Skip to main content

Carbon Nanotubes in Cancer Therapy

  • Living reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

In recent years, remarkable progress has been made in cancer drug delivery and diagnosis by utilizing carbon nanotubes (CNTs) based nanotechnologies. CNTs have unique characteristics such as greater drug-carrying capacity, inherent hydrophobicity, and functionalization ease. As a result of this, they have become a popular tool in diagnosing and treating cancers. Functionalized CNTs are one of the most promising nanocarriers capable of detecting tumor cells, and deliver drugs and biomolecules cargo precisely to tumor tissue. Over the last few decades, CNTs have been explored in cancer treatment, including drug delivery, gene delivery, immunotherapy, thermal therapy, and radiotherapy. The present chapter focuses on the applications of CNTs in cancer diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed M, Jiang X, Deng Z, Narain R (2009) Cationic glyco-functionalized singlewalled carbon nanotubes as efficient gene delivery vehicles. Bioconjugate Chem 20:2017–2022. https://doi.org/10.1021/bc900229v

  • Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun (4):459–61. https://doi.org/10.1039/b712350g

  • Al-Jamal KT, Toma FM, Yilmazer A, Ali-Boucetta H, Nunes A, Herrero M, Tian B, Eddaoudi A, Al-Jamal W, Bianco A (2010) Enhanced cellular internalization and gene silencing with a series of cationic dendron-multiwalled carbon nanotube: siRNA complexes. Faseb J 24:4354–4365. https://doi.org/10.1096/fj.09-141036

  • Al-Jamal KT, Nerl H, Müller KH, Ali-Boucetta H, Li S, Haynes PD, Jinschek JR, Prato M, Bianco A, Kostarelos K, Porter AE (2011) Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale 3(6):2627. https://doi.org/10.1039/c1nr10080g

    Article  CAS  Google Scholar 

  • Allen BL, Kichambare PD, Gou P, Vlasova II, Kapralov AA, Konduru N, Kagan VE, Star A (2008) Biodegradation of single-walled carbon nanotubes through enzymatic catalysis. Nano Lett 8(11):3899–3903. https://doi.org/10.1021/nl802315h

    Article  CAS  Google Scholar 

  • Arsawang U, Saengsawang O, Rungrotmongkol T, Sornmee P, Wittayanarakul K, Remsungnen T, Hannongbua S (2011) How do carbon nanotubes serve as carriers for gemcitabine transport in a drug delivery system? J Mol Graph Model 29(5):591–596. https://doi.org/10.1016/j.jmgm.2010.11.002

    Article  CAS  Google Scholar 

  • Arya N, Arora A, Vasu KS, Sood AK, Katti DS (2013) Combination of single walled carbon nanotubes/graphene oxide with paclitaxel: a reactive oxygen species mediated synergism for treatment of lung cancer. Nanoscale 5(7):2818. https://doi.org/10.1039/c3nr33190c

    Article  CAS  Google Scholar 

  • Atyabi F, Sobhani, Adeli M, Dinarvand R, Ghahremani (2011) Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int J Nanomedicine 705

    Google Scholar 

  • Bartholomeusz G, Cherukuri P, Kingston J, Cognet L, Lemos R, Leeuw TK, Gumbiner-Russo L, Weisman RB, Powis G (2009) In vivo therapeutic silencing of hypoxia-inducible factor 1 alpha (HIF-1α) using single-walled carbon nanotubes noncovalently coated with siRNA, Nano Res. 2:279–291. https://doi.org/10.1007/s12274-009-9026-7

  • Battigelli, Wang JT, Russier J, Da Ros T, Kostarelos K, Al-Jamal KT, Prato M, Bianco A (2013) Ammonium and guanidinium dendron–carbon nanotubes by amidation and click chemistry and their use for siRNA delivery. Small 9:3610–3619. https://doi.org/10.1002/smll.201300264

  • Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K (2011) Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 63(2):141–163

    Article  CAS  Google Scholar 

  • Bethune DS, Kiang CH, De Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605–607

    Article  CAS  Google Scholar 

  • Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, Leapman RD, Weigert R, Gutkind JS, Rusling JF (2009) Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3(2):307–316. https://doi.org/10.1021/nn800551s

    Article  CAS  Google Scholar 

  • Bianco A, Hoebeke J, Godefroy S, Chaloin O, Pantarotto D, Briand J-P, Muller S, Prato M, Partidos CD (2005a) Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their Immunostimulatory properties. J Am Chem Soc 127(1):58–59. https://doi.org/10.1021/ja044293y

    Article  CAS  Google Scholar 

  • Bianco A, Kostarelos K, Partidos CD, Prato M (2005b) Biomedical applications of functionalised carbon nanotubes. Chem Commun 5(5):571–577

    Article  Google Scholar 

  • Bilalis P, Katsigiannopoulos D, Avgeropoulos A, Sakellariou G (2014) Non-covalent functionalization of carbon nanotubes with polymers. RSC Adv 4(6):2911–2934. https://doi.org/10.1039/C3RA44906H

    Article  CAS  Google Scholar 

  • Boyles MSP, Young L, Brown DM, MacCalman L, Cowie H, Moisala A, Smail F, Smith PJW, Proudfoot L, Windle AH, Stone V (2015) Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos. Toxicol in Vitro 29(7):1513–1528. https://doi.org/10.1016/j.tiv.2015.06.012

    Article  CAS  Google Scholar 

  • Celluzzi A, Paolini A, D’Oria V, Risoluti R, Materazzi S, Pezzullo M, Casciardi S, Sennato S, Bordi F, Masotti A (2017) Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of miRNAs to human cells. Int J Nanomed 13:1–18. https://doi.org/10.2147/IJN.S144155

    Article  Google Scholar 

  • Charlier J-C (2002) Defects in carbon nanotubes. Acc Chem Res 35(12):1063–1069

    Article  CAS  Google Scholar 

  • Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130(49):16778–16785. https://doi.org/10.1021/ja805570f

    Article  CAS  Google Scholar 

  • Costa PM, Bourgognon M, Wang JT-W, Al-Jamal KT (2016) Functionalised carbon nanotubes: from intracellular uptake and cell-related toxicity to systemic brain delivery. J Control Release 241:200–219. https://doi.org/10.1016/j.jconrel.2016.09.033

    Article  CAS  Google Scholar 

  • Crinelli R, Carloni E, Menotta M, Giacomini E, Bianchi M, Ambrosi G, Giorgi L, Magnani M (2010) Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-κB decoy molecules. ACS Nano 4:2791–2803. https://doi.org/10.1021/nn100057c

  • Dai H (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35(12):1035–1044. https://doi.org/10.1021/ar0101640

    Article  CAS  Google Scholar 

  • Das M, Singh RP, Datir SR, Jain S (2013) Intranuclear drug delivery and effective in vivo cancer therapy via estradiol–PEG-appended multiwalled carbon nanotubes. Mol Pharm 10(9):3404–3416. https://doi.org/10.1021/mp4002409

    Article  CAS  Google Scholar 

  • Datir SR, Das M, Singh RP, Jain S (2012) Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem 23(11):2201–2213. https://doi.org/10.1021/bc300248t

    Article  CAS  Google Scholar 

  • Davis JJ, Green MLH, Allen O, Hill H, Leung YC, Sadler PJ, Sloan J, Xavier AV, Chi Tsang S (1998) The immobilisation of proteins in carbon nanotubes. Inorg Chim Acta 272(1–2):261–266. https://doi.org/10.1016/S0020-1693(97)05926-4

    Article  CAS  Google Scholar 

  • de Faria PCB, dos Santos LI, Coelho JP, Ribeiro HB, Pimenta MA, Ladeira LO, Gomes DA, Furtado CA, Gazzinelli RT (2014) Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8 + T cell response and protection against cancer. Nano Lett 14(9):5458–5470. https://doi.org/10.1021/nl502911a

    Article  CAS  Google Scholar 

  • de la Zerda A, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10(6):2168–2172. https://doi.org/10.1021/nl100890d

    Article  CAS  Google Scholar 

  • del Carmen G-LM, Moro F, La Torre A, Gómez-García CJ, Brown PD, van Slageren J, Khlobystov AN (2011) Encapsulation of single-molecule magnets in carbon nanotubes. Nat Commun 2(1):407. https://doi.org/10.1038/ncomms1415

    Article  CAS  Google Scholar 

  • Delogu LG, Vidili G, Venturelli E, Menard-Moyon C, Zoroddu MA, Pilo G, Nicolussi P, Ligios C, Bedognetti D, Sgarrella F, Manetti R, Bianco A (2012) Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proc Natl Acad Sci 109(41):16612–16617. https://doi.org/10.1073/pnas.1208312109

    Article  Google Scholar 

  • DeVita VT, Chu E (2008) A history of cancer chemotherapy. Cancer Res 68(21):8643. https://doi.org/10.1158/0008-5472.CAN-07-6611

    Article  CAS  Google Scholar 

  • Dhar S, Liu Z, Thomale J, Dai H, Lippard SJ (2008) Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J Am Chem Soc 130(34):11467–11476. https://doi.org/10.1021/ja803036e

    Article  CAS  Google Scholar 

  • Directive C (1998) 98/24/EC of 7 April 1998 on the protection of the health and safety of workers from the risks related to chemical agents at work (fourteenth individual Directive within the meaning of Article 16 (1) of Directive 89/391/EEC). 31:11–23

    Google Scholar 

  • Dong H, Ding L, Yan F, Ji H, Ju H (2011) The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 32(15):3875–3882. https://doi.org/10.1016/j.biomaterials.2011.02.001

    Article  CAS  Google Scholar 

  • Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51):11151–11159. https://doi.org/10.1021/jp046274g

    Article  CAS  Google Scholar 

  • Elhissi AMA, Ahmed W, Hassan IU, Dhanak VR, D’Emanuele A (2011) Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv 2012:837327. https://doi.org/10.1155/2012/837327

    Article  CAS  Google Scholar 

  • Feazell RP, Nakayama-Ratchford N, Dai H, Lippard SJ (2007) Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J Am Chem Soc 129(27):8438–8439. https://doi.org/10.1021/ja073231f

    Article  CAS  Google Scholar 

  • Fries R, Greßler S, Simkó M (2012) Carbon nanotubes–part II: risks and regulations (nanotrust dossier no. 024en–February 2012)

    Google Scholar 

  • Ghavamian A, Rybachuk M, Öchsner A (2018) Chapter 4: Defects in carbon nanotubes. In: Stehr J, Buyanova I, Chen W (eds) Defects in advanced electronic materials and novel low dimensional structures. Woodhead Publishing, Duxford, pp 87–136

    Chapter  Google Scholar 

  • Ghosh M, Das PK (2016) Doxorubicin loaded 17β-estradiol based SWNT dispersions for target specific killing of cancer cells. Colloids Surf B: Biointerfaces 142:367–376. https://doi.org/10.1016/j.colsurfb.2016.03.005

    Article  CAS  Google Scholar 

  • Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM (2014) Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci 111(38):13948–13953. https://doi.org/10.1073/pnas.1400821111

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222

    Article  CAS  Google Scholar 

  • Guo C, Al-Jamal WT, Toma FM, Bianco A, Prato M, Al-Jamal KT, Kostarelos K (2015) Design of cationic multiwalled carbon nanotubes as efficient siRNA vectors for lung cancer xenograft eradication. Bioconjugate Chem 26:1370–1379. https://doi.org/10.1021/acs.bioconjchem.5b00249

  • Hampel S, Kunze D, Haase D, Krämer K, Rauschenbach M, Ritschel M, Leonhardt A, Thomas J, Oswald S, Hoffmann V, Büchner B (2008) Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3(2):175–182. https://doi.org/10.2217/17435889.3.2.175

    Article  CAS  Google Scholar 

  • Han Y, Ren L, Xu K, Yang F, Li Y, Cheng T, Kang X, Xu C, Shi Q (2015) Supercritical fluid extraction with carbon nanotubes as a solid collection trap for the analysis of polycyclic aromatic hydrocarbons and their derivatives. J Chromatogr A 1395:1–6. https://doi.org/10.1016/j.chroma.2015.03.038

    Article  CAS  Google Scholar 

  • Harvey JD, Jena PV, Baker HA, Zerze GH, Williams RM, Galassi TV, Roxbury D, Mittal J, Heller DA (2017) A carbon nanotube reporter of microRNA hybridization events in vivo. Nat Biomed Eng 1(4):0041. https://doi.org/10.1038/s41551-017-0041

    Article  CAS  Google Scholar 

  • Hasnain MS, Nayak AK (2019) Regulatory considerations of carbon nanotubes. In: Carbon nanotubes for targeted drug delivery. Springer, Singapore, pp 103–106

    Chapter  Google Scholar 

  • Heister E, Neves V, Tîlmaciu C, Lipert K, Beltrán VS, Coley HM, Silva SRP, McFadden J (2009) Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47(9):2152–2160. https://doi.org/10.1016/j.carbon.2009.03.057

    Article  CAS  Google Scholar 

  • Hirano S, Kanno S, Furuyama A (2008) Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 232(2):244–251. https://doi.org/10.1016/j.taap.2008.06.016

    Article  CAS  Google Scholar 

  • Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. In: Schlüter AD (ed) Functional molecular nanostructures. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 193–237

    Chapter  Google Scholar 

  • Huang W, Wang Y, Luo G, Wei F (2003) 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon 41(13):2585–2590. https://doi.org/10.1016/S0008-6223(03)00330-0

    Article  CAS  Google Scholar 

  • Huang Y-P, Lin I-J, Chen C-C, Hsu Y-C, Chang C-C, Lee M-J (2013) Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine functionalized carbon nanotubes. Nanoscale Res Lett 8:1–11. https://doi.org/10.1186/1556-276X-8-267

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605. https://doi.org/10.1038/363603a0

    Article  CAS  Google Scholar 

  • Jawahar N, De A, Jubee S, Reddy ES (2020) Folic acid-conjugated raloxifene hydrochloride carbon nanotube for targeting breast cancer cells. Drug Dev Res 81(3):305–314. https://doi.org/10.1002/ddr.21620

    Article  CAS  Google Scholar 

  • Jia N, Lian Q, Shen H, Wang C, Li X, Yang Z (2007) Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes. Nano Lett 7(10):2976–2980. https://doi.org/10.1021/nl071114c

    Article  CAS  Google Scholar 

  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology 4(2):207–246

    Article  CAS  Google Scholar 

  • Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Vlasova II, Belikova NA, Yanamala N, Kapralov A (2010) Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol 5(5):354

    Article  CAS  Google Scholar 

  • Kang B, Li J, Chang S, Dai M, Ren C, Dai Y, Chen D (2012) Subcellular tracking of drug release from carbon nanotube vehicles in living cells. Small 8(5):777–782. https://doi.org/10.1002/smll.201101714

    Article  CAS  Google Scholar 

  • Karmakar A, Bratton SM, Dervishi E, Ghosh A, Mahmood M, Xu Y, Saeed LM, Mustafa T, Casciano D, Radominska-Pandya A, Biris AS (2011) Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int J Nanomedicine:1045. https://doi.org/10.2147/IJN.S17684

  • Kesharwani P, Mishra V, Jain NK (2015) Validating the anticancer potential of carbon nanotube-based therapeutics through cell line testing. Drug Discov Today 20(9):1049–1060. https://doi.org/10.1016/j.drudis.2015.05.004

    Article  CAS  Google Scholar 

  • Khandare JJ, Jalota-Badhwar A, Satavalekar SD, Bhansali SG, Aher ND, Kharas F, Banerjee SS (2012) PEG-conjugated highly dispersive multifunctional magnetic multi-walled carbon nanotubes for cellular imaging. Nanoscale 4(3):837–844. https://doi.org/10.1039/C1NR11540E

    Article  CAS  Google Scholar 

  • Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM (2013) Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol 93(2):185–198

    Article  CAS  Google Scholar 

  • Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand J-P, Muller S, Prato M, Bianco A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2(2):108–113. https://doi.org/10.1038/nnano.2006.209

    Article  CAS  Google Scholar 

  • Kumar A, Mansour HM, Friedman A, Blough ER (2013) Nanomedicine in drug delivery. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kumar M, Sharma G, Misra C, Kumar R, Singh B, Katare OP, Raza K (2018) Desmethyl tamoxifen and quercetin-loaded multiwalled CNTs: a synergistic approach to overcome MDR in cancer cells. Mater Sci Eng C 89:274–282. https://doi.org/10.1016/j.msec.2018.03.033

    Article  CAS  Google Scholar 

  • Levi-Polyachenko NH, Merkel EJ, Jones BT, Carroll DL, Stewart JH (2009) Rapid photothermal intracellular drug delivery using multiwalled carbon nanotubes. Mol Pharm 6(4):1092–1099. https://doi.org/10.1021/mp800250e

    Article  CAS  Google Scholar 

  • Li Y, Zhang X, Luo J, Huang W, Cheng J, Luo Z, Li T, Liu F, Xu G, Ke X, Li L, Geise HJ (2004) Purification of CVD synthesized single-wall carbon nanotubes by different acid oxidation treatments. Nanotechnology 15(11):1645–1649. https://doi.org/10.1088/0957-4484/15/11/047

    Article  CAS  Google Scholar 

  • Li R, Wu R, Zhao L, Wu M, Yang L, Zou H (2010) P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 4(3):1399–408. https://doi.org/10.1021/nn9011225. PMID: 20148593

  • Li J, Yap SQ, Yoong SL, Nayak TR, Chandra GW, Ang WH, Panczyk T, Ramaprabhu S, Vashist SK, Sheu F-S, Tan A, Pastorin G (2012) Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon 50(4):1625–1634. https://doi.org/10.1016/j.carbon.2011.11.043

    Article  CAS  Google Scholar 

  • Li J, Pant A, Chin CF, Ang WH, Ménard-Moyon C, Nayak TR, Gibson D, Ramaprabhu S, Panczyk T, Bianco A, Pastorin G (2014) In vivo biodistribution of platinum-based drugs encapsulated into multi-walled carbon nanotubes. Nanomed Nanotechnol Biol Med 10(7):1465–1475. https://doi.org/10.1016/j.nano.2014.01.004

    Article  CAS  Google Scholar 

  • Lima WF, Vickers TA, Nichols J, Li C, Crooke ST (2014) Defining the factors that contribute to on-target specificity of antisense oligonucleotides. PLoS One 9(7):e101752–e101752. https://doi.org/10.1371/journal.pone.0101752

    Article  CAS  Google Scholar 

  • Liu Y, Wu D-C, Zhang W-D, Jiang X, He C-B, Chung TS, Goh SH, Leong KW (2005) Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem Int Ed 44(30):4782–4785. https://doi.org/10.1002/anie.200500042

    Article  CAS  Google Scholar 

  • Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660. https://doi.org/10.1158/0008-5472.CAN-08-1468

    Article  CAS  Google Scholar 

  • Liu H, Xu H, Wang Y, He Z, Li S (2012) Effect of intratumoral injection on the biodistribution and therapeutic potential of novel chemophor EL-modified single-walled nanotube loading doxorubicin. Drug Dev Ind Pharm 38(9):1031–1038. https://doi.org/10.3109/03639045.2011.637050

    Article  CAS  Google Scholar 

  • Masotti A, Miller MR, Celluzzi A, Rose L, Micciulla F, Hadoke PWF, Bellucci S, Caporali A (2016) Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. Nanomed Nanotechnol Biol Med 12(6):1511–1522. https://doi.org/10.1016/j.nano.2016.02.017

    Article  CAS  Google Scholar 

  • Matson ML, Villa CH, Ananta JS, Law JJ, Scheinberg DA, Wilson LJ (2015) Encapsulation of -particle-emitting 225Ac3+ ions within carbon nanotubes. J Nucl Med 56(6):897–900. https://doi.org/10.2967/jnumed.115.158311

    Article  CAS  Google Scholar 

  • McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48(7):1180–1189. https://doi.org/10.2967/jnumed.106.039131

    Article  CAS  Google Scholar 

  • Miller AD (1992) Human gene therapy comes of age. Nature 357(6378):455–460. https://doi.org/10.1038/357455a0

    Article  CAS  Google Scholar 

  • Mohammadi M, Salmasi Z, Hashemi M, Mosaffa F, Abnous K, Ramezani M (2015) Single-walled carbon nanotubes functionalized with aptamer and piperazine–polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int J Pharm 485:50–60. https://doi.org/10.1016/j.ijpharm.2015.02.031

  • Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE, Schmidt J, Talmon Y (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3(10):1379–1382. https://doi.org/10.1021/nl034524j

    Article  CAS  Google Scholar 

  • Mu Q, Broughton DL, Yan B (2009) Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett 9(12):4370–4375. https://doi.org/10.1021/nl902647x

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453

    Article  CAS  Google Scholar 

  • Pan B, Cui D, Xu P, Ozkan C, Feng G, Ozkan M, Huang T, Chu B, Li Q, He R, Hu G (2009) Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology 20(12):125101. https://doi.org/10.1088/0957-4484/20/12/125101

    Article  CAS  Google Scholar 

  • Pantarotto D, Singh R, McCarthy D, Erhardt M, Briand J, Prato M, Kostarelos K, Bianco A (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem 116:5354–5358. https://doi.org/10.1002/anie.200460437

  • Pérez S, la Farré M, Barceló D (2009) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. Trends Anal Chem 28(6):820–832

    Article  Google Scholar 

  • Pidgeon N, Porritt J, Ryan J, Seaton A, Tendler S, Welland M, Whatmore R (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. The Royal Society : Royal Academy of Engineering, London

    Google Scholar 

  • Podesta JE, Al-Jamal KT, Herrero MA, Tian B, Ali-Boucetta H, Hegde V, Bianco A, Prato M, Kostarelos K (2009) Antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model. 5(10):1176–1185

    Google Scholar 

  • Prajapati SK, Jain A, Shrivastava C, Jain AK (2019) Hyaluronic acid conjugated multi-walled carbon nanotubes for colon cancer targeting. Int J Biol Macromol 123:691–703. https://doi.org/10.1016/j.ijbiomac.2018.11.116

    Article  CAS  Google Scholar 

  • Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S (2011) Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev 63(14–15):1340–1351. https://doi.org/10.1016/j.addr.2011.06.013

    Article  CAS  Google Scholar 

  • Pulskamp K, Diabaté S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74. https://doi.org/10.1016/j.toxlet.2006.11.001

    Article  CAS  Google Scholar 

  • Qin W, Yang K, Tang H, Tan L, Xie Q, Ma M, Zhang Y, Yao S (2011) Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multiwalled carbon nanotubes with high biocompatibility. Colloids Surf B Biointerfaces 84:206–213. https://doi.org/10.1016/j.colsurfb.2011.01.001

  • Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT (2020) Carbon nanotubes in drug delivery: focus on anticancer therapies. J Drug Deliv Sci Technol 59:101892. https://doi.org/10.1016/j.jddst.2020.101892

    Article  CAS  Google Scholar 

  • Razzazan A, Atyabi F, Kazemi B, Dinarvand R (2016) In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes. Mater Sci Eng C 62:614–625. https://doi.org/10.1016/j.msec.2016.01.076

    Article  CAS  Google Scholar 

  • Sargent LM, Reynolds SH, Castranova V (2010) Potential pulmonary effects of engineered carbon nanotubes: in vitro genotoxic effects. Nanotoxicology 4(4):396–408

    Article  CAS  Google Scholar 

  • Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A Mater Sci Process 72(5):573–580. https://doi.org/10.1007/s003390100761

    Article  CAS  Google Scholar 

  • Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41(6):2323–2343. https://doi.org/10.1039/c1cs15188f

    Article  CAS  Google Scholar 

  • Shvedova A, Castranova V, Kisin E, Schwegler-Berry D, Murray A, Gandelsman V, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A 66(20):1909–1926. https://doi.org/10.1080/713853956

    Article  CAS  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  Google Scholar 

  • Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand J-P, Prato M, Bianco A, Kostarelos K (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127(12):4388–4396. https://doi.org/10.1021/ja0441561

    Article  CAS  Google Scholar 

  • Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 103(9):3357–3362

    Article  CAS  Google Scholar 

  • Singh P, Samorí C, Toma FM, Bussy C, Nunes A, Al-Jamal KT, Menard Moyon C, Prato M, Kostarelos K, Bianco A (2011) Polyamine functionalized carbon nanotubes: synthesis, characterization, cytotoxicity and siRNA binding. J Mater Chem 21:4850–4860. https://doi.org/10.1039/C0JM04064A

  • Singh R, Mehra NK, Jain V, Jain NK (2013) Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. J Drug Target 21(6):581–592. https://doi.org/10.3109/1061186X.2013.778264

    Article  CAS  Google Scholar 

  • Singh RP, Sharma G, Sonali SS, Kumar M, Pandey BL, Koch B, Muthu MS (2016a) Vitamin E TPGS conjugated carbon nanotubes improved efficacy of docetaxel with safety for lung cancer treatment. Colloids Surf B: Biointerfaces 141:429–442. https://doi.org/10.1016/j.colsurfb.2016.02.011

    Article  CAS  Google Scholar 

  • Singh S, Mehra NK, Jain NK (2016b) Development and characterization of the paclitaxel loaded riboflavin and thiamine conjugated carbon nanotubes for cancer treatment. Pharm Res 33(7):1769–1781. https://doi.org/10.1007/s11095-016-1916-2

    Article  CAS  Google Scholar 

  • Singh RP, Sharma G, Sonali SS, Bharti S, Pandey BL, Koch B, Muthu MS (2017) Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery. Mater Sci Eng C 77:446–458. https://doi.org/10.1016/j.msec.2017.03.225

    Article  CAS  Google Scholar 

  • Singh N, Sachdev A, Gopinath P (2018) Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. J Nanosci Nanotechnol 18(3):1534–1541. https://doi.org/10.1166/jnn.2018.14222

    Article  CAS  Google Scholar 

  • Sobhani Z, Dinarv R, Atyabi F, Ghahremani M, Adeli M (2011) Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int J Nanomedicine:705. https://doi.org/10.2147/IJN.S17336

  • Su M, Zheng B, Liu J (2000) A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem Phys Lett 322(5):321–326

    Article  CAS  Google Scholar 

  • Thotakura N, Sharma S, Khurana RK, Babu PV, Chitkara D, Kumar V, Singh B, Raza K (2019) Aspartic acid tagged carbon nanotubols as a tool to deliver docetaxel to breast cancer cells: reduced hemotoxicity with improved cytotoxicity. Toxicol in Vitro 59:126–134. https://doi.org/10.1016/j.tiv.2019.04.012

    Article  CAS  Google Scholar 

  • Uhlmann E, Peyman A (1990) Antisense oligonucleotides: a new therapeutic principle. Chem Rev 90(4):543–584

    Article  CAS  Google Scholar 

  • Van den Bossche J, Tian B, Nunes A, Fabbro C, Bianco A, Prato M, Kostarelos K (2010) Efficient receptor-independent intracellular translocation of aptamers mediated by conjugation to carbon nanotubes. Chem Commun 46(39):7379–7381

    Article  Google Scholar 

  • Varkouhi AK, Foillard S, Lammers T, Schiffelers RM, Doris E, Hennink WE, Storm G (2011) SiRNA delivery with functionalized carbon nanotubes. Int J Pharm 416:419–425. https://doi.org/10.1016/j.ijpharm.2011.02.009

  • Wang X, Ren J, Qu X (2008) Targeted RNA interference of cyclin A2 mediated by functionalized single-walled carbon nanotubes induces proliferation arrest and apoptosis in chronic myelogenous leukemia K562 cells. ChemMedChem 3(6):940–945. https://doi.org/10.1002/cmdc.200700329

    Article  CAS  Google Scholar 

  • Wang C-H, Chiou S-H, Chou C-P, Chen Y-C, Huang Y-J, Peng C-A (2011) Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomed Nanotechnol Biol Med 7(1):69–79. https://doi.org/10.1016/j.nano.2010.06.010

    Article  CAS  Google Scholar 

  • Wang L, Shi J, Zhang H, Li H, Gao Y, Wang Z, Wang H, Li L, Zhang C, Chen C (2013) Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials 34:262–274. https://doi.org/10.1016/j.biomaterials.2012.09.037

  • Wang C, Bao C, Liang S, Fu H, Wang K, Deng M, Liao Q, Cui D (2014) RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer. Nanoscale Res Lett 9(1):264. https://doi.org/10.1186/1556-276X-9-264

    Article  CAS  Google Scholar 

  • Wheate NJ, Walker S, Craig GE, Oun R (2010) The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans 39(35):8113. https://doi.org/10.1039/c0dt00292e

    Article  CAS  Google Scholar 

  • Wu L, Man C, Wang H, Lu X, Ma Q, Cai Y, Ma W (2013) PEGylated multi-walled carbon nanotubes for encapsulation and sustained release of oxaliplatin. Pharm Res 30(2):412–423. https://doi.org/10.1007/s11095-012-0883-5

    Article  CAS  Google Scholar 

  • Wu H, Shi H, Zhang H, Wang X, Yang Y, Yu C, Hao C, Du J, Hu H, Yang S (2014) Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials 35(20):5369–5380. https://doi.org/10.1016/j.biomaterials.2014.03.038

    Article  CAS  Google Scholar 

  • Yang X, Zhang Z, Liu Z, Ma Y, Yang R, Chen Y (2008) Multi-functionalized single-walled carbon nanotubes as tumor cell targeting biological transporters. J Nanopart Res 10(5):815–822. https://doi.org/10.1007/s11051-007-9316-5

    Article  CAS  Google Scholar 

  • Yao H, Zhang Y, Sun L, Liu Y (2014) The effect of hyaluronic acid functionalized carbon nanotubes loaded with salinomycin on gastric cancer stem cells. Biomaterials 35(33):9208–9223. https://doi.org/10.1016/j.biomaterials.2014.07.033

    Article  CAS  Google Scholar 

  • Yi H, Ghosh D, Ham M-H, Qi J, Barone PW, Strano MS, Belcher AM (2012) M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett 12(3):1176–1183. https://doi.org/10.1021/nl2031663

    Article  CAS  Google Scholar 

  • Zhang X, Meng L, Lu Q, Fei Z, Dyson PJ (2009) Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 30(30):6041–6047. https://doi.org/10.1016/j.biomaterials.2009.07.025

    Article  CAS  Google Scholar 

  • Zhou F, Xing D, Ou Z, Wu B, Resasco DE, Chen WR (2009) Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J Biomed Opt 14(2):021009. https://doi.org/10.1117/1.3078803

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen T. Krishnamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ravi Kiran, A.V.V.V., Kusuma Kumari, G., Krishnamurthy, P.T., Chintamaneni, P.K., Pindiprolu, S.K.S.S. (2021). Carbon Nanotubes in Cancer Therapy. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-70614-6_42-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70614-6_42-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70614-6

  • Online ISBN: 978-3-319-70614-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics