Skip to main content

Nanomaterials from Agrowastes: Past, Present, and the Future

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Agricultural biomass is one of the biggest renewable sources for food, energy, and several industries. However, a significant fraction of agricultural biomass is discarded as nonedible waste known as agrowaste. In a broad sense, agrowaste is defined as every type of waste material generated during agricultural practices that includes chemicals, pesticides, fertilizers, and unused crops along with nonedible plant parts. It has been estimated that around one-third of the crop is discarded as waste, which may vary from 1.6 billion to 6 billion tons every year along with lost food as well. Nanotechnology has become more and more influential in the agriculture and environment conservation. Nanotechnology made it possible to gain optimum crop precaution with 50–60% fewer chemicals (pesticides and fertilizers). Besides usage of conventional nanomaterials like nanofibers, quantum dots, and carbon nanotubes, nanotechnology also allows the utilization of many biodegradable and environment-friendly materials like agrowaste for the preparation of novel nanomaterials and contribute to agrowaste management. Instead of using edible parts of food for the synthesis, an advanced system utilizes nonedible parts or discarded crops as carriers, inducer, or raw material itself. In the past few years, agrowaste has been used for the manufacturing of nanostructures including weed like Cyperus rotundus, Medicago sativa, Gloriosa superba, and Tinospora cordifolia; crop residues like rice husk, soy and wheat straw; coconut shell, peel of orange, banana, and pomegranate. However, controlling the morphology and properties of such nanomaterials is still a challenge for the researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. FAO (2013) Food wastage footprint impacts on natural resources: summary report. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  2. Devadiga A, Shetty KV, Saidutta MB (2015) Timber industry waste-teak (Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles. Int Nano Lett 5(4):205–214. https://doi.org/10.1007/s40089-015-0157-4

    Article  CAS  Google Scholar 

  3. Gan PP, Ng SH, Huang Y et al (2012) Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour Technol 113:132–135

    Article  CAS  Google Scholar 

  4. Basavegowda N, Lee YR (2013) Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: a novel approach towards waste utilization. Mater Lett 109:31–33

    Article  CAS  Google Scholar 

  5. Roopan RG, Madhumitha G, Rahuman AA et al (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crops Prod 43:631–635

    Article  CAS  Google Scholar 

  6. Malhotra A, Sharma N, Kumar N et al (2014) Multi-analytical approach to understand biomineralization of gold using rice bran: a novel and economical route. RSC Adv 4:39484–39490

    CAS  Google Scholar 

  7. Harish BS, Uppuluri KB, Anbazhagan V (2015) Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent. Carbohydr Polym 132:104–110

    Article  CAS  Google Scholar 

  8. Adelere IA, Lateef A (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol Rev 5(6):567–587

    Article  CAS  Google Scholar 

  9. Lateef A, Azeez MA, Asafa TB et al (2015) Biogenic synthesis of silver nanoparticles using pod extract of Cola nitida: antibacterial, antioxidant activities and application as additive paint. J Taibah Univ Sci. https://doi.org/10.1016/j.jtusci.2015.10.010

  10. Lateef A, Azeez MA, Asafa TB et al (2016) Cocoa pod extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J Nanostruct Chem 6:159–169

    Article  CAS  Google Scholar 

  11. Lateef A, Azeez MA, Asafa TB et al (2015) Cola nitida mediated biogenic synthesis of silver nanoparticles using seed and seed shell extracts and evaluation of antibacterial activities. BioNanoScience 5:196–205

    Article  Google Scholar 

  12. Jain PK, Huang X, El-Sayed IH et al (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  Google Scholar 

  13. Vilchis-Nestor AR, Trujillo-Reyes J, Colín-Molina JA et al (2013) Biogenic silver nanoparticles on carbonaceous material from sewage sludge for degradation of methylene blue in aqueous solution. Int J Environ Sci Technol 11:977–986

    Article  CAS  Google Scholar 

  14. Kumar B, Smita K, Cumbal L et al (2014) Sacha inchi (Plukenetia volubilis L.) shell biomass for synthesis of silver nanocatalyst. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2014.03.005

  15. Velu K, Elumalai D, Hemalatha P et al (2015) Evaluation of silver nanoparticles toxicity of Arachis hypogaea peel extracts and its larvicidal activity against malaria and dengue vectors. Environ Sci Pollut Res 22:17769–17779

    Article  CAS  Google Scholar 

  16. Bankar A, Joshi B, Kumar AR et al (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A Physicochem Eng Asp 368:58–63

    Article  CAS  Google Scholar 

  17. Ibrahim HMM (2019) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275

    Google Scholar 

  18. Kahrilas GA, Wally LM, Fredrick SJ et al (2013) Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain Chem Eng 2:367–376

    Article  CAS  Google Scholar 

  19. Dauthal P, Mukhopadhyay M (2015) Agro-industrial waste-mediated synthesis and characterization of gold and silver nanoparticles and their catalytic activity for 4-nitroaniline hydrogenation. Korean J Chem Eng 32:837–844

    Article  CAS  Google Scholar 

  20. Huang J, Zhan G, Zheng B et al (2011) Biogenic silver nanoparticles by Cacumen platycladi extract: synthesis, formation mechanism, and antibacterial activity. Ind Eng Chem Res 50:9095–9106

    Article  CAS  Google Scholar 

  21. Heydari R, Rashidipour M (2014) Green synthesis of silver nanoparticles using extract of oak fruit hull (Jaft): synthesis and in vitro cytotoxic effect on MCF-7 cells. Int J Breast Cancer 846743. https://doi.org/10.1155/2015/846743

  22. Nisha SN, Aysha OS, Rahaman JSN et al (2014) Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochim Acta A 124:194–198

    Article  CAS  Google Scholar 

  23. Apalangya V, Rangari V, Tiimob B et al (2014) Development of antimicrobial water filtration hybrid material from bio source calcium carbonate and silver nanoparticles. Appl Surf Sci 295:108–114

    Article  CAS  Google Scholar 

  24. Liang M, Su R, Qi W et al (2014) Synthesis of well dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J Mater Sci 49:1639–1647

    Article  CAS  Google Scholar 

  25. Yang N, Wei Hong L, Hao L (2014) Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater Lett 134:67–70

    Article  CAS  Google Scholar 

  26. Krishnaswamy K, Vali H, Orsat V (2014) Value-adding to grape waste: green synthesis of gold nanoparticles. J Food Eng 142:210–220

    Article  CAS  Google Scholar 

  27. Patra JK, Baek KH (2015) Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int J Nanomedicine 10:7253–7264. https://doi.org/10.2147/IJN.S95483

    Article  CAS  Google Scholar 

  28. Kanchi S, Kumar G, Lo A et al (2014) Exploitation of de-oiled Jatropha waste for gold nanoparticles synthesis: a green approach. Arab J Chem. https://doi.org/10.1016/j.arabje.2014.08.006

  29. Anand K, Gengan RM, Phulukdaree A et al (2015) Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem 21:1105–1111

    Article  CAS  Google Scholar 

  30. Bankar A, Joshi B, Kumar AR et al (2010) Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B 80:45–50

    Article  CAS  Google Scholar 

  31. Zheng B, Qian L, Yuan H et al (2010) Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82:177–183

    Article  CAS  Google Scholar 

  32. Devi PS, Banerjee S, Chowdhury SR et al (2012) Eggshell membrane: a natural biotemplate to synthesize fluorescent gold nanoparticles. RSC Adv 2:11578–11585

    Article  CAS  Google Scholar 

  33. Yuvakkumar R, Suresh J, Nathanael AJ et al (2014) Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Mater Lett 128:170–174

    Article  CAS  Google Scholar 

  34. Yuvakkumar R, Suresh J, Nathanael AJ et al (2014) Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng C 41:17–27

    Article  CAS  Google Scholar 

  35. Dauthal P, Mukhopadhyay M (2015) Biofabrication, characterization, and possible bio-reduction mechanism of platinum nanoparticles mediated by agro-industrial waste and their catalytic activity. J Ind Eng Chem 22:185–191

    Article  CAS  Google Scholar 

  36. Roopan SM, Bharathi A, Kumar R et al (2012) Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract Annona squamosa L. peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids Surf B Biointerfaces 92:209–212

    Article  CAS  Google Scholar 

  37. Lakshmipathy R, Reddy BP, Sarada NC et al (2015) Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application. Appl Nanosci 5:223–228

    Article  CAS  Google Scholar 

  38. Prasad CH, Gangadhara S, Venkateswarlu P (2015) Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Appl Nanosci. https://doi.org/10.1007/s13204-015-0485-8

  39. Venkateswarlu S, Rao YS, Balaji T et al (2013) Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract. Mater Lett 100:241–244

    Article  CAS  Google Scholar 

  40. Roopan SM, Bharathi A, Prabhakarn A et al (2012) Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract. Mol Biomol Spectrosc 98:86–90

    Article  CAS  Google Scholar 

  41. Ghosh PR, Fawcett D, Sharma SB et al (2017) Production of high-value nanoparticles via biogenic processes using aquacultural and horticultural food waste. Materials 10:852

    Article  CAS  Google Scholar 

  42. Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J 2014:631013. https://doi.org/10.1155/2014/631013

    Article  CAS  Google Scholar 

  43. Lateef A, Azeez MA, Asafa TB et al (2016) Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: antibacterial and antioxidant activities and application as a paint additive. J Taibah Univ Sci 10(4):551–562. https://doi.org/10.1016/j.jtusci.2015.10.010

    Article  Google Scholar 

  44. Narasaiah BP, Mandal BK (2020) Remediation of azo-dyes based toxicity by agro-waste cotton boll peels mediated palladium nanoparticles. J Saudi Chem Soc 24:267–281

    Article  CAS  Google Scholar 

  45. Zamare D, Vutukuru S, Babu R (2016) Biosynthesis of nanoparticles from agro-waste: a sustainable approach. Int J Eng Appl Sci Technol 1(12):85–92

    Google Scholar 

  46. Tade RS, Nangare SN, Patil PO (2020) Agro-industrial waste-mediated green synthesis of silver nanoparticles and evaluation of its antibacterial activity. Nano Biomed Eng 12(1):57–66. https://doi.org/10.5101/nbe.v12i1.p57-66

    Article  CAS  Google Scholar 

  47. Baiocco D, Lavecchia R, Natali S et al (2016) Production of metal nanoparticles by agro-industrial wastes: a green opportunity for nanotechnology. Chem Eng Trans 47. https://doi.org/10.3303/CET1647012

  48. Dauthal P, Mukhopadhyay M (2016) Phyto-synthesis and structural characterization of catalytically active gold nanoparticles biosynthesized using Delonix regia leaf extract. 3 Biotech 6:118. https://doi.org/10.1007/s13205-016-0432-8

    Article  Google Scholar 

  49. Mishra A, Kumari M, Pandey S et al (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242

    Article  CAS  Google Scholar 

  50. Oladipo IC, Lateef A, Elegbede JA et al (2017) Enterococcus species for the one-pot biofabrication of gold nanoparticles: characterization and nanobiotechnological applications. J Photochem Photobiol B Biol. https://doi.org/10.1016/j.jphotobiol.2017.06.003

  51. Mojumdar A, Deka J (2019) Recycling agro-industrial waste to produce amylase and characterizing amylase–gold nanoparticle composite. Int J Recycling Org Waste Agric 8:S263–S269. https://doi.org/10.1007/s40093-019-00298-4

    Article  Google Scholar 

  52. Naik MJP, Debbarma J, Saha M et al (2020) Graphene oxide nanoflakes from various agrowastes. Mater Werkst 51:368–374. https://doi.org/10.1002/mawe.201900061

    Article  CAS  Google Scholar 

  53. Somanathan T, Karthika P, Kostya O et al (2015) Graphene oxide synthesis from agro waste. Nanomaterials 5:826–834. https://doi.org/10.3390/nano5020826

    Article  CAS  Google Scholar 

  54. Debbarma J, Naik MJP, Saha M (2019) From agrowaste to graphene nanosheets: chemistry and synthesis. Fullerenes Nanotubes Carbon Nanostruct 27(6):482–485. https://doi.org/10.1080/1536383X.2019.1601086

    Article  CAS  Google Scholar 

  55. Bo Z, Shuai X, Mao S et al (2014) Green preparation of reduced graphene oxide for sensing and energy storage applications. Sci Rep 4:4684

    Article  CAS  Google Scholar 

  56. Ayesha H, Ajaya KS, Bhawana J et al (2020) Muffle atmosphere promoted fabrication of graphene oxide nanoparticle by agricultural waste. Fullerenes Nanotubes Carbon Nanostruct. https://doi.org/10.1080/1536383X.2020.1728744

  57. Marchiol L (2018) Nanotechnology in agriculture: new opportunities and perspectives. In: Çelik Ö (ed) New visions in plant science. IntechOpen, London. https://doi.org/10.5772/intechopen.74425

    Chapter  Google Scholar 

  58. Fortunate F, Maxwell O, Thomas CA et al (2020) Methods of extracting silica and silicon from agricultural waste ashes and application of the produced silicon in solar cells: a mini-review. Int J Sustain Eng. https://doi.org/10.1080/19397038.2020.1720854

  59. Falk G, Shinhe GP, Teixeira LB et al (2019) Synthesis of silica nanoparticles from sugarcane bagasse ash and nanosilicon via magnesiothermic reactions. Ceram Int 45:21618–21624. https://doi.org/10.1016/j.ceramint.2019.07.157

    Article  CAS  Google Scholar 

  60. Agunsoye JO, Adebisi JA, Bello SA et al (2018) Production of silicon nanoparticles from selected agrowastes for solar applications. Unilag J Med Sci Technol 6:1

    Google Scholar 

  61. Selvaraj V, Rathinam Y, Venkatachalam R (2013) Nano silicon from nano silica using natural resource (RHA) for solar cell fabrication. Phosphorus Sulfur Silicon Relat Elem 188(9):1178–1193. https://doi.org/10.1080/10426507.2012.740106

    Article  CAS  Google Scholar 

  62. Le VH, Thuc CNH, Thuc HH (2013) Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett 8:58

    Article  CAS  Google Scholar 

  63. Palanivelu R, Manivasakan P, Dhineshbabu NR et al (2016) Comparative study on isolation and characterization of amorphous silica nanoparticles from different grades of rice hulls. Synth React Inorg Met-Org Nano-Met Chem 46(3):445–452. https://doi.org/10.1080/15533174.2014.988240

    Article  CAS  Google Scholar 

  64. Hamid K, Nasim K, Amir HM (2013) Optimization of amorphous silica nanoparticles synthesis from rice straw ash using design of experiments technique. Part Sci Technol 31(4):366–371. https://doi.org/10.1080/02726351.2012.755587

    Article  CAS  Google Scholar 

  65. Greil P (2015) Perspectives of nano-carbon based engineering materials. Adv Eng Mater 17(2):124–137

    Article  CAS  Google Scholar 

  66. Zhang H, Zhang X, Sun X et al (2013) Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide. Sci Rep 3:3534

    Article  Google Scholar 

  67. Mochalin VN, Shenderova O, Ho D et al (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23

    Article  CAS  Google Scholar 

  68. Wang DW, Li F, Liu M et al (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47(2):373–376

    Article  CAS  Google Scholar 

  69. Teradal NL, Jelinek R (2017) Carbon nanomaterials in biological studies and biomedicine. Adv Healthc Mater 6(17):1700574

    Article  CAS  Google Scholar 

  70. Zamani A, Marjani AP, Mousavi Z (2019) Agricultural waste biomass-assisted nanostructures: synthesis and application. Green Process Synth 8(1):421–429

    Article  CAS  Google Scholar 

  71. Patel DK, Kim HB, Dutta SD et al (2020) Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials 13(7):1679

    Article  CAS  Google Scholar 

  72. Hildago-Oporto P, Navia R, Hunter R et al (2019) Synthesis of carbon nanotubes using biochar as precursor material under microwave irradiation. J Environ Manag 244:83–91

    Article  CAS  Google Scholar 

  73. Kure N, Hamidon MN, Azhari S et al (2017) Simple microwave-assisted synthesis of carbon nanotubes using polyethylene as carbon precursor. J Nanomater 2017:2474267. https://doi.org/10.1155/2017/2474267

    Article  CAS  Google Scholar 

  74. Ummah H, Suriamihardja DA, Selintung M et al (2015) Analysis of chemical composition of rice husk used as absorber plates sea water into clean water. ARPN J Eng Appl Sci 10(14):6046–6050

    CAS  Google Scholar 

  75. Naveed Ul Haq A, Nadhman A, Ullah I et al (2017) Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. J Nanomater 2017:8510342. https://doi.org/10.1155/2017/8510342

    Article  CAS  Google Scholar 

  76. Mody VV, Siwale R, Singh A et al (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2(4):282

    Article  CAS  Google Scholar 

  77. Prasad C, Gangadhara S, Venkateswarlu P (2016) Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Appl Nanosci 6(6):797–802

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thangadurai, D. et al. (2021). Nanomaterials from Agrowastes: Past, Present, and the Future. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_43-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_43-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics