Skip to main content

Body Weight/Composition and Weight Change

Effects on Bone Health

  • Chapter
Nutrition and Bone Health

Part of the book series: Nutrition and Health ((NH))

A low body weight (LBW) in older individuals is a major risk factor for fracture (1,2), and maintenance of body weight can prevent bone loss (3–6). The importance of LBW has been highlighted by the National Osteoporosis Foundation (7), suggesting that it is one of the top four major risk factors for osteoporotic fractures. The relationship between body weight and bone is discussed here with particular reference to obesity and adipose tissue. Weight reduction, depending on whether it is involuntary or voluntary, will affect bone differently. Although mechanisms regulating bone loss are uncertain, it is clear that the method to achieve voluntary weight reduction (through different diets, medication, or increasing levels of activity) will determine the bone response. Finally, alterations in bone quality and strength parameters due to weight reduction and regain are discussed and future directions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Margolis KL, Ensrud KE, Schreiner PJ, Tabor HK. Body size and risk for clinical fractures in older women. Study of Osteoporotic Fractures Research Group. Ann Intern Med 2000; 133:123–127.

    PubMed  CAS  Google Scholar 

  2. Ensrud KE, Lipschutz RC, Cauley JA, et al. Body size and hip fracture risk in older women: a prospective study. Study of Osteoporotic Fractures Research Group. Am J Med 1997; 103:274–280.

    Article  PubMed  CAS  Google Scholar 

  3. Hannan MT, Felson DT, Dawson-Hughes B, et al. Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 2000; 15:710–720.

    Article  PubMed  CAS  Google Scholar 

  4. Nguyen TV, Sambrook PN, Eisman JA. Bone loss, physical activity, and weight change in elderly women: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res 1998; 13:1458–1467.

    Article  PubMed  CAS  Google Scholar 

  5. Uusi-Rasi K, Sievanen H, Pasanen M, Oja P, Vuori I. Maintenance of body weight, physical activity and calcium intake helps preserve bone mass in elderly women. Osteopor Int 2001; 12:373–379.

    Article  CAS  Google Scholar 

  6. Wu F, Ames R, Clearwater J, Evans MC, Gamble G, Reid IR. Prospective 10-year study of the determinants of bone density and bone loss in normal postmenopausal women, including the effect of hormone replacement therapy. Clin Endocrinol (Oxf) 2002; 56:703–711.

    Article  CAS  Google Scholar 

  7. National Osteoporosis Foundation. Physician’s Guide To Prevention and Treatment of Osteoporosis. National Osteoporosis Foundation, Washington, DC, 1998.

    Google Scholar 

  8. Must A, Jacques PF, Dallai GE, Bajema CJ, Dietz WH. Long-term morbidity and mortality of overweight adolescents. A follow-up of the Harvard Growth Study of 1922 to 1935. N Engl J Med 1992; 327:1350–1355.

    Article  PubMed  CAS  Google Scholar 

  9. Jequier E. Pathways to obesity. Int J Obes Relat Metab Disord 2002; 26:S12–S17.

    Article  PubMed  CAS  Google Scholar 

  10. National Institutes of Health. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report. Obes Res 1998; 6:51S–209S.

    Google Scholar 

  11. Edelstein SL, Barrett-Connor E. Relation between body size and bone mineral density in elderly men and women. Am J Epidemiol 1993; 138:160–169.

    PubMed  CAS  Google Scholar 

  12. Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 1993; 8:567–573.

    Article  PubMed  CAS  Google Scholar 

  13. Albala C, Yanez M, Devoto E, Sostin C, Zeballos L, Santos JL. Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Relat Metab Disord 1996; 20:1027–1032.

    PubMed  CAS  Google Scholar 

  14. Cifuentes M, Shapses SA, Johnson MA, Lewis R, Chowdhury HA, Modlesky C. Body weight reflects bone resorption in lean, but not overweight or obese postmenopausal women. Osteopor Int 2003; 14:116–122.

    CAS  Google Scholar 

  15. Reid IR, Ames R, Evans MC, et al. Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J Clin Endocrinol Metab 1992; 75:45–51.

    Article  PubMed  CAS  Google Scholar 

  16. Bjorntorp P. The regulation of adipose tissue distribution in humans. Int J Obes Relat Metab Disord 1996; 20:291–302.

    PubMed  CAS  Google Scholar 

  17. Pedersen SB, Hansen PS, Lund S, Andersen PH, Odgaard A, Richelsen B. Identification of oestrogen receptors and oestrogen receptor mRNA in human adipose tissue. Eur J Clin Invest 1996; 26:262–269.

    Article  PubMed  CAS  Google Scholar 

  18. Shiraki M, Ito H, Fujimaki H, Higuchi T. Relation between body size and bone mineral density with special reference to sex hormones and calcium regulating hormones in elderly females. Endocrinol Jpn 1991; 38:343–349.

    Article  PubMed  CAS  Google Scholar 

  19. Zamboni G, Soffiati M, Giavarina D, Tato L. Mineral metabolism in obese children. Acta Paediatr Scand 1988; 77:741–746.

    Article  PubMed  CAS  Google Scholar 

  20. Lind L, Lithell H, Hvarfner A, Pollare T, Ljunghall S. On the relationships between mineral metabolism, obesity and fat distribution. Eur J Clin Invest 1993; 23:307–310.

    Article  PubMed  CAS  Google Scholar 

  21. Andersen T, McNair P, Fogh-Andersen N, Nielsen TT, Hyldstrup L, Transbol I. Increased parathyroid hormone as a consequence of changed complex binding of plasma calcium in morbid obesity. Metabolism 1986; 35:147–151.

    Article  PubMed  CAS  Google Scholar 

  22. Bell NH, Epstein S, Greene A, Shary J, Oexmann MJ, Shaw S. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest 1985; 76:370–373.

    Article  PubMed  CAS  Google Scholar 

  23. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000; 72:690–693.

    PubMed  CAS  Google Scholar 

  24. Scragg R, Holdaway I, Singh V, Metcalf P, Baker J, Dryson E. Serum 25-hydroxyvitamin D3 is related to physical activity and ethnicity but not obesity in a multicultural workforce. Austral N Z J Med 1995; 25:218–223.

    Article  CAS  Google Scholar 

  25. Klein KO, Larmore KA, de Lancey E, Brown JM, Considine RV, Hassink SG. Effect of obesity on estradiol level, and its relationship to leptin, bone maturation, and bone mineral density in children. J Clin Endocrinol Metab 1998; 83:3469–3475.

    Article  PubMed  CAS  Google Scholar 

  26. De Simone M, Farello G, Palumbo M, et al. Growth charts, growth velocity and bone development in childhood obesity. Int J Obes Relat Metab Disord 1995; 19:851–857.

    PubMed  Google Scholar 

  27. Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM. Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord 2000; 24:627–632.

    Article  PubMed  CAS  Google Scholar 

  28. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy X-ray absorptiometry study. J Pediatr 2001; 139:509–515.

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen TV, Howard GM, Kelly PJ, Eisman JA. Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol 1998; 147:3–16.

    Article  PubMed  CAS  Google Scholar 

  30. Dawson-Hughes B, Shipp C, Sadowski L, Dallal G. Bone density of the radius, spine, and hip in relation to percent of ideal body weight in postmenopausal women. Calcif Tissue Int 1987; 40:310–314.

    Article  PubMed  CAS  Google Scholar 

  31. van der Voort DJ, Geusens PP, Dinant GJ. Risk factors for osteoporosis related to their out-come: fractures. Osteopor Int 2001; 12:630–638.

    Article  Google Scholar 

  32. Ribot C, Tremollieres F, Pouilles JM, Bonneu M, Germain F, Louvet JP. Obesity and postmenopausal bone loss: the influence of obesity on vertebral density and bone turnover in postmenopausal women. Bone 1987; 8:327–331.

    Article  PubMed  CAS  Google Scholar 

  33. Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteopor Int 1997; 7:564–569.

    Article  CAS  Google Scholar 

  34. Abrahamsen B, Stilgren LS, Hermann AP, et al. Discordance between changes in bone mineral density measured at different skeletal sites in perimenopausal women—implications for assessment of bone loss and response to therapy: The Danish Osteoporosis Prevention Study. J Bone Miner Res 2001; 16:1212–1219.

    Article  PubMed  CAS  Google Scholar 

  35. Takata S, Ikata T, Yonezu H. Characteristics of bone mineral density and soft tissue composition of obese Japanese women: application of dual-energy X-ray absorptiometry. J Bone Miner Metab 1999; 17:206–210.

    Article  PubMed  CAS  Google Scholar 

  36. Rodriguez C, Calle EE, Patel AV, Tatham LM, Jacobs EJ, Thun MJ. Effect of body mass on the association between estrogen replacement therapy and mortality among elderly US women. Am J Epidemiol 2001; 153:145–152.

    Article  PubMed  CAS  Google Scholar 

  37. Maehle BO, Tretli S, Skjaerven R, Thorsen T. Premorbid body weight and its relations to primary tumour diameter in breast cancer patients; its dependence on estrogen and progesteron receptor status. Breast Cancer Res Treat 2001; 68:159–169.

    Article  PubMed  CAS  Google Scholar 

  38. Nelson HD. Assessing benefits and harms of hormone replacement therapy: clinical applications. JAMA 2002; 288:882–884.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang HC, Kushida K, Atsumi K, Kin K, Nagano A. Effects of age and menopause on spinal bone mineral density in Japanese women: a ten-year prospective study. Calcif Tissue Int 2002; 70:153–157.

    Article  PubMed  CAS  Google Scholar 

  40. Ravn P, Cizza G, Bjarnason NH, et al. Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J Bone Miner Res 1999; 14:1622–1627.

    Article  PubMed  CAS  Google Scholar 

  41. Takata S, Yonezu H, Yasui N. Intergenerational comparison of total and regional bone mineral density and soft tissue composition in Japanese women without vertebral fractures. J Med Invest 2002; 49:142–146.

    PubMed  Google Scholar 

  42. Douchi T, Yamamoto S, Oki T, et al. Difference in the effect of adiposity on bone density between pre- and postmenopausal women. Maturitas 2000; 34:261–266.

    Article  PubMed  CAS  Google Scholar 

  43. Espallargues M, Sampietro-Colom L, Estrada MD, et al. Identifying bone-mass-related risk factors for fracture to guide bone densitometry measurements: a systematic review of the literature. Osteopor Int 2001; 12:811–822.

    Article  CAS  Google Scholar 

  44. Spaine LA, Bollen SR. ‘The bigger they come... ’: the relationship between body mass index and severity of ankle fractures. Injury 1996; 27:687–689.

    Article  PubMed  CAS  Google Scholar 

  45. Corbeil P, Simoneau M, Rancourt D, Tremblay A, Teasdale N. Increased risk for falling associated with obesity: mathematical modeling of postural control. IEEE Trans Neural Syst Rehab Eng 2001; 9:126–136.

    Article  CAS  Google Scholar 

  46. Grabowski DC, Ellis JE. High body mass index does not predict mortality in older people: analysis of the Longitudinal Study of Aging. J Am Geriatr Soc 2001; 49:968–979.

    Article  PubMed  CAS  Google Scholar 

  47. Asakura A, Komaki M, Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 2001; 68:245–253.

    Article  PubMed  CAS  Google Scholar 

  48. Prichett WP, Patton AJ, Field JA, et al. Identification and cloning of a human urea transporter HUT11, which is downregulated during adipogenesis of explant cultures of human bone. J Cell Biochem 2000; 76:639–650.

    Article  PubMed  CAS  Google Scholar 

  49. Garcia T, Roman-Roman S, Jackson A, et al. Behavior of osteoblast, adipocyte, and myoblast markers in genome-wide expression analysis of mouse calvaria primary osteoblasts in vitro. Bone 2002; 31:205–211.

    Article  PubMed  CAS  Google Scholar 

  50. Okazaki R, Inoue D, Shibata M, et al. Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 2002; 143:2349–2356.

    Article  PubMed  CAS  Google Scholar 

  51. Dang ZC, van Bezooijen RL, Karperien M, Papapoulos SE, Lowik CW. Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J Bone Miner Res 2002; 17:394–405.

    Article  PubMed  CAS  Google Scholar 

  52. Nuttall ME, Gimble JM. Is there a therapeutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone 2000; 27:177–184.

    Article  PubMed  CAS  Google Scholar 

  53. Ahdjoudj S, Lasmoles F, Holy X, Zerath E, Marie PJ. Transforming growth factor beta2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma. J Bone Miner Res 2002; 17:668–677.

    Article  PubMed  CAS  Google Scholar 

  54. Parhami F, Jackson SM, Tintut Y, et al. Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res 1999; 14:2067–2078.

    Article  PubMed  CAS  Google Scholar 

  55. Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 2002; 55:693–698.

    Article  PubMed  CAS  Google Scholar 

  56. Rosenbaum M, Pietrobelli A, Vasselli JR, Heymsfield SB, Leibel RL. Sexual dimorphism in circulating leptin concentrations is not accounted for by differences in adipose tissue distribution. Int J Obes Relat Metab Disord 2001; 25:1365–1371.

    Article  PubMed  CAS  Google Scholar 

  57. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneousn correction of leptin-mediated defects. J Clin Endocrinol Metab 1999; 84:3686–3695.

    Article  PubMed  CAS  Google Scholar 

  58. Karsenty G. The central regulation of bone remodeling. Trends Endocrinol Metab 2000; 11:437–439.

    Article  PubMed  CAS  Google Scholar 

  59. Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 2000; 92:73–78.

    Article  PubMed  CAS  Google Scholar 

  60. Burguera B, Hofbauer LC, Thomas T, et al. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology 2001; 142:3546–3553.

    Article  PubMed  CAS  Google Scholar 

  61. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 1999; 140:1630–1638.

    Article  PubMed  CAS  Google Scholar 

  62. Pasco JA, Henry MJ, Kotowicz MA, et al. Serum leptin levels are associated with bone mass in nonobese women. J Clin Endocrinol Metab 2001; 86:1884–1887.

    Article  PubMed  CAS  Google Scholar 

  63. Blain H, Vuillemin A, Guillemin F, et al. Serum leptin level is a predictor of bone mineral density in postmenopausal women. J Clin Endocrinol Metab 2002; 87:1030–1035.

    Article  PubMed  CAS  Google Scholar 

  64. Yamauchi M, Sugimoto T, Yamaguchi T, et al. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol (Oxf) 2001; 55:341–347.

    Article  CAS  Google Scholar 

  65. Sato M, Takeda N, Sarui H, et al. Association between serum leptin concentrations and bone mineral density, andbiochemical markers of bone turnover in adult men. J Clin Endocrinol Metab 2001; 86:5273–5276.

    Article  PubMed  CAS  Google Scholar 

  66. Martini G, Valenti R, Giovani S, Franci B, Campagna S, Nuti R. Influence of insulin-like growth factor-1 and leptin on bone mass in healthy postmenopausal women. Bone 2001; 28:1 13–117.

    Article  Google Scholar 

  67. Lee M, Zmuda JM, Wisniewski S, Krishnaswami S, Evans RW, Cauley JA. Serum leptin concentrations and bone mass: differential association among obese and non-obese men. J Bone Mineral Res 2002; 17:S463.

    Article  Google Scholar 

  68. Ruhl CE, Everhart JE. Relationship of serum leptin concentration with bone mineral density in the United States population. J Bone Miner Res 2002; 17:1896–1903.

    Article  PubMed  CAS  Google Scholar 

  69. Thorsen K, Nordstrom P, Lorentzon R, Dahlen GH. The relation between bone mineral density, insulin-like growth factor I, lipoprotein (a), body composition, and muscle strength in adolescent males. J Clin Endocrinol Metab 1999; 84:3025–3029.

    Article  PubMed  CAS  Google Scholar 

  70. Layne JE, Nelson ME. The effects of progressive resistance training on bone density: a review. Med Sci Sports Exerc 1999; Jan; 31:25–30.

    Article  PubMed  CAS  Google Scholar 

  71. Simpson E, Rubin G, Clyne C, et al. Local estrogen biosynthesis in males and females. Endocr Relat Cancer 1999; 6:131–137.

    Article  PubMed  CAS  Google Scholar 

  72. Sowers MF, Kshirsagar A, Crutchfield MM, Updike S. Joint influence of fat and lean body composition compartments on femoral bone mineral density in premenopausal women. Am J Epidemiol 1992; 136:257–265.

    PubMed  CAS  Google Scholar 

  73. Salamone LM, Glynn N, Black D, et al. Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res 1995; 10:1762–1768.

    Article  PubMed  CAS  Google Scholar 

  74. Chen Z, Lohman TG, Stini WA, Ritenbaugh C, Aickin M. Fat or lean tissue mass: which one is the major determinant of bone mineral mass in healthy postmenopausal women? J Bone Miner Res 1997; 12:144–151.

    Article  PubMed  CAS  Google Scholar 

  75. Blain H, Vuillemin A, Teissier A, Hanesse B, Guillemin F, Jeandel C. Influence of muscle strength and body weight and composition on regional bone mineral density in healthy women aged 60 years and over. Gerontology 2001; 47:207–212.

    Article  PubMed  CAS  Google Scholar 

  76. Taaffe DR, Cauley JA, Danielson M, et al. Race and sex effects on the association between muscle strength, soft tissue,and bone mineral density in healthy elders: the Health, Aging, and Body Composition Study. J Bone Miner Res 2001; 16:1343–1352.

    Article  PubMed  CAS  Google Scholar 

  77. Lindsay R, Cosman F, Herrington BS, Himmelstein S. Bone mass and body composition in normal women. J Bone Miner Res 1992 Jan; 7:55–63.

    Article  PubMed  CAS  Google Scholar 

  78. Kirchengast S, Peterson B, Hauser G, Knogler W. Body composition characteristics are associated with the bone density of the proximal femur end in middle- and old-aged women and men. Maturitas 2001; 39:133–145.

    Article  PubMed  CAS  Google Scholar 

  79. Reid IR, Plank LD, Evans MC. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab 1992; 75:779–782.

    Article  PubMed  CAS  Google Scholar 

  80. Coin A, Sergi G, Beninca P, et al. Bone mineral density and body composition in underweight and normal elderly subjects. Osteopor Int 2000; 11:1043–1050.

    Article  CAS  Google Scholar 

  81. Hla MM, Davis JW, Ross PD, et al. A multicenter study of the influence of fat and lean mass on bone mineral content: evidence for differences in their relative influence at major fracture sites. Early Postmenopausal Intervention Cohort (EPIC) Study Group. Am J Clin Nutr 1996; 64:354–360.

    PubMed  CAS  Google Scholar 

  82. Takata S, Ikata T, Yonezu H. Characteristics of bone mineral density and soft tissue composition of obese Japanese women: application of dual-energy X-ray absorptiometry. J Bone Miner Metab 1999; 17:206–210.

    Article  PubMed  CAS  Google Scholar 

  83. Fardellone P, Brazier M, Kamel S, et al. Biochemical effects of calcium supplementation in postmenopausal women: influence of dietary calcium intake. Am J Clin Nutr 1998; 67:1273–1278.

    PubMed  CAS  Google Scholar 

  84. Riggs BL, O’Fallon WM, Muhs J, O’Connor MK, Kumar R, Melton LJ 3rd. Long-term effects of calcium supplementation on serum parathyroid hormone level, bone turnover, and bone loss in elderly women. J Bone Miner Res 1998; 13:168–174.

    Article  PubMed  CAS  Google Scholar 

  85. Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC. Regulation of adiposity by dietary calcium. FASEB J 2000 Jun; 14:1132–1138.

    PubMed  CAS  Google Scholar 

  86. Carruth BR, Skinner JD. The role of dietary calcium and other nutrients in moderating body fat in preschool children. Int J Obes Relat Metab Disord 2001 Apr; 25:559–566.

    Article  PubMed  CAS  Google Scholar 

  87. Heaney RP, Davies KM, Barger-Lux MJ. Calcium and weight: clinical studies. J Am Coll Nutr 2002; 21:152S–155S.

    PubMed  CAS  Google Scholar 

  88. Shi H, Dirienzo D, Zemel MB. Effects of dietary calcium on adipocyte lipid metabolism and body weight regulation in energy-restricted aP2-agouti transgenic mice. FASEB J 2001; 15:291–293.

    PubMed  CAS  Google Scholar 

  89. Jones BH, Kim JH, Zemel MB, et al. Upregulation of adipocyte metabolism by agouti protein: possible paracrine actions in yellow mouse obesity. Am J Physiol 1996; 270:E192–E196.

    PubMed  CAS  Google Scholar 

  90. Xue B, Moustaid N, Wilkison WO, Zemel MB. The agouti gene product inhibits lipolysis in human adipocytes via a Ca2+-dependent mechanism. FASEB J 1998; 12:1391–1396.

    PubMed  CAS  Google Scholar 

  91. Pereira MA, Jacobs DR Jr, Van Horn L, Slattery ML, Kartashov AI, Ludwig DS. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA 2002; 287:2081–2089.

    Article  PubMed  Google Scholar 

  92. Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 2002; 346:1513–1521.

    Article  PubMed  CAS  Google Scholar 

  93. Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet 1996; 14:203–205.

    Article  PubMed  CAS  Google Scholar 

  94. Uitterlinden AG, Burger H, Huang Q, et al. Relation of alleles of the collagen type Ialphal gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med 1998; 338:1016–1021.

    Article  PubMed  CAS  Google Scholar 

  95. Cauley JA, Zmuda JM, Yaffe K, et al. Apolipoprotein E polymorphism: A new genetic marker of hip fracture risk—The Study of Osteoporotic Fractures. J Bone Miner Res 1999; 14:1175–1181.

    Article  PubMed  CAS  Google Scholar 

  96. Yamada Y, Miyauchi A, Takagi Y, Tanaka M, Mizuno M, Harada A. Association of the C-509→T polymorphism, alone of in combination with the T869→C polymorphism, of the transforming growth factor-betal gene with bone mineral density and genetic susceptibility to osteoporosis in Japanese women. J Mol Med 2001; 79:149–156.

    Article  PubMed  CAS  Google Scholar 

  97. Matkovic V. Nutrition, genetics and skeletal development. J Am Coll Nutr 1996; 15:556–569.

    PubMed  CAS  Google Scholar 

  98. Hedstrom M. Hip fracture patients, a group of frail elderly people with low bone mineral density, muscle mass and IGF-I levels. Acta Physiol Scand 1999; 167:347–350.

    Article  PubMed  CAS  Google Scholar 

  99. Valdimarsson T, Lofman O, Toss G, Strom M. Reversal of osteopenia with diet in adult coeliac disease. Gut 1996; 38:322–327.

    Article  PubMed  CAS  Google Scholar 

  100. Robbins J, Hirsch C, Whitmer R, Cauley J, Harris T. The association of bone mineral density and depression in an older population. J Am Geriatr Soc 2001; 49:732–736.

    Article  PubMed  CAS  Google Scholar 

  101. Michelson D, Stratakis C, Hill L, et al. Bone mineral density in women with depression. N Engl J Med 1996; 335:1176–1181.

    Article  PubMed  CAS  Google Scholar 

  102. Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002; 2:584–593.

    Article  PubMed  CAS  Google Scholar 

  103. Langlois JA, Mussolino ME, Visser M, Looker AC, Harris T, Madans J. Weight loss from maximum body weight among middle-aged and older white women and the risk of hip fracture: the NHANES I epidemiologic follow-up study. Osteopor Int 2001; 12:763–768.

    Article  CAS  Google Scholar 

  104. Ensrud KE, Cauley J, Lipschutz R, Cummings SR. Weight change and fractures in older women. Study of Osteoporotic Fractures Research Group. Arch Intern Med 1997 Apr 28; 157:857–863.

    Article  Google Scholar 

  105. Langlois JA, Visser M, Davidovic LS, Maggi S, Li G, Harris TB. Hip fracture risk in older white men is associated with change in body weight from age 50 years to old age. Arch Intern Med 1998 May 11; 158:990–996.

    Article  Google Scholar 

  106. Mussolino ME, Looker AC, Madans JH, Langlois JA, Orwoll ES. Risk factors for hip fracture in white men: the NHANES I epidemiologic follow-up study. J Bone Miner Res 1998; 13:918–924.

    Article  PubMed  CAS  Google Scholar 

  107. Bales CW, Ritchie CS. Sarcopenia, weight loss, and nutritional frailty in the elderly. Annu Rev Nutr 2002; 22:309–323.

    Article  PubMed  CAS  Google Scholar 

  108. Wing RR, Hill JO. Successful weight loss maintenance. Annu Rev Nutr 2001; 21:323–341.

    Article  PubMed  CAS  Google Scholar 

  109. Avenell A, Richmond PR, Lean ME, Reid DM. Bone loss associated with a high fibre weight reduction diet in postmenopausal women. Eur J Clin Nutr 1994; 48:561–566.

    PubMed  CAS  Google Scholar 

  110. Chao D, Espeland MA, Farmer D, et al. Effect of voluntary weight loss on bone mineral density in older overweight women. J Am Geriatr Soc 2000; 48:753–759.

    PubMed  CAS  Google Scholar 

  111. Fogelholm GM, Sievanen HT, Kukkonen-Harjula TK, Pasanen ME. Bone mineral density during reduction, maintenance and regain of body weight in premenopausal, obese women. Osteopor Int 2001; 12:199–206.

    Article  CAS  Google Scholar 

  112. Ricci TA, Heymsfield SB, Pierson RN Jr, Stahl T, Chowdhury HA, Shapses SA. Moderate energy restriction increases bone resorption in obese postmenopausal women. Am J Clin Nutr 2001; 73:347–352.

    PubMed  CAS  Google Scholar 

  113. Shapses SA, Von Thun NL, Heymsfield SB, et al. Bone turnover and density in obese premenopausal women during moderate weight loss and calcium supplementation. J Bone Miner Res 2001; 16:1329–1336.

    Article  PubMed  CAS  Google Scholar 

  114. Jensen LB, Quaade F, Sorensen OH. Bone loss accompanying voluntary weight loss in obese humans. J Bone Miner Res 1994; 9:459–463.

    Article  PubMed  CAS  Google Scholar 

  115. Pritchard JE, Nowson CA, Wark JD. Bone loss accompanying diet-induced or exerciseinduced weight loss: a randomised controlled study. Int J Obes Relat Metab Disord 1996; 20:513–520.

    PubMed  CAS  Google Scholar 

  116. Ramsdale SJ, Bassey EJ. Changes in bone mineral density associated with dietary-induced loss of body mass in young women. Clin Sci (Colch) 1994; 87:343–348.

    CAS  Google Scholar 

  117. Ryan AS, Nicklas BJ, Dennis KE. Aerobic exercise maintains regional bone mineral density during weight loss in postmenopausal women. J Appl Physiol 1998; 84:1305–1310.

    Article  PubMed  CAS  Google Scholar 

  118. Salamone LM, Cauley JA, Black DM, et al. Effect of a lifestyle intervention on bone mineral density in premenopausal women: a randomized trial Am J Clin Nutr 1999; 70:97–103.

    PubMed  CAS  Google Scholar 

  119. Svendsen OL, Hassager C, Christiansen C. Effect of an energy-restrictive diet, with or without exercise, on lean tissue mass, resting metabolic rate, cardiovascular risk factors, and bone in overweight postmenopausal women. Am J Med 1993; 95:131–140.

    Article  PubMed  CAS  Google Scholar 

  120. Van Loan MD, Keim NL. Influence of cognitive eating restraint on total-body measurements of bone mineral density and bone mineral content in premenopausal women aged 18–45 y: a cross-sectional study. Am J Clin Nutr 2000; 72:837–843.

    PubMed  Google Scholar 

  121. Bolotin HH, Sievanen H. Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patientspecific bone fragility. J Bone Miner Res 2001; 16:799–805.

    Article  PubMed  CAS  Google Scholar 

  122. Tothill P, Avenell A. Errors in dual-energy X-ray absorptiometry of the lumbar spine owing to fat distribution and soft tissue thickness during weight change. Br J Radiol 1994; 67:71–75.

    Article  PubMed  CAS  Google Scholar 

  123. Vestergaard P, Borglum J, Heickendorff L, Mosekilde L, Richelsen B. Artifact in bone mineral measurements during a very low calorie diet: short-term effects of growth hormone. J Clin Densitom 2000; 3:63–71.

    Article  PubMed  CAS  Google Scholar 

  124. Ricci TA, Chowdhury HA, Heymsfield SB, Stahl T, Pierson RN Jr, Shapses SA. Calcium supplementation suppresses bone turnover during weight reduction in postmenopausal women. J Bone Miner Res 1998; 13:1045–1050.

    Article  PubMed  CAS  Google Scholar 

  125. Jensen LB, Kollerup G, Quaade F, Sorensen OH. Bone minerals changes in obese women during a moderate weight loss with and without calcium supplementation. J Bone Miner Res 2001, 16:141–147.

    Article  PubMed  CAS  Google Scholar 

  126. Shapses SA, Cifuentes M, Sherrell R, Reidt C. Rate of weight loss influences calcium absorption. J Bone Min Res 2002; 17:S471.

    Article  Google Scholar 

  127. Cifuentes M, Morano AB, Chowdhury HA, Shapses SA. Energy restriction reduces fractional calcium absorption in mature obese and lean rats. J Nutr 2002; 132:2660–2666.

    PubMed  CAS  Google Scholar 

  128. O’Dea JP, Wieland RG, Hallberg MC, Llerena LA, Zorn EM, Genuth SM. Effect of dietery weight loss on sex steroid binding sex steroids, and gonadotropins in obese postmenopausal women. J Lab Clin Med 1979; 93:1004–1008.

    Google Scholar 

  129. Talbott SM, Cifuentes M, Dunn MG, Shapses SA. Energy restriction reduces bone density and biomechanical properties in aged female rats. J Nutr 2001; 131:2382–2387.

    PubMed  CAS  Google Scholar 

  130. Wang C, Zhang Y, Xiong Y, Lee CJ. Bone composition and strength of female rats subjected to different rates of weight reduction. Nutr Res 2000; 20:1613–1622.

    Article  CAS  Google Scholar 

  131. Heaney RP, Recker RR, Saville PD. Menopausal changes in calcium balance performance. J Lab Clin Med 1978; 92:953–963.

    PubMed  CAS  Google Scholar 

  132. O’Loughlin PD, Morris HA. Oestrogen deficiency impairs intestinal calcium absorption in the rat. J Physiol 1998; 511:313–322.

    Article  Google Scholar 

  133. Kalu DN, Orhii PB. Calcium absorption and bone loss in ovariectomized rats fed varying levels of dietary calcium. Calcif Tissue Int 1999; 65:73–77.

    Article  PubMed  CAS  Google Scholar 

  134. Yu BP, Chung HY. Stress resistance by caloric restriction for longevity. Ann N Y Acad Sci 2001; 928:39–47.

    Article  PubMed  CAS  Google Scholar 

  135. Harris SR, Brix AE, Broderson JR, Bunce OR. Chronic energy restriction versus energy cycling and mammary tumor promotion. Proc Soc Exp Biol Med 1995; 209:231–236.

    PubMed  CAS  Google Scholar 

  136. Arnaud S, Navidi M, Deftos L, et al. The calcium endocrine system of adolescent rhesus monkeys and controls before and after spaceflight. Am J Physiol Endocrinol Metab 2002; 282:E524–E521.

    Google Scholar 

  137. Grinspoon SK, Baum HB, Kim V, Coggins C, Klibanski A. Decreased bone formation and increased mineral dissolution during acute fasting in young women. J Clin Endocrinol Metab 1995; 80:3628–3633.

    Article  PubMed  CAS  Google Scholar 

  138. Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci 2002; 966:73–81.

    Article  PubMed  CAS  Google Scholar 

  139. Goldstein SA, Elwyn DH. The effects of injury and sepsis on fuel utilization, Annu Rev Nutr 1989; 9:445–473.

    Article  PubMed  CAS  Google Scholar 

  140. Gossain VV, Rao DS, Carella MJ, Divine G, Rovner DR. Bone mineral density (BMD) in obesity effect of weight loss. J Med 1999; 30:367–376.

    PubMed  CAS  Google Scholar 

  141. Compston JE, Laskey MA, Croucher PI, Coxon A, Kreitzman S. Effect of diet-induced weight loss on total body bone mass. Clin Sci (Lond) 1992; 82(4):429–432.

    CAS  Google Scholar 

  142. Stein F, Kolanowski J., Bemelmans S., Sesmecht P., Renal handling of calcium in fasting subjects: relation to ketosis and plasma ionized calcium level. Scand J Clin Lab Invest 1983; 43(suppl. 65):99–100.

    Google Scholar 

  143. Nishizawa Y, Koyama H, Shoji T, et al. Altered calcium homeostasis accompanying changes of regional bone mineral during a very-low-calorie diet. Am J Clin Nutr 1992; 56:265S–267S.

    PubMed  CAS  Google Scholar 

  144. Grinspoon SK, Baum HB, Kim V, Coggins C, Klibanski A. Decreased bone formation and increased mineral dissolution during acute fasting in young women. J Clin Endocrinol Metab 1995; 80:3628–3633.

    Article  PubMed  CAS  Google Scholar 

  145. Reddy ST, Wang CY, Sakhaee K, Brinkley L, Pak CY. Effect of low- carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am J Kidney Dis 2002; 40:265–274.

    Article  PubMed  CAS  Google Scholar 

  146. Willi SM, Oexmann MJ, Wright NM, Collop NA, Key LL Jr. The effects of a high-protein, low-fat, ketogenic diet on adolescents with morbid obesity: body composition, blood chemistries, and sleep abnormalities. Pediatrics 1998; 101:61–67.

    Article  PubMed  CAS  Google Scholar 

  147. New SA, New SA. The role of the skeleton in acid-base homeostasis. Proc Nutr Soc 2002; 61:151–164.

    Article  PubMed  CAS  Google Scholar 

  148. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC Jr. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N Engl J Med 1994; 330:1776–1781.

    Article  PubMed  CAS  Google Scholar 

  149. Maurer M, Riesen W, Muser J, Hulter HN, Krapf R. Neutralization of the acidogenic Western diet inhibits bone resorption independent of K-intake and reduces cortisol secretion in humans. Am J Physiol Renal Physiol 2003; 284:F32–F40.

    PubMed  CAS  Google Scholar 

  150. Bushinsky DA. Acid-base imbalance and the skeleton. Eur J Nutr 2001; 40:238–244.

    Article  PubMed  CAS  Google Scholar 

  151. Gotfredsen A, Westergren Hendel H, Andersen T. Influence of orlistat on bone turnover and body composition. Int J Obes Relat Metab Disord 2001; 25:1154–1160.

    Article  PubMed  CAS  Google Scholar 

  152. Raatz SK, Reck KP, Kwong CA, Swanson JE, Redmon JB, Bantle JP. Bone mineral density of individuals with type 2 diabetes mellitus after combination weight loss therapy using appetite suppressions and meal replacements. J Am Dietet Assoc 2002; 102:A10.

    Article  Google Scholar 

  153. Brolin RE. Gastric bypass. Surg Clin N Am 2001; 81(5):1077–1095.

    Article  PubMed  CAS  Google Scholar 

  154. MacDonald KG, Long SD, Swanson MS. The gastic bypass operation decreases progression and mortality of non-inulsin diabetes mellitus. J Gastroint Surg 1997; 1:213–220.

    Article  Google Scholar 

  155. Kral JG. Surgical treatment of obesity. In: Bray GA, Bouchard C, James WPT, eds. Handbook of Obesity. Marcel Dekker, New york, 1998, pp. 977–993.

    Google Scholar 

  156. Goode L, Brolin R, Chowdhury H, Shapses SA. Bone and gastric bypass surgery: effects of dietary calcium and vitamin D. Obesity Res 2003.

    Google Scholar 

  157. Borghi L, Schianchi T, Meschi T, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med 2002; 346:77–84.

    Article  PubMed  CAS  Google Scholar 

  158. Ricci TA, Heymsfield SB, Shapses SA. Calcium plus vitamin D supplementation prevents bone loss during weight loss. FASEB J 1999; 13:A869.

    Google Scholar 

  159. Rosen CJ, Morrison A, Zhou H, et al. Elderly women in northern New England exhibit seasonal changes in bone mineral density and calciotropic hormones. Bone Miner 1994; 25:83–92.

    Article  PubMed  CAS  Google Scholar 

  160. Rapuri PB, Kinyamu HK, Gallagher JC, Haynatzka V. Seasonal changes in calciotropic hormones, bone markers, and bone mineral density in elderly women. J Clin Endocrinol Metab 2002; 87:2024–2032.

    Article  PubMed  CAS  Google Scholar 

  161. Storm D, Eslin R, Porter ES, et al. Calcium supplementation prevents seasonal bone loss and changes in biochemical markers of bone turnover in elderly New England women: a randomized placebo-controlled trial. J Clin Endocrinol Metab 1998; 83:3817–3825.

    Article  PubMed  CAS  Google Scholar 

  162. Milliken LA, Going SB, Lohman TG. Effects of variations in regional composition on soft tissue measurements by dual-energy X-ray absorptiometry. Int J Obes Relat Metab Disord 1996; 20:677–682.

    PubMed  CAS  Google Scholar 

  163. Grampp S, Henk CB, Imhof H. CT and MR assessment of osteoporosis. Semin Ultrasound CT MR 1999; 20:2–9.

    Article  PubMed  CAS  Google Scholar 

  164. Fujita T. Volumetric and projective bone mineral density. J Muscoloskel Neuron Interact 2002; 2:302–305.

    CAS  Google Scholar 

  165. Cheng XG, Lowet G, Boonen S, Nicholson PH, Van der Perre G, Dequeker J. Prediction of vertebral and femoral strength in vitro by bone mineral density measured at different skeletal sites. J Bone Miner Res 1998 Sep; 13:1439–1443.

    Article  PubMed  CAS  Google Scholar 

  166. Meyer HE, Tverdal A, Selmer R. Weight variability, weight change and the incidence of hip fracture: a prospective study of 39,000 middle-aged Norwegians. Osteopor Int 1998; 8:373–378.

    Article  CAS  Google Scholar 

  167. Fogelholm M, Sievanen H, Heinonen A, et al. Association between weight cycling history and bone mineral density in premenopausal women. Osteopor Int 1997; 7:354–358.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shapses, S.A., Cifuentes, M. (2004). Body Weight/Composition and Weight Change. In: Holick, M.F., Dawson-Hughes, B. (eds) Nutrition and Bone Health. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-740-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-740-6_30

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-451-7

  • Online ISBN: 978-1-59259-740-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics