Skip to main content

Transposable Elements as Tools for Reshaping the Genome: It Is a Huge World After All!

  • Protocol
  • First Online:
Mobile Genetic Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 859))

Abstract

Transposable elements (TEs) are discrete pieces of DNA that can move from one site to another within genomes and sometime between genomes. They are found in all major branches of life. Because of their wide distribution and considerable diversity, they are a considerable source of genomic variation and as such, they constitute powerful drivers of genome evolution. Moreover, it is becoming clear that the epigenetic regulation of certain genes is derived from defense mechanisms against the activity of ancestral transposable elements. TEs now tend to be viewed as natural molecular tools that can reshape the genome, which challenges the idea that TEs are natural tools used to answer biological questions. In the first part of this chapter, we review the classification and distribution of TEs, and look at how they have contributed to the structural and transcriptional reshaping of genomes. In the second part, we describe methodological innovations that have modified their contribution as molecular tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chandler M, Mahillon J, (2002) Insertion sequences revisited. In: Craig N, Craigie R, Gellert M, Lambowitz A (ed.), Mobile DNA, vol. 2. ASM Press, Washington, DC

    Google Scholar 

  2. Blount Z, Grogan D, (2005) New insertion sequences of Sulfolobus: functional properties and implications for genome evolution in hyperthermophilic archaea. Mol Microbiol 55:312–325

    Article  PubMed  CAS  Google Scholar 

  3. Wagner A, (2006) Periodic extinctions of transposable elements in bacterial lineages: evidence from intragenomic variation in multiple genomes. Mol Biol Evol 23:723–733

    Article  PubMed  CAS  Google Scholar 

  4. Siguier P, et al (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucl Acids Res 34:D32–D36

    Article  PubMed  CAS  Google Scholar 

  5. Kunst F, et al (1997) The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  PubMed  CAS  Google Scholar 

  6. Filée J, Siguier P, Chandler M. (2007) Insertion sequence diversity in archaea. Microbiol Mol Biol Rev 71:121–157

    Article  PubMed  CAS  Google Scholar 

  7. Parks A, Peters J, (2009) Tn7 elements: engendering diversity from chromosomes to episomes. Plasmid 61:1–14

    Article  PubMed  CAS  Google Scholar 

  8. Reznikoff W, (2008) Transposon Tn5. Annu Rev Genet 42:269–286

    Article  PubMed  CAS  Google Scholar 

  9. Chaconas G, Harshey R, (2002) Transposition of phage Mu DNA. Craig N, Craigie R, Gellert M, Lambowitz A (ed.), Mobile DNA, vol. 2. ASM Press, Washington, DC

    Google Scholar 

  10. Feschotte C, Pritham E, (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    Article  PubMed  CAS  Google Scholar 

  11. Kapitonov V, Jurka J, (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714–19

    Article  PubMed  CAS  Google Scholar 

  12. Pritham E, Putliwala T, Feschotte C, (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390:3–17

    Article  PubMed  CAS  Google Scholar 

  13. Biémont C, Vieira C, (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524

    Article  PubMed  CAS  Google Scholar 

  14. Frost L, et al (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  PubMed  CAS  Google Scholar 

  15. Touchon M, Rocha E, (2007) Causes of insertion sequences abundance in prokaryotic genomes. Mol Biol Evol 24:969–981

    Article  PubMed  CAS  Google Scholar 

  16. Misumi O, et al (2005) Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol 137:567–585

    CAS  Google Scholar 

  17. Xu P, et al (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112

    Article  PubMed  CAS  Google Scholar 

  18. Lander E, et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  19. Waterston R, et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  20. Gentles A, et al (2007) Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 17:992–1004

    Article  PubMed  CAS  Google Scholar 

  21. Tenaillon M, Hollister J, Gaut B (2010) A triptych of the evolution of plant transposable elements. Trends Plant Sci 15:471–478

    Article  PubMed  CAS  Google Scholar 

  22. Sela N, Kim E, Ast G. (2010) The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates. Genome Biol 11:R59

    Article  PubMed  Google Scholar 

  23. Pritham E, (2009) Transposable elements and factors influencing their success in eukaryotes. J Hered 100:648–655

    Article  PubMed  CAS  Google Scholar 

  24. Hawkins J, et al (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  PubMed  CAS  Google Scholar 

  25. Piegu B, et al (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  PubMed  CAS  Google Scholar 

  26. Wicker T, et al (2003) CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol 132:52–63

    CAS  Google Scholar 

  27. Pace J, Feschotte C, (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17:422–432

    Article  PubMed  CAS  Google Scholar 

  28. Feschotte C, Jiang N, Wessler S, (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  PubMed  CAS  Google Scholar 

  29. Paterson A, et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:51–556

    Article  CAS  Google Scholar 

  30. Oki N, et al (2008) A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. Genes Genet Syst 83:321–329

    CAS  Google Scholar 

  31. Blumenstiel J, (2011) Evolutionary dynamics of transposable elements in a small RNA world. Trends Genet 27:23–31

    Article  PubMed  CAS  Google Scholar 

  32. Ray D, et al (2008) Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res 18:717–728

    Article  PubMed  CAS  Google Scholar 

  33. Sinzelle L, Izsvák Z, Ivics Z. (2009) Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol Life Sci 66:1073–1093

    Article  PubMed  CAS  Google Scholar 

  34. Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546

    Article  PubMed  Google Scholar 

  35. Bowen N, et al (2003) Retrotransposons and their recognition of pol II promoters: a comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res 13:1984–1997

    Article  PubMed  CAS  Google Scholar 

  36. Quesneville H, Nouaud D, Anxolabéhère D, (2003) Detection of new transposable element families in Drosophila melanogaster and Anopheles gambiae genomes. J Mol Evol 57 Suppl 1:S50-S59

    Google Scholar 

  37. Mills R, et al (2007) Which transposable elements are active in the human genome? Trends Genet 23:183–91

    Article  PubMed  CAS  Google Scholar 

  38. Liu W, et al (1995) Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res 23:1758–1765

    Article  PubMed  CAS  Google Scholar 

  39. Grandbastien M, et al (1997) The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica 100:241–252

    Article  PubMed  CAS  Google Scholar 

  40. Li T, Schmid C, (2001) Differential stress induction of individual Alu loci: implications for transcription and retrotransposition. Gene 276:135–141

    Article  PubMed  CAS  Google Scholar 

  41. Kimura R, et al (2001) Stress induction of Bm1 RNA in silkworm larvae: SINEs, an unusual class of stress genes. Cell Stress Chaperones 6:263–272

    Article  PubMed  CAS  Google Scholar 

  42. Zeh D, Zeh J, Ishida Y, (2009) Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays 31:715–726

    Article  PubMed  CAS  Google Scholar 

  43. Rebollo R, et al (2010) Jumping genes and epigenetics: towards new species. Gene 454:1–7

    Article  PubMed  CAS  Google Scholar 

  44. Marino-Ramirez L, et al (2005) Transposable elements donate lineage-specific regulatory sequences to host genomes. Cytogenet Genome Res 110:333–341

    Article  PubMed  CAS  Google Scholar 

  45. Le Rouzic A, Boutin T, Capy P, (2007) Long-term evolution of transposable elements. Proc Natl Acad Sci USA 104:19375–19380

    Google Scholar 

  46. Böhne A, et al (2008) Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res 16:203–215

    Article  PubMed  CAS  Google Scholar 

  47. de Boer J, et al (2007) Bursts and horizontal evolution of DNA transposons in the speciation of pseudotetraploid salmonids. BMC Genomics 8:422

    Article  PubMed  Google Scholar 

  48. Ungerer M, Strakosh S, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:R872–R873

    Article  PubMed  CAS  Google Scholar 

  49. Mills R, et al (2006) Recently mobilized transposons in the human and chimpanzee genomes. Am J Hum Genet 78:671–679

    Article  PubMed  CAS  Google Scholar 

  50. Britten R (2010) Transposable element insertions have strongly affected human evolution. Proc Natl Acad Sci USA 107:19945–19948

    Article  PubMed  CAS  Google Scholar 

  51. Ling A, Cordaux R, (2010) Insertion sequence inversions mediated by ectopic recombination between terminal inverted repeats. PLoS One 5:e15654

    Article  PubMed  CAS  Google Scholar 

  52. Kazazian H, et al (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166

    Article  PubMed  CAS  Google Scholar 

  53. Deininger P, Batzer M, (1999) Alu repeats and human disease. Mol Genet Metab 67:183–193

    Article  PubMed  CAS  Google Scholar 

  54. Chen J, et al (2005) A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 117:411–427

    Article  PubMed  CAS  Google Scholar 

  55. Burwinkel B, et al (1998) Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI. Am J Hum Genet 62:785–791

    Article  PubMed  CAS  Google Scholar 

  56. Fitch D, et al (1991) Duplication of the gamma-globin gene mediated by L1 long interspersed repetitive elements in an early ancestor of simian primates. Proc Natl Acad Sci USA 88:7396–7400

    Article  PubMed  CAS  Google Scholar 

  57. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    Article  PubMed  CAS  Google Scholar 

  58. Oliver K, Greene W (2009) Transposable elements: powerful facilitators of evolution. Bioessays 31:703–714

    Article  PubMed  CAS  Google Scholar 

  59. Jordan I, et al (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72

    Article  PubMed  CAS  Google Scholar 

  60. Jiang N, et al (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569–573

    Article  PubMed  CAS  Google Scholar 

  61. Morgante M, et al (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997–1002

    Article  PubMed  CAS  Google Scholar 

  62. Kipling D, Warburton P, (1997) Centromeres, CENP-B and Tigger too. Trends Genet 13:141–145

    Article  PubMed  CAS  Google Scholar 

  63. Zhou L, et al (2004) Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432:995–1001

    Article  PubMed  CAS  Google Scholar 

  64. Liu D, et al (2007) The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Mol Cell Biol 27:1125–1132

    Article  PubMed  CAS  Google Scholar 

  65. George J, et al (2010) Evolution of diverse mechanisms for protecting chromosome ends by Drosophila TART telomere retrotransposons. Proc Natl Acad Sci USA 107:21052–21057

    Article  PubMed  CAS  Google Scholar 

  66. Bourque G, et al (2008) Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res 18:1752–1762

    Article  PubMed  CAS  Google Scholar 

  67. Bestor T, (1999) Sex brings transposons and genomes into conflict. Genetica 107:289–295

    Article  PubMed  CAS  Google Scholar 

  68. Malone C, et al. (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137:522–535

    Article  PubMed  CAS  Google Scholar 

  69. Malone C, Hannon G, (2009) Small RNAs as Guardians of the Genome. Cell 136:656–668

    Article  PubMed  CAS  Google Scholar 

  70. Suzuki M, Bird A, (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  PubMed  CAS  Google Scholar 

  71. Piriyapongsa J, Jordan I, (2007) A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS One 2:e203

    Google Scholar 

  72. Rudin C, Thompson C, (2001) Transcriptional activation of short interspersed elements by DNA-damaging agents. Genes Chromosomes Cancer 30:64–71

    Article  PubMed  CAS  Google Scholar 

  73. Cam H, et al (2008) Host genome surveillance for retrotransposons by transposon-derived proteins. Nature 451:431–436

    Article  PubMed  CAS  Google Scholar 

  74. Evans LH, et al (2009) Mobilization of endogenous retroviruses in mice after infection with an exogenous retrovirus. J Virol. 83(6):2429–2435

    Article  PubMed  CAS  Google Scholar 

  75. Maumus F, et al (2009) Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics. 10:624

    Article  PubMed  CAS  Google Scholar 

  76. Grandbastien MA, et al. (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res. 110(1–4):229–241

    Article  PubMed  CAS  Google Scholar 

  77. Eickbush T, (2002) Repair by retrotransposition. Nat Genet 31:126–127

    Article  PubMed  CAS  Google Scholar 

  78. Hâsler J, Strub K, (2006) Alu RNP and Alu RNA regulate translation initiation in vitro. Nucleic Acids Res 34:2374–2385

    Article  PubMed  CAS  Google Scholar 

  79. Doolittle W, Sapienza C, (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  PubMed  CAS  Google Scholar 

  80. Leib-Mosch C, Seifarth W, (1995) Evolution and biological significance of human retroelements. Virus Genes 11:133–145

    Article  PubMed  CAS  Google Scholar 

  81. Simons C, et al (2006) Transposon-free regions in mammalian genomes. Genome Res 16:164–172

    Article  PubMed  CAS  Google Scholar 

  82. Mortada H, Vieira C, Lerat E, (2010) Genes devoid of full-length transposable element insertions are involved in development and in the regulation of transcription in human and closely related species. J Mol Evol 71:180–91

    Article  PubMed  CAS  Google Scholar 

  83. McClintock B, (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36:344–355

    Article  PubMed  CAS  Google Scholar 

  84. Britten R, Davidson E, (1976) DNA sequence arrangement and preliminary evidence on its evolution. Fed Proc 35:2151–2157

    PubMed  CAS  Google Scholar 

  85. Cui F, Sirotin M, Zhurkin V, (2011) Impact of Alu repeats on the evolution of human p53 binding sites. Biol Direct 6:2

    Article  PubMed  CAS  Google Scholar 

  86. Lerat E, (2010) Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity 104:520–533

    Article  PubMed  CAS  Google Scholar 

  87. Abrusan G, et al (2009) Teclass – a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics 25:1329–1330

    Article  PubMed  CAS  Google Scholar 

  88. Chen N, (2004) Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics Chapter 4:Unit 4.10

    Google Scholar 

  89. Jurka J, et al (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–7

    Article  PubMed  CAS  Google Scholar 

  90. Kichenaradja P, et al (2010) ISbrowser: an extension of ISfinder for visualizing insertion sequences in prokaryotic genomes. Nucleic Acids Res 38(Database issue):D62–68

    Google Scholar 

  91. Han Y, Wessler S, (2010) MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 38:e199

    Article  PubMed  CAS  Google Scholar 

  92. Mersch B, et al (2007) SERpredict: detection of tissue- or tumor-specific isoforms generated through exonization of transposable elements. BMC Genet 8:78

    Article  PubMed  CAS  Google Scholar 

  93. Grenier E, Castagnone-Sereno P, Abad P, (1997) Satellite DNA sequences as taxonomic markers in nematodes of agronomic interest. Parasitol Today 13:398–401

    Article  PubMed  CAS  Google Scholar 

  94. Hurst G, Jiggins F, (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc Biol Sci 272:1525–1534

    Article  PubMed  CAS  Google Scholar 

  95. van de Lagemaat L, et al (2005) Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Res 15:1243–1249

    Article  PubMed  CAS  Google Scholar 

  96. Ludwig A, et al (2005) An unusual primate locus that attracted two independent Alu insertions and facilitates their transcription. J Mol Biol 350:200–214

    Article  PubMed  CAS  Google Scholar 

  97. Salem A, et al (2003) Alu elements and hominid phylogenetics. Proc Natl Acad Sci USA 100:12787–12791

    Article  PubMed  CAS  Google Scholar 

  98. Warren W, et al (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–183

    Article  PubMed  CAS  Google Scholar 

  99. Kriegs J, et al (2006) Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4:e91

    Article  PubMed  CAS  Google Scholar 

  100. Farwick A, et al (2006) Automated scanning for phylogenetically informative transposed elements in rodents. Syst Biol 55:936–948

    Article  PubMed  Google Scholar 

  101. Nilsson M, et al (2010) Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol 8:e1000436

    Article  PubMed  CAS  Google Scholar 

  102. Gu J, et al (2005) Bacterial insertion sequence IS256 as a potential molecular marker to discriminate invasive strains from commensal strains of Staphylococcus epidermidis. J Hosp Infect 1:342–348

    Article  Google Scholar 

  103. Nishihara H, et al (2005) A retrospon analysis of Afrotherian phylogeny. Mol Biol Evol 22:1823–1833

    Article  PubMed  CAS  Google Scholar 

  104. Shedlock A, Okada N, (2004) SINEs of speciation: tracking lineages with retroposons. Trends Ecol Evol 19:545–553

    Article  PubMed  Google Scholar 

  105. Behura S, (2006) Molecular marker systems in insects: current trends and future avenues. Mol Ecol 15:3087–3113

    Article  PubMed  CAS  Google Scholar 

  106. Jones N, et al (2009) Markers and mapping revisited: finding your gene. New Phytol 183:935–966

    Article  PubMed  CAS  Google Scholar 

  107. Kalendar R, et al (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106:520–530

    Google Scholar 

  108. Reznikoff W, Winterberg K, (2008) Transposon-Based Strategies for the Identification of Essential Bacterial Genes. In: Osterman A, and Gerdes Y (ed) Methods in Molecular Biology, vol. 416: Microbial Gene Essentiality, Totowa, NJ

    Google Scholar 

  109. Picardeau M, (2010) Transposition of fly mariner elements into bacteria as a genetic tool for mutagenesis. Genetica 138:551–558

    Article  PubMed  CAS  Google Scholar 

  110. Judson N, Mekalanos J, (2000) TnAraOut, a transposon-based approach to identify and characterize essential bacterial genes. Nat Biotechnol 18:740–745

    Article  PubMed  CAS  Google Scholar 

  111. Kim J, Youm G, Kwon Y, (2008) Essential genes in Salmonella enteritidis as identified by TnAraOut mutagenesis. Curr Microbiol 57:391–394

    Article  PubMed  CAS  Google Scholar 

  112. Hensel M, et al (1995) Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403

    Article  PubMed  CAS  Google Scholar 

  113. Grant A, et al (2005) Signature-tagged transposon mutagenesis studies demonstrate the dynamic nature of cecal colonization of 2-week-old chickens by Campylobacter jejuni. Appl Environ Microbiol 71:8031–8041

    Article  PubMed  CAS  Google Scholar 

  114. Akerley B, et al (1998) Systematic identification of essential genes by in vitro mariner mutagenesis. Proc Natl Acad Sci USA 95:8927–8932

    Article  PubMed  CAS  Google Scholar 

  115. Reznikoff W, (2006) Tn5 transposition: a molecular tool for studying protein structure-function. Biochem Soc Trans 34:320–323

    Article  PubMed  CAS  Google Scholar 

  116. Aviat F, et al (2010) Expanding the genetic toolbox for Leptospira species by generation of fluorescent bacteria. Appl Environ Microbiol 76:8135–8142

    Article  PubMed  CAS  Google Scholar 

  117. Bourhy P, et al (2005) Random insertional mutagenesis of Leptospira interrogans, the agent of leptospirosis, using a mariner transposon. J Bacteriol. 187:3255–3258

    Article  PubMed  CAS  Google Scholar 

  118. Upadhyaya N, Zhu Q, Bhat R, (2011) Transposon insertional mutagenesis in rice. Methods Mol Biol 678:147–177

    Article  PubMed  CAS  Google Scholar 

  119. Wang H, et al (2010) Transpositional reactivation of two LTR retrotransposons in rice-Zizania recombinant inbred lines (RILs). Hereditas 147:264–277

    Article  PubMed  Google Scholar 

  120. Takagi K, et al (2010) Transposition and target preferences of an active nonautonomous DNA transposon nDart1 and its relatives belonging to the hAT superfamily in rice. Mol Genet Genomics 284:343–355

    Article  PubMed  CAS  Google Scholar 

  121. Robert V, Bessereau JL, (2007) Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks. EMBO J 26:170–183

    Article  PubMed  CAS  Google Scholar 

  122. Frokjaer-Jensen C, et al (2008) Single-copy insertion of transgenes in Caenorhabditis elegans. Nat Genet 40:1375–1383

    Article  PubMed  CAS  Google Scholar 

  123. Laurentino E, et al (2007) The use of Tn5 transposable elements in a gene trapping strategy for the protozoan Leishmania. Int J Parasitol 37:735–742

    Article  PubMed  CAS  Google Scholar 

  124. Balu B, et al (2005) High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. Proc Natl Acad Sci USA 102:16391–16396

    Article  PubMed  CAS  Google Scholar 

  125. Balu B, et al (2009) piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome. BMC Microbiol 9:83

    Article  PubMed  CAS  Google Scholar 

  126. Damasceno J, Beverley S, Tosi L, (2010) A transposon toolkit for gene transfer and mutagenesis in protozoan parasites. Genetica 138:301–311

    Article  PubMed  CAS  Google Scholar 

  127. Garraway L, et al (1997) Insertional mutagenesis by a modified in vitro Ty1 transposition system. Gene 198:27–35

    Google Scholar 

  128. Renyu X, et al. (2009) Elementary research into the transformation BmN cells mediated by the piggyBac transposon vector. J Biotechnol 144:272–278

    Article  CAS  Google Scholar 

  129. Sethuraman N, et al (2007) Post-integration stability of piggyBac in Aedes aegypti. Insect Biochem Mol Biol 37:941–951

    Article  PubMed  CAS  Google Scholar 

  130. Mohammed A, Coates C, (2004) Promoter and piggyBac activities within embryos of the potato tuber moth, P hthorimaea operculella, Zeller (Lepidoptera: Gelechiidae). Gene 342:293–301

    Article  PubMed  CAS  Google Scholar 

  131. Raphaël K, et al (2010) Germ-line transformation of the Queensland fruit fly, Bactrocera tryoni, using a piggyBac vector in the presence of endogenous piggyBac elements. Genetica 139:91–97

    Article  PubMed  CAS  Google Scholar 

  132. Mathieu J, et al (2007) A Sensitized PiggyBac-Based Screen for Regulators of Border Cell Migration in Drosophila. Genetics 176:1579–1590

    Article  PubMed  CAS  Google Scholar 

  133. Kanginakudru S, et al (2007) Targeting ie-1 gene by RNAi induces baculoviral resistance in lepidopteran cell lines and in transgenic silkworms. Insect Mol Biol 16:635–644

    Article  PubMed  CAS  Google Scholar 

  134. Alphey L, (2002) Re-engineering the sterile insect technique. Insect Biochem Mol Biol 32:1243–1247

    Article  PubMed  CAS  Google Scholar 

  135. Robinson A, Franz G, Atkinson P, (2004) Insect transgenesis and its potential role in agriculture and human health. Insect Biochem Mol Biol 34:113–120

    Article  PubMed  CAS  Google Scholar 

  136. Smith R, Atkinson P, (2010) Mobility properties of the Hermes transposable element in transgenic lines of Aedes aegypti. Genetica 139:7–22

    Article  PubMed  CAS  Google Scholar 

  137. Coates C, et al (2000) Purified mariner (Mos1) transposase catalyzes the integration of marked elements into the germ-line of the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology 30:1003–1008

    Article  PubMed  CAS  Google Scholar 

  138. Catteruccia F, et al (2000). Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proc Natl Acad Sci USA 97:2157–2162

    Article  PubMed  CAS  Google Scholar 

  139. Wang N, et al (2010) Using chimeric piggyBac transposase to achieve directed interplasmid transposition in silkworm Bombyx mori and fruit fly Drosophila cells. J Zhejiang Univ-Sci B 11:728–734

    Article  PubMed  CAS  Google Scholar 

  140. O’Brochta D, (2003) Gene vector and transposable element behavior in mosquitoes. J Exp Biol 206:3823–3834

    Article  PubMed  CAS  Google Scholar 

  141. Atkinson P, Pinkerton A, O’Brochta D, (2001) Genetic transformation systems in insects. Ann Rev Entomol 46:317–346

    Article  CAS  Google Scholar 

  142. Jasinskiene N, Coates C, James A, (2000) Structure of Hermes integrations in the germline of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 9:11–18

    Article  PubMed  CAS  Google Scholar 

  143. O’Brochta D, et al (1996) Hermes, a functional non-drosophilid insect gene vector from Musca domestica. Genetics 142:907–914

    PubMed  Google Scholar 

  144. Bryan G, Jacobson J, Hartl D, (1987) Heritable somatic excision of a Drosophila transposon. Science 235:1636–1638

    Article  PubMed  CAS  Google Scholar 

  145. Lidholm D, Lohe A, Hartl D, (1993) The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics 134:859–868

    PubMed  CAS  Google Scholar 

  146. Grossman G, et al (2001) Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element. Insect Mol Biol 10:597–604

    Article  PubMed  CAS  Google Scholar 

  147. Perera O, Harrell R, Handler A, (2002) Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol Biol 11:291–297

    Article  PubMed  CAS  Google Scholar 

  148. Lampe D, et al (2000) Genetic engineering of insects with mariner transposons. In: Handler A, James A (ed) Transgenic Insects: Methods and Applications Boca Raton: CRC

    Google Scholar 

  149. Rowan K, et al (2004) Tn5 as an insect gene vector. Insect Biochem Mol Biol 34:695–705

    Article  PubMed  CAS  Google Scholar 

  150. Venken K, et al. (2006) P(acman): A BAC Transgenic Platform for Targeted Insertion of Large DNA Fragments in D. melanogaster. Science 314:1747–1751.

    Article  PubMed  CAS  Google Scholar 

  151. Gorman C, Bullock C, (2000) Site-specific gene targeting for gene expression in eukaryotes. Curr Opin Biotechnol 11:455–460

    Article  PubMed  CAS  Google Scholar 

  152. Groth A, Calos M, (2004) Phage integrases: biology and applications. J Mol Biol 335:667–678

    Article  PubMed  CAS  Google Scholar 

  153. Ivics Z, Izsvak Z, (2006) Transposons for gene therapy! Curr Gene Ther 6:593–607

    Article  PubMed  CAS  Google Scholar 

  154. Zhang L, et al (1998) The Himar1 mariner transposase cloned in a recombinant adenovirus vector is functional in mammalian cells. Nucleic Acids Res 26:3687–3693

    Article  PubMed  CAS  Google Scholar 

  155. Keravala A, et al (2006) Hyperactive Himar1 transposase mediates transposition in cell culture and enhances gene expression in vivo. Hum Gene Ther 17:1006–1018

    Article  PubMed  CAS  Google Scholar 

  156. Huang X, et al (2010) Gene transfer efficiency and genome-wide integration profiling of Sleeping Beauty, Tol2, and piggyBac transposons in human primary T-cells. Mol Ther 18:1803–1813

    Article  PubMed  CAS  Google Scholar 

  157. Kawakami K, Shima A, Kawakami N, (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci USA 97:11403–11408

    Article  PubMed  CAS  Google Scholar 

  158. Sherman A, et al (1998) Transposition of the Drosophila element mariner into the chicken germ line. Nat Biotechnol 16:1050–1053

    Article  PubMed  CAS  Google Scholar 

  159. Ivics Z, et al (1997) Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    Article  PubMed  CAS  Google Scholar 

  160. Davidson E, et al (2003) Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263:191–202

    Article  PubMed  CAS  Google Scholar 

  161. Yergeau D, et al (2009) Transgenesis in Xenopus using the Sleeping Beauty transposon system. Dev Dyn 238:1727–1743

    Article  PubMed  CAS  Google Scholar 

  162. Jakobsen J, et al (2011) Pig transgenesis by Sleeping Beauty DNA transposition. Transgenic Res 20:533–545

    Google Scholar 

  163. Horie K, et al (2001) Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping Beauty in mice. Proc Natl Acad Sci USA 98:9191–6

    Google Scholar 

  164. Dupuy A, Fritz S, Largaespada D, (2001) Transposition and gene disruption in the male germline of the mouse. Genesis 30:82–88

    Article  PubMed  CAS  Google Scholar 

  165. Carlson C, et al (2003) Transposon mutagenesis of the mouse germline. Genetics 165:243–256

    PubMed  CAS  Google Scholar 

  166. Kitada K, et al (2009) Generating mutant rats using the Sleeping Beauty transposon system. Methods 49:236–42

    Article  PubMed  CAS  Google Scholar 

  167. Dupuy A, et al (2002) Mammalian germ-line transgenesis by transposition. Proc Natl Acad Sci USA 99:4495–4499

    Article  PubMed  CAS  Google Scholar 

  168. Wilber A, et al (2006) RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues. Mol Ther 13:625–630

    Article  PubMed  CAS  Google Scholar 

  169. Mátés L, et al (2009) Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 41:753–761

    Article  PubMed  CAS  Google Scholar 

  170. Xue X, et al (2009) Stable gene transfer and expression in cord blood-derived CD34+ hematopoietic stem and progenitor cells by an hyperactive Sleeping Beauty transposon system. Blood 114:1319–1330

    Article  PubMed  CAS  Google Scholar 

  171. Williams A, (2008) Sleeping Beauty vector system moves toward human trials in the United States. Mol Ther 16:1515–1516

    Article  PubMed  CAS  Google Scholar 

  172. Fraser M, et al (1995) Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology 211:397–407

    Article  PubMed  CAS  Google Scholar 

  173. Nakanishi H, et al (2010) piggyBac transposon-mediated long-term gene expression in mice. Mol Ther 18:707–714

    Article  PubMed  CAS  Google Scholar 

  174. Saridey S, et al (2009) piggyBac transposon-based inducible gene expression in vivo after somatic cell gene transfer. Mol Ther 17:2115–2120

    Article  PubMed  CAS  Google Scholar 

  175. Lu Y, Lin C, Wang X, (2009) piggyBac transgenic strategies in the developing chicken spinal cord. Nucleic Acids Res 37:e141

    Article  PubMed  CAS  Google Scholar 

  176. Wu S, (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103:15008–15013

    Article  PubMed  CAS  Google Scholar 

  177. Ding S, et al (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  PubMed  CAS  Google Scholar 

  178. Wang W, et al (2008) Chromosomal transposition of piggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA 105:9290–9295

    Article  PubMed  CAS  Google Scholar 

  179. Lacoste A, Berenshteyn F, Brivanlou A, (2009) An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell 5:332–342

    Article  PubMed  CAS  Google Scholar 

  180. Cadiñanos J, Bradley A, (2007) Generation of an inducible and optimised piggyBac transposon system. Nucleic Acids Res 35:e87

    Article  PubMed  CAS  Google Scholar 

  181. Yusa K, et al (2010) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108:1531–1536

    Article  Google Scholar 

  182. Maragathavally K, Kaminski J, Coates C, (2006) Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J 20:1880–1882

    Article  PubMed  CAS  Google Scholar 

  183. Raja Manuri P, et al (2010) piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies. Hum Gene Ther 21:427–437

    Article  CAS  Google Scholar 

  184. Feschotte C, (2006) The piggyBac transposon holds promise for human gene therapy. Proc Natl Acad Sci USA 103:14981–14982

    Article  PubMed  CAS  Google Scholar 

  185. Woltjen K, et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  PubMed  CAS  Google Scholar 

  186. Kaji K, et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–5

    Article  PubMed  CAS  Google Scholar 

  187. Belay E, et al (2010) Novel hyperactive transposons for genetic modification of induced pluripotent and adult stem cells: a nonviral paradigm for coaxed differentiation. Stem Cells 28:1760–1771

    Article  PubMed  CAS  Google Scholar 

  188. Silver J, Keerikatte V, (1989) Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J Virol 63:1924–1928

    PubMed  CAS  Google Scholar 

  189. Mueller P, Wold B, (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246:780–786

    Article  PubMed  CAS  Google Scholar 

  190. Paruzynski A, et al (2010) Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat Protoc 5:1379–1395

    Article  PubMed  CAS  Google Scholar 

  191. Schmidt M, et al (2007) High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR). Nat Methods 4:1051–1057

    Article  PubMed  CAS  Google Scholar 

  192. Schmidt M, et al (2003) Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nat Med 9:463–468

    Article  PubMed  CAS  Google Scholar 

  193. Cattoglio C, et al (2010) High-Definition Mapping of Retroviral Integration Sites Defines the Fate of Allogeneic T Cells After Donor Lymphocyte Infusion. PLoS One 5:e15688

    Article  PubMed  CAS  Google Scholar 

  194. Wheelan S, et al (2006) Transposon insertion site profiling chip (TIP-chip). Proc Natl Acad Sci USA 103:17632–7

    Article  PubMed  CAS  Google Scholar 

  195. Huang C, et al (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141:1171–1182

    Article  PubMed  CAS  Google Scholar 

  196. Huda A, et al (2011) Epigenetic regulation of transposable element derived human gene promoters. Gene 475:39–48

    Google Scholar 

  197. Zhu J, et al (2010) High-Level Genomic Integration, Epigenetic Changes, and Expression of Sleeping Beauty Transgene. Biochemistry 49:1507–1521

    Article  PubMed  CAS  Google Scholar 

  198. Saze H, Kakutani T, (2011) Differentiation of epigenetic modifications between transposons and genes. Curr Opin Plant Biol 14:81–87

    Article  PubMed  CAS  Google Scholar 

  199. Hollister J, Gaut B, (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428

    Article  PubMed  CAS  Google Scholar 

  200. Montoya-Durango D, et al (2009) Epigenetic control of mammalian LINE-1 retrotransposon by retinoblastoma proteins. Mutat Res 665:20–28

    Article  PubMed  CAS  Google Scholar 

  201. Harris C, et al (2009) p53 responsive elements in human retrotransposons. Oncogene 28:3857–3865

    Article  PubMed  CAS  Google Scholar 

  202. Wang J, et al (2009) A c-Myc regulatory subnetwork from human transposable element sequences. Mol Biosyst 5:1831–1839

    Article  PubMed  CAS  Google Scholar 

  203. Huang J, et al (2004) Lsh, an epigenetic guardian of repetitive elements. Nucleic Acids Res 32:5019–5028

    Article  PubMed  CAS  Google Scholar 

  204. Muramoto H, et al (2010) Enrichment of short interspersed transposable elements to embryonic stem cell-specific hypomethylated gene regions. Genes Cells 15:855–865

    PubMed  CAS  Google Scholar 

  205. Phokaew C, et al (2008) LINE-1 methylation patterns of different loci in normal and cancerous cells. Nucleic Acids Res 36:5704–5712

    Article  PubMed  CAS  Google Scholar 

  206. Yates P, et al (1999) Tandem B1 elements located in a mouse methylation center provide a target for de novo DNA methylation. J Biol Chem 274:36357–36361

    Article  PubMed  CAS  Google Scholar 

  207. Estécio M, et al (2010) Genome architecture marked by rétrotransposons modulates predisposition to DNA methylation in cancer. Genome Res 20:1369–1382

    Article  PubMed  CAS  Google Scholar 

  208. Howard G, et al (2008) Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27:404–408

    Article  PubMed  CAS  Google Scholar 

  209. Belancio V, et al (2010) All y’all need to know ‘bout retroelements in cancer. Semin Cancer Biol 20:200–210

    Article  PubMed  CAS  Google Scholar 

  210. Iskow R, et al (2010) Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons. Cell 141:1253–1261

    Article  PubMed  CAS  Google Scholar 

  211. Romanish M, Cohen C, Mager D, (2010) Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol 20:246–253

    Article  PubMed  CAS  Google Scholar 

  212. Xu T, Deng K, (2002) Transposable elements and tumor progression. Med Hypotheses 58:293–6

    Article  PubMed  CAS  Google Scholar 

  213. Kawakami K, (2010) Long interspersed nuclear element-1 hypomethylation is a potential biomarker for the prediction of response to oral fluoropyrimidines in microsatellite stable and CpG island methylator phenotype-negative colorectal cancer. Cancer Sci 102:166–174

    Article  PubMed  CAS  Google Scholar 

  214. Saito K, et al (2010) Long Interspersed Nuclear Element 1 Hypomethylation Is a Marker of Poor Prognosis in Stage IA Non–Small Cell Lung Cancer. Clin Cancer Res 16:2418–2426

    Article  PubMed  CAS  Google Scholar 

  215. Mirabello L, et al (2010) Line-1 methylation is inherited in familial testicular cancer kindreds. BMC Med Genet 11:77

    Article  PubMed  CAS  Google Scholar 

  216. Wilhelm C, et al (2010) Implications of LINE1 Methylation for Bladder Cancer Risk in Women. Clin Cancer Res 16:1682–1689

    Article  PubMed  CAS  Google Scholar 

  217. Horard B, et al (2009) Global analysis of DNA methylation and transcription of human repetitive sequences. Epigenetics 4:339–350

    Article  PubMed  CAS  Google Scholar 

  218. Dupuy A, et al (2009) A modified Sleeping Beauty transposon system that can be used to model a wide variety of human cancers in mice. Cancer Res 69:8150–8156

    Article  PubMed  CAS  Google Scholar 

  219. Beck B, et al (2008) Human Pso4 is a metnase (SETMAR)-binding partner that regulates metnase function in DNA repair. J Biol Chem 283:9023–9030

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Rouleux-Bonnin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bire, S., Rouleux-Bonnin, F. (2012). Transposable Elements as Tools for Reshaping the Genome: It Is a Huge World After All!. In: Bigot, Y. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 859. Humana Press. https://doi.org/10.1007/978-1-61779-603-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-603-6_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-602-9

  • Online ISBN: 978-1-61779-603-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics