Skip to main content

Recent Advances in Magnetofection and Its Potential to Deliver siRNAs In Vitro

  • Protocol
  • First Online:
siRNA and miRNA Gene Silencing

Abstract

This chapter describes how to design and conduct experiments to deliver siRNA to adherent mammalian cells in vitro by magnetic force–assisted transfection using self-assembled complexes of small interfering RNA (siRNA) and cationic lipids or polymers that are associated with magnetic nanoparticles. These magnetic complexes are targeted to the cell surface by the application of a magnetic gradient field. In this chapter, first we describe the synthesis of magnetic nanoparticles for magnetofection, and association of siRNA with the magnetic components of the transfection complex. Second, a simple protocol is described in order to evaluate magnetic responsiveness of the magnetic siRNA transfection complexes and estimate the complex loading with magnetic nanoparticles. Third, protocols are provided for the preparation of magnetic lipoplexes and polyplexes of siRNA, magnetofection, downregulation of gene expression, and the determination of cell viability. The addition of INF-7 peptide, a fusogenic peptide, to the magnetic transfection triplexes improved gene silencing in HeLa cells. The described protocols are also valuable for screening vector compositions and novel magnetic nanoparticle preparations to optimize siRNA transfection by magnetofection in every cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Plank, C., Scherer, F., Schillinger, U., and Anton, M. (2000) Magnetofection: enhancement and localization of gene delivery with magnetic particles under the influence of a magnetic field. J. Gene. Med., 2, 24.

    Article  Google Scholar 

  2. Mah , C. Zolotukhin, I., Fraites, T.J., Dobson, J., Batich, C., Byrne, B.J. (2000) Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo . Mol. Ther. , 1 , S239 .

    Article  Google Scholar 

  3. Hughes, C., Galea-Lauri, J., Farzaneh, F., and Darling, D. (2001) Streptavidin paramagnetic particles provide a choice of three affinity-based capture and magnetic concentration strategies for retroviral vectors. Mol. Ther., 3, 623–630.

    Article  PubMed  CAS  Google Scholar 

  4. Scherer, F., Anton, M., Schillinger, U., Henke, J., Bergemann, C., Kruger, A., Gansbacher, B., and Plank, C. (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther., 9, 102–109.

    Article  PubMed  CAS  Google Scholar 

  5. Mah, C., Fraites, T.J., Jr., Zolotukhin, I., Song, S., Flotte, T.R., Dobson, J., Batich, C., and Byrne, B.J. (2002) Improved method of recombinant AAV2 delivery for systemic targeted gene therapy. Mol. Ther., 6, 106–112.

    Article  PubMed  CAS  Google Scholar 

  6. Pandori, M.W., Hobson, D.A., and Sano, T. (2002) Adenovirus-microbead conjugates possess enhanced infectivity: A new strategy to localized gene delivery. Virology, 299, 204–212.

    Article  PubMed  CAS  Google Scholar 

  7. Plank, C., Anton, M., Rudolph, C., Rosenecker, J., and Krotz, F. (2003) Enhancing and targeting nucleic acid delivery by magnetic force. Expert Opin. Biol. Ther., 3, 745–758.

    Article  PubMed  CAS  Google Scholar 

  8. Schillinger, U., Brill, T., Rudolph, C., Huth, S., Gersting, S., Krotz, F., Hirschberger, J., Bergemann, C., and Plank, C. (2005) Advances in magnetofection - magnetically guided nucleic acid delivery. J. Magn. Magn. Mater., 293, 501–508.

    Article  CAS  Google Scholar 

  9. Huth, S., Lausier, J., Gersting, S.W., Rudolph, C., Plank, C., Welsch, U., and Rosenecker, J. (2004) Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J. Gene Med., 6, 923–936.

    Article  PubMed  CAS  Google Scholar 

  10. Krotz, F., de Wit, C., Sohn, H.Y., Zahler, S., Gloe, T., Pohl, U., and Plank, C. (2003) Magnetofection--a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol. Ther., 7, 700–710.

    Article  PubMed  CAS  Google Scholar 

  11. Plank, C., Schillinger, U., Scherer, F., Bergemann, C., Remy, J.S., Krotz, F., Anton, M., Lausier, J., and Rosenecker, J. (2003) The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem., 384, 737–747.

    Article  PubMed  CAS  Google Scholar 

  12. Dobson, J. (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther., 13, 283–287.

    Article  PubMed  CAS  Google Scholar 

  13. Doshida, M., Ohmichi, M., Tsutsumi, S., Kawagoe, J., Takahashi, T., Du, B., Mori-Abe, A., Ohta, T., Saitoh-Sekiguchi, M., Takahashi, K. et al. (2006) Raloxifene increases proliferation and up-regulates telomerase activity in human umbilical vein endothelial cells. J. Biol. Chem., 281, 24270–24278.

    Article  PubMed  CAS  Google Scholar 

  14. Deleuze, V., Chalhoub, E., El-Hajj, R., Dohet, C., Le Clech, M., Couraud, P.O., Huber, P., and Mathieu, D. (2007) TAL-1/SCL and its partners E47 and LMO2 up-regulate VE-cadherin expression in endothelial cells. Mol. Cell Biol., 27, 2687–2697.

    Article  PubMed  CAS  Google Scholar 

  15. McCaig, C., Duval, C., Hemers, E., Steele, I., Pritchard, D.M., Przemeck, S., Dimaline, R., Ahmed, S., Bodger, K., Kerrigan, D.D. et al. (2006) The role of matrix Metalloproteinase-7 in redefining the gastric microenvironment in response to Helicobacter pylori. Gastroenterology, 130, 1754–1763.

    Article  PubMed  CAS  Google Scholar 

  16. Uchida, Y., Ohshima, T., Sasaki, Y., Suzuki, H., Yanai, S., Yamashita, N., Nakamura, F., Takei, K., Ihara, Y., Mikoshiba, K. et al. (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3β phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer’s disease. Genes Cells, 10, 165–179.

    Article  PubMed  CAS  Google Scholar 

  17. Huang, P., Senga, T., and Hamaguchi, M. (2007) A novel role of phospho-[beta]-catenin in microtubule regrowth at centrosome. Oncogene, 26, 4357–4371.

    Article  PubMed  CAS  Google Scholar 

  18. Mizutani, T., Fukushi, S., Iizuka, D., Inanami, O., Kuwabara, M., Takashima, H., Yanagawa, H., Saijo, M., Kurane, I., and Morikawa, S. (2006) Inhibition of cell proliferation by SARS-CoV infection in Vero E6 cells. FEMS Immunol. Med. Microbiol., 46, 236–243.

    Article  PubMed  CAS  Google Scholar 

  19. Sapet, C., Simoncini, S., Loriod, B., Puthier, D., Sampol, J., Nguyen, C., Dignat-George, F., and Anfosso, F. (2006) Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2. Blood, 108, 1868–1876.

    Article  PubMed  CAS  Google Scholar 

  20. Minami, R., Yamamoto, M., Takahama, S., Miyamura, T., Watanabe, H., and Suematsu, E. (2006) RCAS1 induced by HIV-Tat is involved in the apoptosis of HIV-1 infected and uninfected CD4+ T cells. Cell. Immunol., 243, 41–47.

    Article  PubMed  CAS  Google Scholar 

  21. Bonetta, L. (2005) The inside scoop—evaluating gene delivery methods. Nat. Methods, 2, 875–883.

    Article  CAS  Google Scholar 

  22. Smith, C. (2006) Sharpening the tools of RNA interference. Nat. Methods, 3, 475–486.

    Article  CAS  Google Scholar 

  23. Felgner, P.L., Barenholz, Y., Behr, J.P., Cheng, S.H., Cullis, P., Huang, L., Jessee, J.A., Seymour, L., Szoka, F., Thierry, A.R. et al. (1997) Nomenclature for synthetic gene delivery systems. Hum. Gene Ther., 8, 511–512.

    Article  PubMed  CAS  Google Scholar 

  24. Mykhaylyk, O., Vlaskou, D., Tresilwised, N., Pithayanukul, P., Moller, W., and Plank, C. (2007) Magnetic nanoparticle formulations for DNA and siRNA delivery. J. Magn. Magn. Mater., 311, 275–281.

    Article  CAS  Google Scholar 

  25. Terebesi, J., Kwok, K.Y., and Rice, K.G. (1998) Iodinated plasmid DNA as a tool for studying gene delivery. Anal. Biochem., 263, 120–123.

    Article  PubMed  CAS  Google Scholar 

  26. Azzam, T. and Domb, A.J. (2004) Current developments in gene transfection agents. Curr. Drug Deliv., 1, 165–193.

    Article  PubMed  CAS  Google Scholar 

  27. Plank, C., Oberhauser, B., Mechtler, K., Koch, C., and Wagner, E. (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J. Biol. Chem., 269, 12918–12924.

    PubMed  CAS  Google Scholar 

  28. Plank, C., Zauner, W., and Wagner, E. (1998) Application of membrane-active peptides for drug and gene delivery across cellular membranes. Adv. Drug Deliv. Rev., 34, 21–35.

    Article  PubMed  CAS  Google Scholar 

  29. Funhoff, A.M., van Nostrum, C.F., Lok, M.C., Fretz, M.M., Crommelin, D.J., and Hennink, W.E. (2004) Poly(3-guanidinopropyl methacrylate): a novel cationic polymer for gene delivery. Bioconjug. Chem., 15, 1212–1220.

    Article  PubMed  CAS  Google Scholar 

  30. Jiang, X., Lok, M.C., and Hennink, W.E. (2007) Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Bioconjug. Chem., 18, 2077–2084.

    Article  PubMed  CAS  Google Scholar 

  31. Oliveira, S., van Rooy, I., Kranenburg, O., Storm, G., and Schiffelers, R.M. (2007) Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int. J. Pharm., 331, 211–214.

    Article  PubMed  CAS  Google Scholar 

  32. Kowalski, J.B. and Tallentire, A. (1999) Substantiation of 25 kGy as a sterilization dose: a rational approach to establishing verification dose. Radiat. Phys. Chem., 54, 55–64.

    Article  CAS  Google Scholar 

  33. Gersdorff, K. von. (2006) PEG-shielded and EGF receptor-targeted DNA polyplexes: Cellular mechanisms. Ph D Thesis, Ludwig Maximilian University, Munich, Germany, Supervisor Prof. Dr. E. Wagner. 125 pp. http://edoc.ub.uni-muenchen.de/5485/.

    Google Scholar 

  34. Berridge, M.V., Herst, P.M., and Tan, A.S. (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev., 11, 127–152.

    Article  PubMed  CAS  Google Scholar 

  35. Berridge, M.V., Tan, A.S., and Hilton, C.J. (1993) Cyclic adenosine monophosphate promotes cell survival and retards apoptosis in a factor-dependent bone marrow-derived cell line. Exp. Hematol., 21, 269–276.

    PubMed  CAS  Google Scholar 

  36. Suzuki, M., Mikami, T., Matsumoto, T., and Suzuki, S. (1977) Preparation and antitumor activity of O-palmitoyldextran phosphates, O-palmitoyldextrans, and dextran phosphate. Carbohydr. Res., 53, 223–229.

    Article  PubMed  CAS  Google Scholar 

  37. Snyder, F. and Stephens, N. (1959) A simplified spectrophotometric determination of ester groups in lipids. Biochim. Biophys. Acta, 34, 244–245.

    Article  PubMed  CAS  Google Scholar 

  38. Wilhelm, C., Gazeau, F., and Bacri, J.C. (2002) Magnetophoresis and ferromagnetic resonance of magnetically labeled cells. Eur. Biophys. J., 31, 118–125.

    Article  PubMed  CAS  Google Scholar 

  39. Esbjorner, E.K., Oglecka, K., Lincoln, P., Graslund, A., and Norden, B. (2007) Membrane binding of pH-sensitive Influenza fusion peptides. Positioning, configuration, and induced leakage in a lipid vesicle model. Biochemistry, 46, 13490–13504.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Bob Scholte for transduction of the H441 cells with eGFP and luciferase using lentiviral vectors. This work was supported by the European Union through the FP6-LIFESCIHEALTH Project “Improved precision of nucleic acid based therapy of cystic fibrosis” under contract no. 005213 as well as by the German Ministry of Education and Research, Nanobiotechnology grants 13N8186 and 13N8538. Financial support of the German Excellence Initiative via the “Nanosystems Initiative Munich (NIM)” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mykhaylyk , O., Zelphati , O., Hammerschmid , E., Anton , M., Rosenecker , J., Plank , C. (2009). Recent Advances in Magnetofection and Its Potential to Deliver siRNAs In Vitro. In: Sioud, M. (eds) siRNA and miRNA Gene Silencing. Methods in Molecular Biology, vol 487. Humana Press. https://doi.org/10.1007/978-1-60327-547-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-547-7_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-546-0

  • Online ISBN: 978-1-60327-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics