k-bounded �∞ distance algorithm with time
O(nk log m) was given. For k-bounded �1 distances, [5] a O(n

√
k log k) run-time

algorithm was given, while in [17] an algorithm with run-time Õ((m + k
√

m) ·
n/m) was given. The fact that those run-times are (up to poly-logs) identical to
corresponding run-times of k-bounded Hamming distances is not a coincidence,
as [17] have shown that k-bounded �1 is at least as easy as k-bounded Hamming
distance reporting.

A folklore result (c.f. [29]) states that the randomized algorithm with a run
time of Õ( n

ε2 ) is in fact possible for any �p distance, 0 < p ≤ 2, with use of
p-stable distributions and convolution. Such distributions exist only when p ≤ 2,
which puts a limit on this approach. See [30] for wider discussion on p-stable
distributions. Porat and Efremenko [32] has shown how to approximate general
distance functions between pattern and text in time Õ( n

ε2 ). Their solution does
not immediately translates to �p distances, since it allows only for score functions
of form

∑
j d(ti+j , pj) where d is arbitrary metric over Σ. Authors state that their

techniques generalize to computation of �2 distances, and in fact those generalize
further to �p distances as well, but the ε−2 dependency in their approach is
unavoidable. Finally, for any p > 0 there is �p distance (1 ± ε)-approximate
algorithm running in time Õ(n/ε) by results shown in [34]. Final result follows
the framework of linearity-preserving reductions.

3 Lower Bounds

It is a major open problem whether near-linear time algorithm, or even
O(n3/2−δ) time algorithms, are possible for such problems. A conditional lower
bound was shown in [12], via a reduction from matrix multiplication. This means
2 Here we used ≈ since its in the context of approximate algorithms. The same frame-

work applies to exact algorithms, then we replace ≈ with =.
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that existence of combinatorial algorithm with run-time O(n3/2−δ) solving the
problem for Hamming distances implies combinatorial algorithms for Boolean
matrix multiplication with O(n3−δ) run-time, which existence is unlikely. Look-
ing for unconditional bounds, we can state this as a lower-bound of Ω(nω/2) for
Hamming distances pattern matching, where 2 ≤ ω < 2.373 is a matrix multipli-
cation exponent. In fact those techniques can be generalized to take into account
k-bounded version of this problem:

Theorem 2 ([17]). For any positive ε, α, κ such that 1
2α ≤ κ ≤ α ≤ 1 there is no

combinatorial algorithm solving pattern matching with k = Θ(nκ) mismatches
in time O((k

√
m)1−ε) · n/m) for a text of length n and a pattern of length

m = Θ(nα), unless the combinatorial matrix multiplication conjecture fails.

Complexity of pattern matching under Hamming distance and under �1 dis-
tance was proven to be identical (up to poly-logarithmic terms) in [25]. This
equivalence in fact applies to a wider range of distance functions and in general
other score functions. The result shows that a wide class of functions are equiva-
lent under linearity-preserving reductions to computation of Hamming distances.
The class includes e.g. dominance score, �1 distance, threshold score, �2p+1 dis-
tance, any of above with wildcards, and in fact a wider class called piece-wise
polynomial functions.

Definition 7. For integers A,B,C and polynomial P (x, y) we say that the func-
tion P (x, y) · 1[Ax + By + C > 0] is half-plane polynomial. We call a sum of
half-plane polynomial functions a piece-wise polynomial. We say that a function
is axis-orthogonal piece-wise polynomial, if it is piece-wise polynomial and for
every i, Ai = 0 or Bi = 0.

Observe that Ham(x, y) = 1[x > y] + 1[x < y], max(x, y) = x · 1[x ≥ y] + y ·
1[x < y], |x − y|2p+1 = (x − y)2p+1 · 1[x > y] + (y − x)2p+1 · 1[x < y], and e.g.
threshold function can be defined as thrδ(x, y) def= 1[|x − y| ≥ δ] = 1[x ≤ y − δ]+
1[x ≥ y + δ].

Theorem 3. Let � be a piece-wise polynomial of constant degree and poly log n
number of summands.

– If � is axis orthogonal, then � is “easy”: (+, �) convolution takes Õ(n) time,
(+, �) matrix multiplication takes Õ(nω) time.

– Otherwise, � is Hamming distance complete: under one-to-polylog reductions,
on inputs bounded in absolute value by poly(n), (+, �) product is equivalent to
Hamming distance, (+, �) convolution is equivalent to text-to-pattern Ham-
ming distance and (+, �) matrix product is equivalent to Hamming-distance
matrix product.

Some of those reduction (for specific problems) were presented in literature,
c.f. [28,37,39], but never as a generic class-of-problems equivalence.
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This means that the encountered barrier for all of the induced text-to-pattern
distance problems is in fact the same barrier, and we should not expect algo-
rithms with dependency n3/2−δ without some major breakthrough. Unfortu-
nately such reductions do not preserve properties of k-bounded instances or
1 ± ε-approximate ones, so this result tells us nothing about relative complexity
of relaxed problems, and it is a major open problem to do so.

4 Streaming Algorithms

In streaming algorithms, the goal is to process text in a streaming fashion, and
answer in a real-time about the distance between last m characters of text and
a pattern. The primary measure of efficiency is the memory complexity of the
algorithm, that is we assume that the whole input (or even the whole pattern)
is too large to fit into the memory and some for of small-space representation
is required. The time to process each character is the secondary measure of
efficiency, since it usually is linked to memory efficiency. By folklore result, exact
reporting of e.g. Hamming distances is impossible in o(m) memory, so the focus
of the research has been on relaxed problems, that is k-bounded and (1 ± ε)-
approximate reporting.

For k-bounded reporting of Hamming distances, in Porat and Porat [31] a
O(k3) space and O(k2) time per character streaming algorithm was presented.
It was later improved in [13] to Õ(k2) space and Õ(

√
k) time per character,

and then in Clifford et al. [14] to Õ(k) space keeping Õ(
√

k) time per character.
Many interesting techniques were developed for this problem. As an example, k-
mismatch problem can be reduced to (k2 many instances of) 1-mismatch problem
(c.f. [13]), which in fact reduces to exact pattern matching in streaming model
(c.f. [31]). Other approach is to construct efficient rolling sketches for k-mismatch
problem, based on Reed-Solomon error correcting codes (c.f. [14]).

For 1 ± ε, two interesting approaches are possible. First approach was pre-
sented by Clifford and Starikovskaya [15] and later refined in Svagerka et al.
[33]. This approach consists of using rolling sketches of text started every ∼ √

m
positions, and additionally ∼ √

m sketches of substrings of length m − √
m of

pattern are maintained (guaranteeing that at least one sketch in text is aligned
to one sketch of long pattern fragment). One way of building rolling sketches for
approximate Hamming distance is to use random projections to binary alpha-
bet and reduce the problem to one for binary alphabet, where binary alpha-
bet uses Johnson-Lindenstrauss type of constructions. This approach results in
Õ(

√
m/ε2) memory and Õ(1/ε2) time per character.

Alternative approach was proposed in recent work of Chan et al. [9]. They
start with observation that the Hamming distance can be estimated by checking
mismatches at a random subset of positions. Their algorithm uses a random
subset as follow: the algorithm picks a random prime p (of an appropriately
chosen size) and a random offset b, and considers a subset of positions {b, b+p, b+
2p, . . .}. The structured nature of the subset enables more efficient computation.
It turns out that even better efficiency is achieved by using multiple (but still
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relatively few) offsets. When approximating the Hamming distance of the pattern
at subsequent text locations, the set of sampled positions in the text changes,
and so a straightforward implementation seems too costly. To overcome this
challenge, a key idea is to shift the sample a few times in the pattern and a few
times in the text (namely, for a trade-off parameter z, our algorithm considers
z shifts in the pattern and p/z shifts in the text). Interestingly, the proposed
solution is even more efficient when considering a (1±ε)-approximate k-bounded
reporting of Hamming distances.

Theorem 4 ([9]). There is an algorithm that reports (1 ± ε)-approximate k-
bounded Hamming distances in a streaming setting that uses Õ(min(

√
k/ε2,√

m/ε1.5)) space and takes O(1/ε3) time per character.

Focusing on other norms, we note that in [33] a sublinear space algorithms
for �p norms for 0 < p ≤ 2 was presented. The specific details of construction
vary between different values of p, and the techniques include: using p-stable
distributions (c.f. [18]), range-summable hash functions (c.f. [7]) and Johnson-
Lindenstrauss projections (c.f. [2]).

Theorem 5 ([33]). Let σ = nO(1) denote size of alphabet. There is a stream-
ing algorithm that computes a (1 ± ε)-approximation of the �p distances. The
parameters of the algorithm are

1. in Õ(ε−2
√

n + log σ) space, and Õ(ε−2) time per arrival when p = 0 (Ham-
ming distance);

2. in Õ(ε−2
√

n + log2 σ) space and Õ(
√

n log σ) time per arrival when p = 1;
3. in Õ(ε−2

√
n+log2 σ) space and Õ(ε−2

√
n) time per arrival when 0 < p < 1/2;

4. in Õ(ε−2
√

n + log2 σ) space and Õ(ε−3
√

n) time per arrival when p = 1/2;
5. in Õ(ε−2

√
n+log2 σ) space and Õ(σ

2p−1
1−p

√
n/ε2+3· 2p−1

1−p ) time per arrival when
1/2 < p < 1;

6. in Õ(ε−2−p/2
√

n log2 σ) space and O(ε−p/2
√

n + ε−2 log σ) time per arrival
for 1 < p ≤ 2.

5 Open Problems

Below we list several open problems of the area, which we believe are the most
promising research directions and/or pressing questions.

1. Show deterministic algorithm for (1 ± ε)-approximate �p reporting for 0 <

p < 1, preferably in time Õ(n/ε).
2. What is the time complexity of exact �p reporting for non-integer p?
3. Show conditional lower bound for exact Hamming distance reporting from

stronger hypotheses, like 3SUM-HARDNESS.
4. Lower bounds for 1 ± ε approximations (conditional between problems, or

from external problems), for any of the discussed problems.
5. What is the true space complexity dependency in streaming (1 ± ε) approxi-

mate Hamming distance reporting? Is
√

mε−1.5 complexity optimal?
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6. Can we close the gap between streaming complexity of approximate �p algo-
rithms and streaming complexity of approximate Hamming distance?

7. Can we design effective “combinatorial” algorithms for all mentioned prob-
lems (e.g. not relying on convolution)? For Hamming, �1 and �2 distances
answer is at least partially yes (c.f. [9] and [36]).
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Abstract. With good biological motivation, we add substitutions as
a further type of operations to (in particular, context-free) insertion-
deletion systems. This way, we obtain new characterizations of and nor-
mal forms for context-sensitive and recursively enumerable languages.
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1 Introduction

Insertion-deletion systems, or ins-del systems for short, are well established as
computational devices and as a research topic within Formal Languages through-
out the past nearly 30 years, starting off with the PhD thesis of Kari [3].

However, from its very beginning, papers highlighting the potential use of
such systems in modelling DNA computing also discussed the replacement of
single letters (possibly within some context) by other letters, an operation called
substitution in [2,4]. Interestingly, all theoretical studies on grammatical mecha-
nisms involving insertions and deletions omitted including the substitution oper-
ation in their studies. With this paper, we are stepping into this gap by studying
ins-del systems with substitutions, or ins-del-sub systems for short.

We put special emphasis on extending context-free ins-del systems with sub-
stitutions. We observe quite diverse effects, depending on whether the substitu-
tions are context-free, one-sided or two-sided. We can characterize the context-
sensitive languages by extending context-free insertion systems with substitu-
tions, which can be seen as a new normal form for monotone Chomsky grammars.
For omitted proofs and further results, see [13].

2 Basic Definitions and Observations

We assume the reader to be familiar with the basics of formal language theory.
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An ins-del system is a 5-tuple ID = (V, T,A, I,D), consisting of two alpha-
bets V and T with T ⊆ V , a finite language A over V , a set of insertion rules I
and a set of deletion rules D. Both sets of rules are formally defined as sets of
triples of the form (u, a, v) with a, u, v ∈ V ∗ and a �= λ. We call elements occur-
ring in T terminal symbols, while referring to elements of V \T as nonterminals.
Elements of A are called axioms.

Let w1uvw2, with w1, u, v, w2 ∈ V ∗, be a string. Applying the insertion rule
(u, a, v) ∈ I inserts the string a ∈ V ∗ between u and v, which results in the
string w1uavw2.

The application of a deletion rule (u, a, v) ∈ D results in the removal of an
substring a from the context (u, v). More formally let w1uavw2 ∈ V ∗ be a string.
Then, applying (u, a, v) ∈ D results in the string w1uvw2.

We define the relation =⇒ as follows: Let x, y ∈ V ∗. Then we write x =⇒ins y
if y can be obtained by applying an insertion or deletion rule to x. We also write
(u, a, v)ins or (u, a, v)del to specify whether the applied rule has been an insertion
or a deletion rule. Consider (u, a, v)ins or (u, a, v)del. Then we refer to u as the
left context and to v as the right context of (u, a, v)ins/(u, a, v)del.

Let ID = (V, T,A, I,D) be an ins-del system. The language generated by ID
is defined by L(ID) = {w ∈ T ∗ | α =⇒∗ w,α ∈ A}.

The size of ID describes its descriptional complexity and is defined by a tuple
(n,m,m′; p, q, q′), where

n = max{|a| | (u, a, v) ∈ I}, p = max{|a| | (u, a, v) ∈ D}
m = max{|u| | (u, a, v) ∈ I}, q = max{|u| | (u, a, v) ∈ D}

m′ = max{|v| | (u, a, v) ∈ I}, q′ = max{|v| | (u, a, v) ∈ D}.

By INSm,m′
n DELq,q′

p we denote the family of all ins-del systems of size
(n,m,m′; p, q, q′) [1,12]. Depending on the context, we also denote the fam-
ily of languages characterized by ins-del systems of size (n,m,m′; p, q, q′) by
INSm,m′

n DELq,q′
p . We call a family INS0,0

n DEL0,0
p a family of context-free ins-del

systems, while we call a family INSm,m′
n DELq,q′

p with m + m′ > 0 ∧ mm′ = 0 or
(q + q′ > 0 ∧ qq′ = 0) a family of one-sided ins-del systems. According to [1], an
ins-del system

ID′ = (V ∪ {$}, T, A′, I ′,D′ ∪ {(λ, $, λ)})

of size (n,m,m′; p, q, q′) is said to be in normal form if

– for any (u, a, v) ∈ I ′, it holds that |a| = n, |u| = m and |v| = m′, and
– for any (u, a, v) ∈ D′, it holds that |a| = p, |u| = q and |v| = q′.

Alhazov et al. [1,12] have shown the following auxiliary result:

Theorem 1. For every ins-del system ID, one can construct an insertion-
deletion system ID′ in normal form of the same size with L(ID′) = L(ID).

In the following sections, we use a modified normal form for ins-del systems
of size (1, 1, 1; 1, 1, 1). Given an arbitrary ins-del system of size (1, 1, 1; 1, 1, 1),
the construction of this modified normal form is as follows:
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Construction 1. Let ID = (V, T,A, I,D) be an ins-del system of size (1, 1, 1;
1, 1, 1). Without loss of generality, we assume {$,X} ∩ V = ∅ and $ �= X. We
construct ID′′ = (V ∪ {$,X}, T, A′′, I ′′,D′′) as follows:

A′′ = {X$α$X | α ∈ A}
I ′′ = {(z1, s, z2) | (r, s, t) ∈ I, z1 = r if r �= λ and z1 = $ otherwise,

z2 = t if t �= λ and z2 = $ otherwise}
∪ {(z1, $, z2) | z1, z2 ∈ ({$} ∪ V )}

D′′ = {(z1, a, z2) | (u, a, v) ∈ D, z1 = u if u �= λ and z1 = $ otherwise,
z2 = v if v �= λ and z2 = $ otherwise}

∪ {(z1, $, z2) | z1, z2 ∈ ({$} ∪ {X} ∪ V )} ∪ {(λ,X, λ)}
The basic idea of Construction 1 is the same as in the usual normal form con-
structions (see Theorem 1): the symbol $ is used as a padding symbol to ensure
that the left and right contexts of all rules are of the required size. We can show
that Construction 1 is equivalent to the usual normal form construction.

Theorem 2. Let ID′ = (V ∪ {$}, T, A′, I ′,D′ ∪ {(λ, $, λ)}) be an ins-del system
of size (1, 1, 1; 1, 1, 1) in normal form and ID′′ = (V ∪ {$,X}, T, A′′, I ′′,D′′) be
defined according to Construction 1. Then, L(ID′) = L(ID′′).

Unlike the usual normal form construction, context-free deletions can only
occur at the beginning and the end of a sentential form in the case of Construc-
tion 1. This fact will prove useful below.

Ins-del systems have been extensively studied regarding the question if they
can describe all of the recursively enumerable languages. Let us summarize
these results first by listing the classes of languages known to be equal to
RE: INS1,1

1 DEL1,1
1 [10], INS0,0

3 DEL0,0
2 and INS0,0

2 DEL0,0
3 [7], INS1,1

1 DEL0,0
2 [9,

Theorem 6.3], INS0,0
2 DEL1,1

1 [5], INS0,1
2 DEL0,0

2 and INS1,2
1 DEL1,0

1 [8],
INS1,0

1 DEL1,2
1 [5]. By way of contrast, the following language families are known

not to be equal to RE, the first one is even a subset of CF: INS0,0
2 DEL0,0

2 [12],
INS1,1

1 DEL1,0
1 [8], INS1,0

1 DEL1,1
1 [5], INS1,0

1 DEL0,0
2 and INS0,0

2 DEL1,0
1 [6].

We define substitution rules to be of the form (u, a → b, v); u, v ∈ V ∗;
a, b ∈ V . Let w1uavw2; w1, w2 ∈ V ∗ be a string over V . Then applying the
substitution rule (u, a → b, v) allows us to substitute a single letter a with
another letter b in the context of u and v, resulting in the string w1ubvw2.
Formally, we define an ins-del-sub system to be a 6-tuple IDr = (V, T,A, I,D, S),
where V, T,A, I and D are defined as in the case of usual ins-del systems and
S is a set of substitution rules. Substitution rules define a relation =⇒sub: Let
x = w1uavw2 and y = w1ubvw2 be strings over V . We write x =⇒sub y iff
there is a substitution rule (u, a → b, v). In the context of ins-del-sub systems,
we write =̂⇒ to denote any of the relations =⇒ins, =⇒del or =⇒sub. We define
the closures =̂⇒∗ and =̂⇒+ as usual. The language generated by an ins-del-sub
system IDr is defined as L(IDr) = {w ∈ T ∗ | α =̂⇒∗ w, α ∈ A}.

As with usual ins-del system, we measure the complexity of an ins-del-
sub system IDr = (V, T,A, I,D, S) via its size, which is defined as a tuple
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(n,m,m′; p, q, q′; r, r′), where n,m,m′, p, q and q′ are defined as in the case of
usual ins-del systems, while r and r′ limit the maximal length of the left and right
context of a substitution rule, respectively, i.e., r = max{|u| | (u, a → b, v) ∈ S},
r′ = max{|v| | (u, a → b, v) ∈ S}. INSm,m′

n DELq,q′
p SUBr,r′

denotes the family of
all ins-del-sub systems of size (n,m,m′; p, q, q′; r, r′). Note that, as only one letter
is replaced by any substitution rule, there is no subscript below SUB. Depending
on the context, we also refer to the family of languages generated by ins-del-sub
systems of size (n,m,m′; p, q, q′; r, r′) by INSm,m′

n DELq,q′
p SUBr,r′

. Expanding our
previous terminology, we call substitution rules of the form (λ, a → b, λ) context-
free, while substitution rules of the form (u, a → b, λ) or (λ, a → b, v) with
u �= λ �= v are called one-sided. Substitution rules of the form (u, a → b, v) with
u �= λ �= v are referred to as two-sided.

Let R be the the reversal (mirror) operator. For a language L and its mir-
ror LR the following lemma holds.

Lemma 1. L ∈ INSm,m′
n DELq,q′

p SUBr,r′
iff LR ∈ INSm′,m

n DELq′,q
p SUBr′,r.

We will now define the term resolve. Let IDr = (V, T,A, I,D, S) be an ins-
del-sub system. We say that a nonterminal X of IDr is resolved if X is either
deleted or substituted. It is easy to see that in any terminal derivation of IDr all
nonterminals must be resolved at some point of the derivation. We remark that
a nonterminal X may be resolved by being substituted with a nonterminal Y ,
which in turn must be resolved.

As in the case of ins-del systems without substitution rules, we define a
normal form for ins-del-sub systems. An ins-del-sub system

IDr = (V ∪ {$}, T, A, I,D ∪ {(λ, $, λ)}, S)

of size (n,m,m′; p, q, q′; r, r′) is said to be in normal form if

– for any (u, a, v) ∈ I, it holds that |a| = n, |u| = m and |v| = m′;
– for any (u, a, v) ∈ D, it holds that |a| = p, |u| = q and |v| = q′;
– for any (u, a → b, v) ∈ S, it holds that |u| = r and |v| = r′.

Theorem 3. For every ins-del-sub system IDr of size (n,m,m′; p, q, q′; r, r′),
one can construct an ins-del-sub system ID′

r of the same size in normal form,
with L(ID′

r) = L(IDr).

Proof. Let IDr = (V, T,A, I,D, S) be an ins-del-sub system of size (n,m,m′;
p, q, q′; r, r′). The basic idea is similar to the normal form construction for ins-
del systems in [1,12]. In fact, the sets of insertion and deletion rules of ID′

r =
(V ∪ {$}, T, A′, I ′,D′ ∪ {(λ, $, λ)}, S′) are constructed as in the ins-del system
normal form construction. S′ and A′ are defined as follows:

S′ = {z1, a → b, z2 | (u, a → b, v) ∈ S, z1 ∈ u� $∗, |z1| = r, z2 ∈ v � $∗, |z2| = r′},

A′ = {$iα$t$j | α ∈ A, i = max{m, q, r}, j = max{m′, q′, r′}, t = max{p − |w|, 0}}.
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As in Theorem 1, $ is a new symbol, that is, $ /∈ V , which is introduced to
be the padding symbol.

Let h : V ∪ {$} → V be a homomorphism with h(x) = x if x ∈ V and
h($) = λ. α ˆ==⇒

IDr

∗w, α ∈ A if and only if $iα$t$j ˆ==⇒
ID′

r

∗w′ with h(w′) = w can be

shown by induction. While the only-if part follows easily, consider the following
for the if part. We can assume that in any derivation of ID′

r the first i and the
last j letters of the axiom are not deleted until the very end of derivation. Hence,
insertion rules of the form (z1, $n, z2) with z1 ∈ ($ ∪ V )m, z2 ∈ ($ ∪ V )m

′
are

applicable until the very end. It is clear that due to insertion rules of the form
(z1, $n, z2) and the deletion rule (λ, $, λ) it is possible to generate an arbitrary
number of $ at an arbitrary position of a sentential form of ID′

r. ��
The following result will be useful in subsequent proofs; compare to Lemma 1.

Lemma 2. Let L be a family of languages that is closed under reversal. Then:

1. L ⊆ INSm,m′
n DELq,q′

p SUBr,r′
iff L ⊆ INSm′,m

n DELq′,q
p SUBr′,r.

2. INSm,m′
n DELq,q′

p SUBr,r′ ⊆ L iff INSm′,m
n DELq′,q

p SUBr′,r ⊆ L.

Due to the definition of ins-del-sub systems, the following result is clear.

Lemma 3. INSm,m′
n DELq,q′

p ⊆ INSm,m′
n DELq,q′

p SUBr,r′
.

Whether this inclusion is proper, is the question, that will be addressed in
the following sections. We will see that while in some cases an arbitrary
system of size (n,m,m′; p, q, q′, r, r′) can be simulated by a system of size
(n,m,m′; p, q, q′), this is not the general case. Furthermore, we will see that
families INSm,m′

n DELq,q′
p , which are not computationally complete, may reach

computational completeness via an extension with substitution rules. Addition-
ally, we will see below that families of ins-del systems which are equally pow-
erful may no longer be after being extended with the same class of substitu-
tion rules, i.e., we have INSm1,m

′
1

n1
DELq1,q

′
1

p1
= INSm2,m

′
2

n2
DELq2,q

′
2

p2
, but possibly

INSm1,m
′
1

n1
DELq1,q

′
1

p1
SUBr,r′ ⊂ INSm2,m

′
2

n2
DELq2,q

′
2

p2
SUBr,r′

. The reverse case might
occur, as well.

Because the application of an insertion rule (u, x, v) corresponds to the appli-
cation of the monotone rewriting rule uv → uav and the application of a sub-
stitution rule (u, a → b, v) corresponds to the application of the monotone
rewriting rule uav → ubv, a monotone grammar can simulate derivations of
an insertion-substitution system. (More technically speaking, we have to do the
replacements on the level of pseudo-terminals Na for each terminal a and also
add rules Na → a, but these are minor details.) Hence, we can conclude:

Theorem 4. For any integers m,m′, n, r, r′ ≥ 0, INSm,m′
n DEL0,0

0 SUBr,r′ ⊆ CS.

3 Main Results

We will focus on context-free ins-del systems, which are extended with substitu-
tion rules. More precisely, we will analyze the computational power of the family
of systems INS0,0

n DEL0,0
p SUBr,r′

.
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We are going to analyze substitution rules of the form (λ, a → b, λ), which
means that letters may be substituted regardless of any context. We will show
that extending context-free ins-del systems with context-free substitution rules
does not result in a more powerful system. In fact, a context-free ins-del-sub
system of size (n, 0, 0; p, 0, 0; 0, 0) can be simulated by an ins-del system of size
(n, 0, 0; p, 0, 0).

Theorem 5. Let IDr ∈ INS0,0
n DEL0,0

p SUB0,0, then there exists an ins-del sys-
tem ID ∈ INS0,0

n DEL0,0
p such that L(IDr) = L(ID).

Proof (Sketch). Let IDr = (V, T,A, I,D, S) ∈ INS0,0
n DEL0,0

p SUB0,0. It is clear
that any letter a, that is to be replaced by a substitution rule (λ, a → b, λ), has
been introduced by either an insertion rule (λ,w1aw2, λ) or as part of an axiom
w′

1aw′
2 at some point before executing the substitution. As a serves no purpose

other than to be replaced (i.e., it is not used as a context), the basic idea is to
skip introducing a altogether and introduce b instead. More formally: instead
of applying an insertion rule (λ,w1aw2, λ)/an axiom w′

1aw′
2 and replacing a via

(λ, a → b, λ) at a later point, we introduce a new insertion rule (λ,w1bw2, λ)/a
new axiom w′

1bw
′
2, which we apply instead of (λ,w1aw2, λ)/w′

1aw′
2. This idea can

be cast into an algorithm to produce an ins-del system ID = (V, T,A′, I ′,D) with
L(IDr) = L(ID). As only context-free insertion rules of size maximum (n, 0, 0)
are added to I ′, it is clear that ID ∈ INS0,0

n DEL0,0
p holds. ��

Considering the question about the generative power of context-free ins-del
systems with context-free substitution rules compared to usual context-free ins-
del systems, Theorem 5 and Lemma 3 together yield:

Corollary 1. INS0,0
n DEL0,0

p SUB0,0 = INS0,0
n DEL0,0

p .

Example 1. Consider the ins-del-sub system

IDr = ({a, b, c}, {a, b, c}, {λ}, {(λ, aaa, λ)}, ∅, S)

with S = {(λ, a → b, λ), (λ, b → c, λ)}. The language generated by IDr is
L(IDr) = {w | w ∈ {a, b, c}∗, |w| = 3n, n ∈ N}. Using the construction intro-
duced in Theorem 5 yields the ins-del system ID = ({a, b, c}, {a, b, c}, {λ}, I, ∅),
with I = {(λ, x1x2x3, λ) | x1, x2, x3 ∈ {a, b, c}}. While it is clear that L(ID) =
L(IDr), we remark that this example shows that the construction method of
Theorem 5 may yield an ins-del system whose number of rules is exponentially
greater than the number of rules of the system with substitutions.

3.1 Extension with One-Sided Substitution

Now, we will analyze the effect of one-sided substitution rules if used to extend
a context-free ins-del system. We will show that using one-sided substitution
rules can greatly increase the computational power of context-free insertion and
deletion rules. In some cases, we even get computationally completeness results.
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We will now construct an ins-del-sub system ID′
r of size (1, 0, 0; 1, 0, 0; 1, 0)

which simulates IDr of size (1, 1, 0; 1, 1, 0; 1, 0). The system ID′
r is constructed

in the following manner:

Construction 2. We assume the system IDr = (V, T,A, I,D, S) to be in nor-
mal form and any rule of IDr to be labelled in a one-to-one manner, i.e.,
there is a bijection between a set of labels and the rule set. Let $ be the
padding symbol used in the construction of the normal form of IDr. The sys-
tem ID′

r = (V ′, T, A, I ′,D′, S ∪ S′) is constructed as follows. For each rule of
IDr, we introduce a new nonterminal Xi and define

V ′ = V ∪ {Xi | i is the label of a rule of IDr}.

The set I ′ of insertion rules of ID′
r contains all (λ,Xi, λ), where i is the label of

an insertion rule of IDr, while the set D′ of deletion rules as contains (λ, $, λ)
and all (λ,Xi, λ), where i is the label of a deletion rule of IDr. Furthermore, we
define the set of substitution rules S′ = S1 ∪ S2, with

S1 = {(u,Xi → a, λ) | i is the label of an insertion rule (u, a, λ) of IDr} and

S2 = {(u, a → Xi, λ) | i is the label of a deletion rule (u, a, λ) of IDr, u �= λ}.

Each deletion rule (u, a, λ) ∈ D of IDr, where i is the label of (u, a, λ),
corresponds to a deletion rule (λ,Xi, λ) ∈ D′ and a substitution rule (u, a →
Xi, λ) ∈ S2 of ID′

r. The basic idea of the construction is to simulate a deletion
rule (u, a, λ) ∈ D by substituting the letter a with left context u via (u, a →
Xi, v) ∈ S2. The introduced nonterminal Xi is then deleted at some point by
the deletion rule (λ,Xi, λ) ∈ D′. It is clear that a derivation of the form

w1uaw2 =̂⇒w1uXiw2 =̂⇒w1uw2,

in which the application of (λ,Xi, λ) ∈ D′ succeeds an application of (u, a →
Xi, λ) ∈ S2 immediately, is equivalent to the application of a deletion rule
(u, a, v) ∈ D. It needs much more care to prove the following converse:

Proposition 1. Let α ∈ A. Consider a derivation α =̂⇒∗ w ∈ T ∗ of ID′
r .

Then, there is an alternative derivation of ID′
r, leading from α to w, in which

all nonterminals Xi ∈ V ′\V are resolved immediately after being introduced.

This allows us to state:

Theorem 6. INS0,0
1 DEL0,0

1 SUB1,0 = INS1,0
1 DEL1,0

1 SUB1,0.

Consider ins-del systems of size (1, 0, 0; 1, 0, 0) extended with one-sided substi-
tution rules; the increase in computational power is quite significant:

INS0,0
1 DEL0,0

1 ⊂ INS1,0
1 DEL1,0

1 ⊂ INS1,0
1 DEL1,0

1 SUB1,0 = INS0,0
1 DEL0,0

1 SUB1,0

Both inclusions are proper. First, observe that ba+ ∈ INS1,0
1 DEL0,0

0 \INS0,0
1

DEL0,0
1 . The system of size (1, 1, 0; 0, 0, 0; 1, 0) presented in Example 2 gener-

ates (ba)+. Verlan [12, Theorem 5.3] has shown that even ins-del systems of size
(1, 1, 0; 1, 1, 1) cannot generate the language (ba)+.
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Example 2. Consider the following ins-del-sub system: IDs = (V, T, I, ∅, S), with
V = {X1,X2,X3, a, b}, T = {a, b} and A = {ba, bX1X3}. The set of insertion
rules is defined as I = {(X1,X2, λ), (X2,X1, λ)}, while the set of substitution
rules is S = {(b,X1 → a, λ), (a,X2 → b, λ), (b,X3 → a, λ)}. The generated
language is L(IDs) = (ba)+, as we can easily see that any generated word begins
with a letter b and ends with a letter a. Furthermore, any word generated by IDs

is not of the form w1bbw2, as the only way to introduce the terminal symbol b
(except for the b introduced via the axiom) is by substituting a nonterminal X2

with b. However, this substitution requires a left context a, which means that at
some point the letter to the left of any b has been a. There are no insertion rules
which can insert an additional b or X2 between a and b. Furthermore, there are
no deletion rules at all, which means that no a can be deleted. Therefore, the
letter to the left of any b cannot be another b. Using the same argumentation,
we can see, that any word generated by IDs is not of the form w1aaw2, either.

It is easy to see that a result identical to Theorem 6 can be shown analogously
for the mirrors of INS0,0

1 DEL0,0
1 SUB1,0 and INS1,0

1 DEL1,0
1 SUB1,0. Therefore:

Corollary 2. INS0,0
1 DEL0,0

1 SUB0,1 = INS0,1
1 DEL0,1

1 SUB0,1.

We now analyze the computational power of ins-del-sub systems of size
(2, 0, 0; 2, 0, 0; 0, 1). While the family of ins-del systems of size (2, 0, 0; 2, 0, 0) is
known to be a proper subset of CF, see [11,12], we will show that an extension
with substitution rules of the form (λ,A → B,C) results in a significant increase
in computational power. More precisely, by simulating an ins-del systems of size
(2, 0, 1; 2, 0, 0), we will show that INS0,0

2 DEL0,0
2 SUB0,1 = RE holds.

Construction 3. Let ID = (V, T,A, I,D) be a system of size (2, 0, 1; 2, 0, 0) in
normal form and all insertion rules of ID be labelled in a one-to-one manner. We
construct the system IDr = (V ′, T, A, I ′,D, S′), which simulates ID, as follows:

V ′ = V ∪ {Ni,2, Ni,1 | i is the label of an insertion rule (λ, ab, c) ∈ I}
I ′ = {(λ,Ni,2Ni,1, λ) | i is the label of an insertion rule (λ, ab, c) ∈ I}
S′ = {(λ,Ni,1 → b, c), (λ,Ni,2 → a, b) | i is the label of a rule (λ, ab, c) ∈ I}

The basic idea of Construction 3 is essentially the same as in Construction 2:
as context-free insertion rules cannot scan for contexts (by definition), this task
is handled by the corresponding substitution rules. Consider an insertion rule
(λ,Ni,2Ni,1, λ) of IDr where i is the label of an insertion rule (λ, ab, c) ∈ I.
Then the substitution rules, corresponding to this rule, are (λ,Ni,1 → b, c) and
(λ,Ni,2 → a, b). This idea leads us to:

Theorem 7. INS0,1
2 DEL0,0

2 ⊆ INS0,0
2 DEL0,0

2 SUB0,1.

As INS0,1
2 DEL0,0

2 = RE holds according to [8, Theorem 5], we conclude:

Corollary 3. INS0,0
2 DEL0,0

2 SUB0,1 = RE.
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This is an interesting result as the families of ins-del systems of size (2, 0, 0; 2, 0, 0)
and of size (2, 0, 0; 0, 0, 0) are known to be equal [12, Theorem 4.7], yet both
classes extended with the same class of substitution rules differ in computational
power. As RE and CS are closed under reversal, the next corollary follows with
Lemma 2 and Theorem 4.

Corollary 4. INS0,0
2 DEL0,0

0 SUB1,0 ⊆ CS and INS0,0
2 DEL0,0

2 SUB1,0 = RE.

3.2 Extension with Two-Sided Substitution

After analyzing the effect of context-free and one-sided substitution rules on
context-free ins-del systems, we will now proceed to two-sided substitution rules,
i.e., substitution rules with left and right context. Somehow surprisingly, this lifts
the computational power of even the ‘weakest’ ins-del systems, that is, systems
of size (1, 0, 0; 1, 0, 0), up to the level of RE. Let ID ∈ INS1,1

1 DEL1,1
1 . We will

show that there is a system IDr ∈ INS0,0
1 DEL0,0

1 SUB1,1 capable of simulating
ID. The basic idea is that the context checks, necessary for simulating rules with
left and right context, are performed by the substitution rules. The system IDr

is constructed in the following manner:

Construction 4. Let ID = (V, T,A, I,D) ∈ INS1,1
1 DEL1,1

1 be in normal form
according to Construction 1. For each rule of ID, we have a unique label, say, i,
and we introduce a new nonterminal Xi. Define IDr = (V ′, T, A, I ′,D′, S) with

V ′ = V ∪ {Xi | i is the label of a rule in I or D} ,

I ′ = {(λ,Xi, λ) | i is the label of an insertion rule (u, a, v)} ,

D′ = {(λ,Xi, λ) | i labels a deletion rule (u, a, v) �= (λ,X, λ)} ∪ {(λ,X, λ)} ,

where X is defined as in Construction 1. Finally, S = S1 ∪ S2 with

S1 = {(u,Xi → a, v) | i is the label of an insertion rule (u, a, v)} and
S2 = {(u, a → Xi, v) | i is the label of a deletion rule (u, a, v) �= (λ,X, λ)} .

The basic idea is similar to Construction 2. Each deletion rule (u, a, v) ∈ D of
ID, where i is the label of (u, a, v), corresponds to a deletion rule (λ,Xi, λ) ∈ D′

and a substitution rule (u, a → Xi, v) ∈ S2. We leave the context checks to the
substitution rules. The same idea is applied to the insertion rules. With some
technical effort, we can prove the following result.

Proposition 2. Let α ∈ A. Consider a derivation α =̂⇒∗ w ∈ T ∗. Then, there
is an alternative derivation, leading from α to w, in which all nonterminals
Xi ∈ V ′\V are resolved immediately after being introduced.

This property is the key to show that for a system IDr of size (1, 0, 0; 1, 0, 0; 1, 1)
constructed from a given ins-del system ID of size (1, 1, 1; 1, 1, 1) in normal form
according to Construction 4, we find L(ID) = L(IDr). As such ins-del systems
are known to be computational complete, we conclude:
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Corollary 5. INS1,1
1 DEL1,1

1 = INS0,0
1 DEL0,0

1 SUB1,1 = RE.

We now analyze the power of ins-del-sub systems of size (1, 0, 0; 0, 0, 0; 1, 1). By
definition, it is clear that INS0,0

1 DEL0,0
0 SUB1,1 ⊆ INS0,0

1 DEL0,0
1 SUB1,1 holds.

In the following, we will show that this inclusion is proper. To be more pre-
cise, we will show that ins-del-sub systems of size (1, 0, 0; 0, 0, 0; 1, 1) charac-
terize the context-sensitive languages. By Theorem 4, we are left to prove
CS ⊆ INS0,0

1 DEL0,0
0 SUB1,1.

For every context-sensitive language L, there is a linear bounded automaton
(LBA) LB = (Q,T, Γ, q0, δ,�, F ) accepting L. We are going to construct an ins-
del-sub system of size (1, 0, 0; 0, 0, 0; 1, 1) to simulate LB. We first give a brief
sketch of the basic idea behind this simulation in the following paragraph. The
simulation evolves around strings of the form

(u1, $v1)(u2, v2) . . . (ui−1, vi−1)(ui, qjvi)(ui+1, vi+1) . . . (un−1, vn−1)(un, vn#)

with u1, . . . , un ∈ T ; qj ∈ Q and v1, . . . , vn ∈ Γ . The concatenation of the
first component of each tuple, that is, u1 . . . un, is the input word of the linear
bounded automaton LB, while the concatenation of the second component of
each tuple, that is, $v1v2 . . . vi−1qjvivi+1 . . . vn−1vn#, represents a configuration
of LB running on the input word u1 . . . un. The simulation of LB runs entirely
on the second components of the tuples. If $v1v2 . . . vi−1qjvivi+1 . . . vn−1vn# is
an accepting configuration, i.e., qi ∈ F , we substitute all tuples with their respec-
tive first component. For instance (uk, vk) is substituted with uk. In short, this
means that if (the simulation of) LB running on u1 . . . un halts in an accepting
configuration, we generate the word u1 . . . un. More details follow:

Construction 5. Consider an arbitrary LBA LB = (Q,T, Γ, q0, δ,�, F ) accept-
ing L ⊆ T ∗. Let $ be the left and # be the right endmarker of LB. We define L :=
{λ, $} and R := {λ,#}. Then, the ins-del-sub system IDr = (V ∪T, T,A, I, ∅, S)
with V = V1 ∪ V2 ∪ V3, where

V1 ={X0} ∪ {Xa | a ∈ T}
V2 ={(a, qib), (a, $qib), (a, qi$b), (a, qib#), (a, bqi#) | a ∈ T, b ∈ Γ, qi ∈ Q}

∪ {(a, b), (a, $b), (a, b#) | a ∈ T, b ∈ Γ}
V3 ={X(a,br);qi;L | a ∈ T, b ∈ Γ, qi ∈ Q, r ∈ R}

∪ {X(a,lb);qi;R | a ∈ T, b ∈ Γ, qi ∈ Q, l ∈ L}
∪ {X(a,qibr),r,X(a,lqib),l | a ∈ T, b ∈ Γ, qi ∈ Q, r ∈ R, l ∈ L}

generates the language L by simulating LB. Strings of the form

(u1, $v1)(u2, v2) . . . (ui−1, vi−1)(ui, qjvi)(ui+1, vi+1) . . . (un−1, vn−1)(un, vn#)

consist of symbols in V2, while the symbols in V1 are auxiliary symbols used to
generate such strings. The symbols in V3 are used to simulate LB’s transitions.
We define A = {X0(a, a#) | a ∈ T} ∪ {a | a ∈ L ∩ T} and I = {(λ,Xa, λ) | a ∈
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T}. If λ ∈ L, we add λ to the axiom. The set of substitution rules is defined as
S = Sinit ∪ SN ∪ SR ∪ SL ∪ Sendmarker,L ∪ Sendmarker,R ∪ Sfinal. In

Sinit ={(X0,Xa → (a, a), λ) | a ∈ T} ∪ {(λ,X0 → (a, $q0a), λ) | a ∈ T},

we collect substitution rules used to initialize the simulation.
The substitution rules in the set SN are used to simulate the application of

a transition δ(qi, b) � (qj , c,N). SN consists of substitution rules of the form

(λ, (a, qib) → (a, qjc), λ), (λ, (a, $qib) → (a, $qjc), λ), (λ, (a, qib#) → (a, qjc#), λ),

with a ∈ T, qi, qj ∈ Q, b, c ∈ Γ and δ(qi, b) � (qj , c,N).
The substitution rules in the set SL are used to simulate left moves. For each

transition δ(qi, b) � (qj , c, L) of LB, we add substitution rules

(λ, (a, qibr) → X(a,cr);qj ;L, λ), (λ, (d, le) → X(d,lqje),l,X(a,cr);qj ;L),

(X(d,lqje),l,X(a,cr);qj ;L → (a, cr), λ), (λ,X(d,lqje),l → (d, lqje), (a, cr))

to SL with a, d ∈ T, b, c, e ∈ Γ, qi, qj ∈ Q, l ∈ L, r ∈ R. Similarly, the
substitution rules in SR can simulate right moves δ(qi, b) � (qj , c, R) with:

(λ, (a, lqib) → X(a,lc);qj ;R, λ), (X(a,lc);qj ;R, (d, er) → X(d,qjer),r, λ)

(λ,X(a,lc);qj ;R → (a, lc),X(d,qjer),r), ((a, lc),X(d,qjer),r → (d, qjer), λ) .

The set Sendmarker,L consists of substitution rules of the form

(λ, (a, $qib) → (a, qj$c), λ), (λ, (a, qi$b) → (a, $qjb), λ)

with a ∈ T, b, c ∈ Γ, qi, qj ∈ Q, δ(qi, b) � (qj , c, L) and δ(qi, $) � (qj , $, R).
The set Sendmarker,R consists of substitution rules of the form

(λ, (a, qib#) → (a, cqj#), λ), (λ, (a, bqi#) → (a, qjb#), λ)

with a ∈ T, b, c ∈ Γ, qi, qj ∈ Q, δ(qi, b) � (qj , c, R) and δ(qi,#) � (qj ,#, L).
Both sets are used for the simulation of δ(qi, b) � (qj , c, L) and δ(qi, b) � (qj , c, R)
as well, in the case the read/write head moves to/from an endmarker. The set
Sfinal = Sf1 ∪ Sf2 is used to generate a word w ∈ T ∗ if w has been accepted by
the simulated linear bounded automaton LB. Sf1 consists of the substitutions

(λ, (a, qf b) → a, λ), (λ, (a, $qf b) → a, λ), (λ, (a, qf$b) → a, λ),
(λ, (a, qf b#) → a, λ), (λ, (a, bqf#) → a, λ)

and Sf2 consists of

(λ, (a, b) → a, c), (c, (a, b) → a, λ), (λ, (a, $b) → a, c), (c, (a, b#) → a, λ)

with a, c ∈ T, b ∈ Γ, qf ∈ F .

Working out the correctness of this construction, we can show:
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Theorem 8. INS0,0
1 DEL0,0

0 SUB1,1 = CS.

As a consequence of Theorem 8, we can formulate the following Penttonen-
style normal form theorem for context-sensitive languages. We believe that this
could be useful in particular when dealing with variations of insertion systems.

Theorem 9. For every context-sensitive language L, λ /∈ L, there is a context-
sensitive grammar G = (N,T, P, S), such that L = L(G), with rules of the forms

A → AB

AB → AC,AB → CB

A → a, with a ∈ T, A,B,C ∈ N.

Allowing erasing productions on top, we also arrive at a new characterization of
the family of recursively enumerable languages. By different methods, we could
even prove that either of the two non-context-free forms suffices to achieve RE.

4 Summary and Main Open Questions

We have shown that the addition of substitution rules to ins-del systems yields
new characterizations of RE and CS. In particular we have shown the fol-
lowing equalities: INS0,0

2 DEL0,0
2 SUB1,0 = RE, INS0,0

1 DEL0,0
1 SUB1,1 = RE and

INS0,0
1 DEL0,0

0 SUB1,1 = CS. Additionally we have shown INS1,0
1 DEL1,0

1 SUB1,0 =
INS0,0

1 DEL0,0
1 SUB1,0. While in the above cases an extension with (non-context-

free) substitution rules leads to an increase in computational power, we have also
shown that the addition of context-free substitution rules to context-free ins-del
systems does not affect the computational power.

The main open question is if INS0,0
1 DEL0,0

1 SUB1,0 is computationally com-
plete. We conjecture this not to be the case, as with only left context rules, infor-
mation can only be propagated in one direction. Yet, should INS0,0

1 DEL0,0
1 SUB1,0

equal RE, this would provide an interesting new normal form. A minor open
question is the strictness of the inclusion INS0,0

2 DEL0,0
0 SUB0,1 ⊆ CS.
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