Skip to main content

Multi-walled Carbon Nanotube (MWCNT) Synthesis, Preparation, Labeling, and Functionalization

  • Protocol
  • First Online:
Immunotherapy of Cancer

Abstract

Nanomedicine is a growing field with a great potential for introducing new generation of targeted and personalized drug. Amongst new generation of nano-vectors are carbon nanotubes (CNTs), which can be produced as single or multi-walled. Multi-walled carbon nanotubes (MWCNTs) can be fabricated as biocompatible nanostructures (cylindrical bulky tubes). These structures are currently under investigation for their application in nanomedicine as viable and safe nanovectors for gene and drug delivery. In this chapter, we will provide you with the necessary information to understand the synthesis of MWCNTs, functionalization, PKH26 labeling, RNAi, and DNA loading for in vitro experimentation and in vivo implantation of labeled MWCNT in mice as well as materials used in this experimentation. We used this technique to manipulate microglia as part of a novel application for the brain cancer immunotherapy. Our published data show this is a promising technique for labeling, and gene and drug delivery into microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vittorio, O., Raffa, V., Cuschieri, A. (2009) Influence of purity and surface oxidation on cytotoxicity of multi-wall carbon nanotubes with human neuroblastoma cells. Nanomedicine: Nanotechnology, [Epub ahead of print; PMID: 19341817].

    Google Scholar 

  2. Liu, Z., Davis, C., Cai, W., He, L., Chen, X., Dai, H. (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 105(5), 1410–1415.

    Article  PubMed  CAS  Google Scholar 

  3. Yehia, H. N., Draper, R. K., Mikoryak, C., Walker, E. K., Bajaj, P., Musselman, I. H., Daigrepont, M. C., Dieckmann, G. R., Pantano, P. (2007) Single-walled carbon nanotube interactions with HeLa cells. J Nanobiotechnology 5, 8.

    Article  PubMed  Google Scholar 

  4. Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., Kostarelos, K. (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103(9), 3357–3362.

    Article  PubMed  CAS  Google Scholar 

  5. Prato, M., Kostarelos, K., Bianco, A. (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41(1), 60–68.

    Article  PubMed  CAS  Google Scholar 

  6. Kateb, B., Van Handel, M., Zhang, L., Bronikowski, M. J., Manohara, H., Badie, B. (2007) Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors. Neuroimage, 37(1), S9–S17.

    Article  PubMed  Google Scholar 

  7. Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A., Seaton, A., Stone, V., Brown, S., Macnee, W., Donaldson, K. (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotech Nat Nanotechnol 3(7), 423–428.

    Article  CAS  Google Scholar 

  8. Ding, L., Stilwell, J., Zhang, T., Elboudwarej, O., Jiang, H., Selegue, J. P., Cooke, P. A., Gray, J. W., Chen, F. F. (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5(12), 2448–2464.

    Article  PubMed  CAS  Google Scholar 

  9. Podesta, J. E., Al-Jamal, K. T., Herrero, M. A., Tian, B., Ali-Boucetta, H., Hegde, V., Bianco, A., Prato, M., Kostarelos, K. (2009) Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a Human Lung Xenograft Model. Small [Epub ahead of print: PMID: 19306454].

    Google Scholar 

  10. Liu, Z., Chen, K., Davis, C., Sherlock, S., Cao, Q., Chen, X., Dai, H. (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16), 6652–6660.

    Article  PubMed  CAS  Google Scholar 

  11. Bhirde, A. A., Patel, V., Gavard, J., Zhang, G., Sousa, A. A., Masedunskas, A., Leapman, R. D., Weigert, R., Gutkind, J. S., Rusling, J. F. (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3(2), 307–316.

    Article  PubMed  CAS  Google Scholar 

  12. Hampel, S., Kunze, D., Haase, D., Krämer, K., Rauschenbach, M., Ritschel, M., Leonhardt, A., Thomas, J., Oswald, S., Hoffmann, V., Büchner, B. (2008) Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomed 3(2): 175–182.

    Article  CAS  Google Scholar 

  13. Villa, C. H., McDevitt MR, Escorcia, F. E., Rey, D. A., Bergkvist, M., Batt, C. A., Scheinberg, D. A. (2008) Synthesis and biodistribution of oligonucleotide-functionalized, tumor-targetable carbon nanotubes. Nano Lett. 8(12):4221–4228.

    Article  PubMed  CAS  Google Scholar 

  14. Chen, J., Chen, S., Zhao, X., Kuznetsova, L. V., Wong, S. S., Ojima, I. (2008) Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery. J Am Chem Soc 130 (49), 16778–16785.

    Article  PubMed  CAS  Google Scholar 

  15. Liu, Z., Cai, W., He, L., Nakayama, N., Chen, K., Sun, X., Chen, X., Dai, H. (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52.

    Article  PubMed  CAS  Google Scholar 

  16. VanHandel M, Alizadeh, D., Zhang, L., Kateb, B., Bronikowski, M., Manohara, H., Badie, B. (2009) Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. J Neuroimmunol 31, 208(1–2), 3–9.

    Article  Google Scholar 

  17. Wen, P. Y., Kesari, S. (2008) Malignant gliomas in adults, N Engl J Med. 5:492-507.

    Article  Google Scholar 

  18. Sehgal, A., Berger, M. S. (2000) Basic concepts of immunology and neuroimmunology. Neurosurg Focus 9(6).

    Google Scholar 

  19. Engelhardt, B. (2008) The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Curr Pharm Des 14(16), 1555–1565.

    Article  PubMed  CAS  Google Scholar 

  20. Stevens, A., Klöter, I., Roggendorf, W. (1988) Inflammatory infiltrates and natural killer cell presence in human brain tumors. Cancer 61(4), 738–743.

    Article  PubMed  CAS  Google Scholar 

  21. Streit, W. J., Conde, J. R., Fendrick, S. E., Flanary, B. E., Mariani, C. L. (2005) Role of microglia in the central nervous system’s immune response. Neurol Res 27(7), 685–691.

    PubMed  Google Scholar 

  22. Tambuyzer, B.R., Ponsaerts, P., and Nouwen, E. J. (2009) Microglia: gatekeepers of central nervous system immunology. J Leukoc Biol 85(3), 352–370.

    Article  PubMed  CAS  Google Scholar 

  23. Pollard, J. W. (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9(4):259–270.

    Article  PubMed  CAS  Google Scholar 

  24. Chi, J. H., Panner, A., Cachola, K., Crane, C. A., Murray, J., Pieper, R. O., James, C. D., Parsa, A. T. (2008) Increased expression of the glioma-associated antigen ARF4L after loss of the tumor suppressor PTEN. Laboratory investigation. J Neurosurg 108(2), 299–303.

    Article  PubMed  CAS  Google Scholar 

  25. Hatano, M., Eguchi, J., Tatsumi, T., Kuwashima, N., Dusak, J. E., Kinch, M. S., Pollack, I. F., Hamilton, R. L., Storkus, W. J., Okada, H. (2005) EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 7(8), 717–722.

    Article  PubMed  CAS  Google Scholar 

  26. Mitchell, D. A., Fecci, P. E., Sampson, J. H. (2008) Immunotherapy of malignant brain tumors. Immunol Rev 222, 70–100.

    Article  PubMed  CAS  Google Scholar 

  27. Ueda, R., Iizuka, Y., Yoshida, K., Kawase, T., Kawakami, Y., Toda, M. (2004) Identification of a human glioma antigen, SOX6, recognized by patients’ sera. Oncogene 23(7):1420–1427

    Article  PubMed  CAS  Google Scholar 

  28. Parney, I. F., Farr-Jones, M. A., Chang, L. J., Petruk, K. C. (2000) Human glioma immunobiology in vitro: implications for immunogene therapy. Neurosurgery 46(5):1169–1177; discussion 1177–1178.

    Article  PubMed  CAS  Google Scholar 

  29. Takamura, Y., Ikeda, H., Kanaseki, T., Toyota, M., Tokino, T., Imai, K., Houkin, K., Sato, N. (2004) Regulation of MHC class II expression in glioma cells by class II transactivator (CIITA) Glia 45(4), 392–405.

    Article  PubMed  Google Scholar 

  30. Galarneau, H., Villeneuve, J., Gowing, G., Julien, J. P., Vallières, L. (2007) Increased glioma growth in mice depleted of macrophages. Cancer Res 67(18):8874–8881.

    Article  PubMed  CAS  Google Scholar 

  31. Geranmayeh, F., Scheithauer, B. W., Spitzer, C., Meyer, F. B., Svensson-Engwall, A. C., Graeber, M. B. (2007) Microglia in gemistocytic astrocytomas. Neurosurgery 60(1), 159–66.

    Article  PubMed  Google Scholar 

  32. Graeber, M. B., Scheithauer, B. W., Kreutzberg, G. W. (2002) Microglia in brain tumors. Glia 40(2):252–259.

    Article  PubMed  Google Scholar 

  33. Watters, J. J., Schartner, J. M., Badie, B. (2005) Microglia function in brain tumors. J Neurosci Res 81(3), 447–455.

    Article  PubMed  CAS  Google Scholar 

  34. Manohara, H. M., Bronikowski, M. J., Hoenk, M., Hunt, B. D. and Siegel, P. H. (2006) High-current-density field emitters based on arrays of carbon nanotubes bundles, J Vac Sci Technol B 23(1), 157–161.

    Article  Google Scholar 

  35. Bronikowski, M. J. (2006) CVD growth of carbon nanotube bundle arrays, Carbon, 44, 2822–2832.

    Article  CAS  Google Scholar 

  36. Bronikowski, M. J., Manohara, H. M., and Hunt, B. D. (2006) Growth of carbon nanotube bundle arrays on silicon surfaces, J Vac Sci Technol, A 24(4) 1318–1322.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of the research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kateb, B. et al. (2010). Multi-walled Carbon Nanotube (MWCNT) Synthesis, Preparation, Labeling, and Functionalization. In: Yotnda, P. (eds) Immunotherapy of Cancer. Methods in Molecular Biology, vol 651. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-786-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-786-0_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-785-3

  • Online ISBN: 978-1-60761-786-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics