Skip to main content

Biophysical and Spectroscopic Methods for Monitoring Protein Misfolding and Amyloid Aggregation

  • Protocol
  • First Online:
Protein Misfolding Diseases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1873))

Abstract

Proteins exhibit a remarkable structural plasticity and may undergo conformational changes resulting in protein misfolding both in a biological context and upon perturbing physiopathological conditions. Such nonfunctional protein conformers, including misfolded states and aggregates, are often associated to protein folding diseases. Understanding the biology of protein folding diseases thus requires tools that allow the structural characterization of nonnative conformations of proteins and their interconversions. Here we present detailed procedures to monitor protein conformational changes and aggregation based on spectroscopic and biophysical methods that include circular dichroism, ATR-Fourier-transformed infrared spectroscopy, fluorescence spectroscopy and dynamic light scattering. To illustrate the application of these methods we report to our previous studies on misfolding, aggregation and amyloid fibril formation by superoxide dismutase 1 (SOD1), a protein whose toxic deposition is implicated in the neurodegenerative disease amyotrophic lateral sclerosis (ALS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

FTIR:

Fourier-transformed infrared spectroscopy

DLS:

Dynamic light scattering

SOD1:

Superoxide dismutase 1

1,8-ANS:

8-Anilinonaphthalene-1-sulfonic acid

ThT:

Thioflavin T

References

  1. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344(22):1688–1700

    Article  CAS  PubMed  Google Scholar 

  2. Nordlund A, Leinartaite L, Saraboji K, Aisenbrey C, Grobner G, Zetterstrom P, Danielsson J, Logan DT, Oliveberg M (2009) Functional features cause misfolding of the ALS-provoking enzyme SOD1. Proc Natl Acad Sci U S A 106(24):9667–9672. https://doi.org/10.1073/pnas.0812046106

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cristovao JS, Santos R, Gomes CM (2016) Metals and neuronal metal binding proteins implicated in Alzheimer's disease. Oxidative Med Cell Longev 2016:9812178. https://doi.org/10.1155/2016/9812178

    Article  CAS  Google Scholar 

  4. Leal SS, Botelho HM, Gomes CM (2012) Metal ions as modulators of protein conformation and misfolding in neurodegeneration. Coordin Chem Rev 256(19–20):2253–2270. https://doi.org/10.1016/j.ccr.2012.04.004

    Article  CAS  Google Scholar 

  5. Leal SS, Cardoso I, Valentine JS, Gomes CM (2013) Calcium ions promote superoxide dismutase 1 (SOD1) aggregation into non-fibrillar amyloid: a link to toxic effects of calcium overload in amyotrophic lateral sclerosis (ALS)? J Biol Chem 288(35):25219–25228. https://doi.org/10.1074/jbc.M113.470740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Leal SS, Cristovao JS, Biesemeier A, Cardoso I, Gomes CM (2015) Aberrant zinc binding to immature conformers of metal-free copper-zinc superoxide dismutase triggers amorphous aggregation. Metallomics 7(2):333–346. https://doi.org/10.1039/c4mt00278d

    Article  CAS  PubMed  Google Scholar 

  7. Leal SS, Gomes CM (2015) Calcium dysregulation links ALS defective proteins and motor neuron selective vulnerability. Front Cell Neurosci 9:225. https://doi.org/10.3389/fncel.2015.00225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Estacio SG, Leal SS, Cristovao JS, Faisca PF, Gomes CM (2015) Calcium binding to gatekeeper residues flanking aggregation-prone segments underlies non-fibrillar amyloid traits in superoxide dismutase 1 (SOD1). Biochim Biophys Acta 1854(2):118–126. https://doi.org/10.1016/j.bbapap.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  9. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890. https://doi.org/10.1038/nprot.2006.202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Henriques BJ, Lucas TG, Rodrigues JV, Frederiksen JH, Teixeira MS, Tiranti V, Bross P, Gomes CM (2014) Ethylmalonic encephalopathy ETHE1 R163W/R163Q mutations alter protein stability and redox properties of the iron Centre. PLoS One 9(9):e107157. https://doi.org/10.1371/journal.pone.0107157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kelly SM, Price NC (2006) Circular dichroism to study protein interactions. Curr Protoc Protein Sci. Chapter 20:Unit 20 10. doi:https://doi.org/10.1002/0471140864.ps2010s46

  12. Clarke DT (2012) Circular dichroism in protein folding studies. Curr Protoc Protein Sci. Chapter 28:Unit 28 23. doi:https://doi.org/10.1002/0471140864.ps2803s70

  13. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta 1751(2):119–139. https://doi.org/10.1016/j.bbapap.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  14. Radko SP, Khmeleva SA, Suprun EV, Kozin SA, Bodoev NV, Makarov AA, Archakov AI, Shumyantseva VV (2015) Physico-chemical methods for studying amyloid-beta aggregation. Biochem Mosc Suppl S 9(3):258–274. https://doi.org/10.1134/S1990750815030075

    Article  Google Scholar 

  15. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767(9):1073–1101. https://doi.org/10.1016/j.bbabio.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  16. Sarroukh R, Goormaghtigh E, Ruysschaert JM, Raussens V (2013) ATR-FTIR: a "rejuvenated" tool to investigate amyloid proteins. Biochim Biophys Acta 1828(10):2328–2338. https://doi.org/10.1016/j.bbamem.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  17. Ladokhin AS (2006) Fluorescence spectroscopy in peptide and protein analysis. In: Encyclopedia of analytical chemistry. John Wiley & Sons, Ltd, Hoboken, NJ. https://doi.org/10.1002/9780470027318.a1611

    Chapter  Google Scholar 

  18. Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25(7):1487–1499. https://doi.org/10.1007/s11095-007-9516-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Leal SS, Gomes CM (2007) Studies of the molten globule state of ferredoxin: structural characterization and implications on protein folding and iron-sulfur center assembly. Proteins 68(3):606–616. https://doi.org/10.1002/prot.21448

    Article  CAS  PubMed  Google Scholar 

  20. Henriques BJ, Saraiva LM, Gomes CM (2005) Probing the mechanism of rubredoxin thermal unfolding in the absence of salt bridges by temperature jump experiments. Biochem Biophys Res Commun 333(3):839–844. https://doi.org/10.1016/j.bbrc.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  21. Hagmeyer S, Cristovao JS, Mulvihill JJE, Boeckers TM, Gomes CM, Grabrucker AM (2017) Zinc binding to S100B affords regulation of trace metal homeostasis and excitotoxicity in the brain. Front Mol Neurosci 10:456. https://doi.org/10.3389/fnmol.2017.00456

    Article  PubMed  Google Scholar 

  22. Biancalana M, Koide S (2010) Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804(7):1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cristovao JS, Leal SS, Cardoso I, Gomes CM (2013) Small molecules present in the cerebrospinal fluid metabolome influence superoxide dismutase 1 aggregation. Int J Mol Sci 14(9):19128–19145. https://doi.org/10.3390/ijms140919128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Botelho HM, Leal SS, Cardoso I, Yanamandra K, Morozova-Roche LA, Fritz G, Gomes CM (2012) S100A6 amyloid fibril formation is calcium-modulated and enhances superoxide dismutase-1 (SOD1) aggregation. J Biol Chem 287(50):42233–42242. https://doi.org/10.1074/jbc.M112.396416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matos AM, Cristovao JS, Yashunsky DV, Nifantiev NE, Viana AS, Gomes CM, Rauter AP (2017) Synthesis and effects of flavonoid structure variation on amyloid-beta aggregation. Pure Appl Chem 89(9):1305–1320. https://doi.org/10.1515/pac-2017-0201

    Article  CAS  Google Scholar 

  26. Klingstedt T, Aslund A, Simon RA, Johansson LBG, Mason JJ, Nystrom S, Hammarstrom P, Nilsson KPR (2011) Synthesis of a library of oligothiophenes and their utilization as fluorescent ligands for spectral assignment of protein aggregates. Org Biomol Chem 9(24):8356–8370. https://doi.org/10.1039/c1ob05637a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Younan ND, Viles JH (2015) A comparison of three fluorophores for the detection of amyloid fibers and prefibrillar oligomeric assemblies. ThT (Thioflavin T); ANS (1-Anilinonaphthalene-8-sulfonic acid); and bisANS (4,4′-Dianilino-1,1′-binaphthyl-5,5′-disulfonic acid). Biochemistry 54(28):4297–4306. https://doi.org/10.1021/acs.biochem.5b00309

    Article  CAS  PubMed  Google Scholar 

  28. Royer CA (2006) Probing protein folding and conformational transitions with fluorescence. Chem Rev 106(5):1769–1784. https://doi.org/10.1021/cr0404390

    Article  CAS  PubMed  Google Scholar 

  29. Hassan PA, Rana S, Verma G (2015) Making sense of Brownian motion: colloid characterization by dynamic light scattering. Langmuir 31(1):3–12. https://doi.org/10.1021/la501789z

    Article  CAS  PubMed  Google Scholar 

  30. Lorber B, Fischer F, Bailly M, Roy H, Kern D (2012) Protein analysis by dynamic light scattering: methods and techniques for students. Biochemistry and molecular biology education : a bimonthly publication of the international union of. Biochem Mol Biol 40(6):372–382. https://doi.org/10.1002/bmb.20644

    Article  CAS  Google Scholar 

  31. Khodabandehloo A, Chen DD (2017) Particle sizing methods for the detection of protein aggregates in biopharmaceuticals. Bioanalysis 9(3):313–326. https://doi.org/10.4155/bio-2016-0269

    Article  CAS  PubMed  Google Scholar 

  32. den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, Seidl A, Hainzl O, Jiskoot W (2011) Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res 28(4):920–933. https://doi.org/10.1007/s11095-010-0297-1

    Article  CAS  Google Scholar 

  33. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810. https://doi.org/10.1007/s11095-010-0073-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahl IM, Lindberg MJ, Tibell LA (2004) Coexpression of yeast copper chaperone (yCCS) and CuZn-superoxide dismutases in Escherichia coli yields protein with high copper contents. Protein Expr Purif 37(2):311–319. https://doi.org/10.1016/j.pep.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  35. Sabel CE, Neureuther JM, Siemann S (2010) A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using Zincon. Anal Biochem 397(2):218–226. https://doi.org/10.1016/j.ab.2009.10.037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Fundação para a Ciência e Tecnologia (FCT/MCTES, Portugal) through fellowships to J.S.C. (SFRH/BD/101171/2014) and B.J.H. (SFRH/BPD/74475/2010), and grant PTDC/BBB-BQB/5366/2014 (to B.J.H.) and PTDC/NEU-NMC/2138/2014 (to C.M.G.). The Gomes laboratory is partly supported by grant UID/MULTI/04046/2013 from FCT/MCTES/PIDDAC (to BioISI). Bial Foundation is acknowledged through grant PT/FB/BL-2014-343 (to CMG). Joana S. Cristóvão and Bárbara J. Henriques contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio M. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cristóvão, J.S., Henriques, B.J., Gomes, C.M. (2019). Biophysical and Spectroscopic Methods for Monitoring Protein Misfolding and Amyloid Aggregation. In: Gomes, C. (eds) Protein Misfolding Diseases. Methods in Molecular Biology, vol 1873. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8820-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8820-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8819-8

  • Online ISBN: 978-1-4939-8820-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics