Skip to main content

Application of MNase-Seq in the Global Mapping of Nucleosome Positioning in Plants

  • Protocol
  • First Online:
Plant Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1830))

Abstract

The precise positioning of nucleosomes along the underlying DNA is critical for a variety of biological processes, especially in regulating transcription. The interplay between nucleosomes and transcription factors for accessing the underlying DNA sequences is one of the key determinants that affect transcriptional regulation. Moreover, nucleosomes with various packing statuses confer distinct functions in regulating gene expressions in response to various internal or external signals. Therefore, global mapping of nucleosome positions is one informative way to elucidate the relationship between patterns of nucleosome positioning/occupancy and transcriptional regulations. MNase digestion coupled with high-throughput sequencing (MNase-seq) has been utilized widely for global mapping of nucleosome positioning in eukaryotes that have a sequenced genome. We have developed a robust MNase-seq procedure in plants. It mainly includes plant nuclei isolation, treatment of purified nuclei with MNase, gel recovery of MNase-trimmed mononucleosomal DNA with an approximate size of 150 bp, MNase-seq library preparation followed by Illumina sequencing, and data analysis. MNase-seq has already been successfully applied to identify genome-wide nucleosome positioning in model plants, rice, and Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rodriguez J, Lee L, Lynch B, Tsukiyama T (2016) Nucleosome occupancy as a novel chromatin parameter for replication origin functions. Genome Res 27(2):269–277. https://doi.org/10.1101/gr.209940.116

    Article  PubMed  CAS  Google Scholar 

  2. Zhang L, Ma H, Pugh BF (2011) Stable and dynamic nucleosome states during a meiotic developmental process. Genome Res 21(6):875–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N (2010) High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20(1):90–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ioshikhes I, Hosid S, Pugh BF (2011) Variety of genomic DNA patterns for nucleosome positioning. Genome Res 21(11):1863–1871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Struhl K, Segal E (2013) Determinants of nucleosome positioning. Nat Struct Mol Biol 20(3):267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Segal E, Fondufemittendorf Y, Chen L, Thåström AC, Field Y, Moore IK, Wang JPZ, Widom J (2006) A genomic code for nucleosome positioning. Nature 442(7104):772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu MJ, Seddon AE, Tsai ZT, Major IT, Floer M, Howe GA, Shiu SH (2015) Determinants of nucleosome positioning and their influence on plant gene expression. Genome Res 25(8):1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K (2009) Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 19(1):24–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li M, Olufemi L, Hada A, Hall MA (2015) Dynamic regulation of transcription factors by nucleosome remodeling. elife 4(2):76a

    Google Scholar 

  10. Charoensawan V, Janga SC, Bulyk ML, Babu MM, Teichmann SA (2012) DNA sequence preferences of transcriptional activators correlate more strongly than repressors with nucleosomes. Mol Cell 47(2):183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nie Y, Cheng X, Chen J, Sun X (2014) Nucleosome organization in the vicinity of transcription factor binding sites in the human genome. BMC Genomics 15(1):493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teichmann SA, Wigge PA, Charoensawan V (2012) Uncovering the interplay between DNA sequence preferences of transcription factors and nucleosomes. Cell Cycle 11(24):4487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barozzi I, Simonatto M, Bonifacio S, Yang L, Rohs R, Ghisletti S, Natoli G (2014) Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers. Mol Cell 54(5):844–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mcknight JN, Tsukiyama T, Bowman GD (2016) Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler. Genome Res 26(5):693–704. https://doi.org/10.1101/gr.199919.115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jeffers TE, Lieb JD (2017) Nucleosome fragility is associated with future transcriptional response to developmental cues and stress in C. elegans. Genome Res 27(1):75–86. https://doi.org/10.1101/gr.208173.116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Qiu H, Chereji RV, Hu C, Cole HA, Rawal Y, Clark DJ, Hinnebusch AG (2016) Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation. Genome Res 26(2):211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719

    Article  CAS  PubMed  Google Scholar 

  18. Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309(5734):626–630

    Article  CAS  PubMed  Google Scholar 

  19. Mavrich TN, Jiang C, Ioshikhes IP, Li X, Venters BJ, Zanton SJ, Tomsho LP, Qi J, Glaser RL, Schuster SC (2008) Nucleosome organization in the Drosophila genome. Nature 453(7193):358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39(10):1235–1244

    Article  CAS  PubMed  Google Scholar 

  21. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132(5):887–898

    Article  CAS  PubMed  Google Scholar 

  22. Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, Mckernan K (2008) A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18(7):1051–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lantermann AB, Straub T, Strålfors A, Yuan GC, Ekwall K, Korber P (2010) Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17(2):251–257

    Article  CAS  PubMed  Google Scholar 

  24. Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ (2010) The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8(7):e1000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A (2011) Determinants of nucleosome organization in primary human cells. Nature 474(7352):516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vera DL, Madzima TF, Labonne JD, Alam MP, Hoffman GG, Girimurugan SB, Zhang J, Mcginnis KM, Dennis JH, Bass HW (2014) Differential nuclease sensitivity profiling of chromatin reveals biochemical footprints coupled to gene expression and functional DNA elements in maize. Plant Cell 26(10):3883–3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu Y, Zhang W, Jiang J (2014) Genome-wide nucleosome positioning is orchestrated by genomic regions associated with DNase I hypersensitivity in rice. PLoS Genet 10(5):e1004378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang J, Zhang T, Zhang W (2015) Genome-wide nucleosome occupancy and positioning and their impact on gene expression and evolution in plants. Plant Physiol 168(4):1406–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, Hetzel J, Kuo F, Jin K, Cokus SJ (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466(7304):388–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhong J, Luo K, Winter PS, Crawford GE, Iversen ES, Hartemink AJ (2016) Mapping nucleosome positions using DNase-seq. Genome Res 26(3):351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song JS, Liu X, Liu XS, He X (2008) A high-resolution map of nucleosome positioning on a fission yeast centromere. Genome Res 18(7):1064–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang T, Talbert PB, Zhang W, Wu Y, Yang Z, Henikoff JG, Henikoff S, Jiang J (2013) The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proc Natl Acad Sci U S A 110(50):E4875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Flores O, Orozco M (2011) nucleR: a package for non-parametric nucleosome positioning. Bioinformatics 27(15):2149–2150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kevin Coe for editing the manuscript. This work was supported by grants from the National Natural Science Foundation of China for W.Z. (31571579 and 31371239), an “Innovation and Enterprise Scholar” of Jiangsu Province for WZ, and the National Science Foundation for J.J. (MCB-1412948).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, W., Jiang, J. (2018). Application of MNase-Seq in the Global Mapping of Nucleosome Positioning in Plants. In: Yamaguchi, N. (eds) Plant Transcription Factors. Methods in Molecular Biology, vol 1830. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8657-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8657-6_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8656-9

  • Online ISBN: 978-1-4939-8657-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics