Skip to main content

Challenges for Nanoparticle Characterization

  • Protocol
  • First Online:
Characterization of Nanoparticles Intended for Drug Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 697))

Abstract

The Food and Drug Administration (FDA) and pharmaceutical industry have used standards to assess material biocompatibility, immunotoxicity, purity, and sterility (as well as many other properties) for several decades. Nanoparticle developers and manufacturers leverage well-established methods as much as possible. However, the unique properties of nanomaterials often interfere with standardized protocols, giving false-positive or false-negative results. This chapter provides details of some of the problems which can arise during the characterization of nanoparticle samples. Additionally, we discuss ways to identify, avoid, and resolve such interference, with emphasis on the use of inhibition and enhancement controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. For the remainder of the chapter we confine the discussion to the IND process for drugs regulated through the FDA’s Center for Drug Evaluation and Research (CDER). A similar process is required in the Investigational Device Exemption (IDE) filing for a device regulated through the FDA’s Center for Devices and Radiological Health (CDRH).

    Google Scholar 

  2. Kobayashi H, Kawamoto S, Jo SK, Bryant HL, Jr, Brechbiel MW, Star RA. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjugate Chemistry 2003; 14: 388–394.

    Article  CAS  Google Scholar 

  3. Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 2005; 113: 823–839.

    Article  CAS  Google Scholar 

  4. Furumoto K, Nagayama S, Ogawara K, Takakura Y, Hashida M, Higaki K, Kimura T. Hepatic uptake of negatively charged particles in rats: possible involvement of serum proteins in recognition by scavenger receptor. Journal of Controlled Release 2004; 97: 133–141.

    Article  CAS  Google Scholar 

  5. Oberdorster G. Toxicology of ultrafine particles: in vivo studies. Philosophical Transactions of the Royal Society of London Series A, Mathematical Physical and Engineering Sciences 2000; 358: 2719–2739.

    Article  CAS  Google Scholar 

  6. Ogawara K, Yoshida M, Higaki K, Kimura T, Shiraishi K, Nishikawa M, Takakura Y, Hashida M. Hepatic uptake of polystyrene microspheres in rats: effect of particle size on intrahepatic distribution. Journal of Controlled Release 1999; 59: 15–22.

    Article  CAS  Google Scholar 

  7. Ogawara K, Yoshida M, Kubo J, Nishikawa M, Takakura Y, Hashida M, Higaki K, Kimura T. Mechanisms of hepatic disposition of polystyrene microspheres in rats: effects of serum depend on the sizes of microspheres. Journal of Controlled Release 1999; 61: 241–250.

    Article  CAS  Google Scholar 

  8. Fenart L, Casanova A, Dehouck B, Duhem C, Slupek S, Cecchelli R, Betbeder D. Evaluation of effect of charge and lipid coating on ability of 60-nm nanoparticles to cross an in vitro model of the blood-brain barrier. Journal of Pharmacology and Experimental Therapeutics 1999; 291: 1017–1022.

    CAS  Google Scholar 

  9. Rajananthanan P, Attard GS, Sheikh NA, Morrow WJ. Novel aggregate structure adjuvants modulate lymphocyte proliferation and Th1 and Th2 cytokine profiles in ovalbumin immunized mice. Vaccine 1999; 18: 140–152.

    Article  CAS  Google Scholar 

  10. ASTM International Standard Practice F748-98. “Selecting generic biological test methods for materials and devices.”

    Google Scholar 

Download references

Acknowledgments

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

McNeil, S.E. (2011). Challenges for Nanoparticle Characterization. In: McNeil, S. (eds) Characterization of Nanoparticles Intended for Drug Delivery. Methods in Molecular Biology, vol 697. Humana Press. https://doi.org/10.1007/978-1-60327-198-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-198-1_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-197-4

  • Online ISBN: 978-1-60327-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics