Skip to main content

Genome-Wide Identification of Open Chromatin in Plants Using MH-Seq

  • Protocol
  • First Online:
Transcription Factor Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2594))

Abstract

Functional cis-regulatory elements (CREs) act as precise transcriptional switches for fine-tuning gene transcription. Identification of CREs is critical for understanding regulatory mechanisms of gene expression associated with various biological processes in eukaryotes. It is well known that CREs reside in open chromatin that exhibits hypersensitivity to enzyme cleavage and physical shearing. Currently, high-throughput methodologies, such as DNase-seq, ATAC-seq, and FAIRE-seq, have been widely applied in mapping open chromatin in various eukaryotic genomes. More recently, differential MNase (micrococcal nuclease) treatment has been successfully employed to map open chromatin in addition to profiling nucleosome landscape in both mammalian and plant species. We have developed a MNase hypersensitivity sequencing (MH-seq) technique in plants. The MH-seq procedure includes plant nuclei fixation and purification, differential treatments of purified nuclei with MNase, specific recovery of MNase-trimmed small DNA fragments within 20~100 bp in length, and MH-seq library construction followed by Illumina sequencing and data analysis. MH-seq has been successfully applied for global identification of open chromatin in both Arabidopsis thaliana and maize. It has been proven to be an attractive alternative for profiling open chromatin. Thus, MH-seq is expected to be valuable in probing chromatin accessibility on a genome-wide scale for other plants with sequenced genomes. Moreover, MHS data allow to implement footprinting assays to unveil binding sites of transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khan ZH, Kumar B, Dhatterwal P, Mehrotra S, Mehrotra R (2017) Transcriptional regulatory network of cis-regulatory elements (Cres) and transcription factors (Tfs) in plants during abiotic stress. Int J Plant Biol Res 5:1064

    Google Scholar 

  2. Klemm SL, Shipony Z, Greenleaf WJ (2019) Chromatin accessibility and the regulatory epigenome. Nat Rev Genet 20:207–220

    Article  CAS  Google Scholar 

  3. Tsompana M, Buck MJ (2014) Chromatin accessibility: a window into the genome. Epigenet Chromatin 7:33

    Article  Google Scholar 

  4. Zhang W, Zhang T, Wu Y, Jiang J (2014) Open chromatin in plant genomes. Cytogenet Genome Res 143:18–27

    Article  CAS  Google Scholar 

  5. Mieczkowski J, Cook A, Bowman SK, Mueller B, Alver BH, Kundu S, Deaton AM, Urban JA, Larschan E, Park PJ et al (2016) MNase titration reveals differences between nucleosome occupancy and chromatin accessibility. Nat Commun 7:11485

    Article  CAS  Google Scholar 

  6. Mueller B, Mieczkowski J, Kundu S, Wang P, Sadreyev R, Tolstorukov MY, Kingston RE (2017) Widespread changes in nucleosome accessibility without changes in nucleosome occupancy during a rapid transcriptional induction. Genes Dev 31:451–462

    Article  CAS  Google Scholar 

  7. Ishii H, Kadonaga JT, Ren B (2015) MPE-seq, a new method for the genome-wide analysis of chromatin structure. Proc Natl Acad Sci U S A 112:E3457–E3465

    Article  CAS  Google Scholar 

  8. Voong LN, Xi L, Sebeson AC, Xiong B, Wang JP, Wang X (2016) Insights into nucleosome organization in mouse embryonic stem cells through chemical mapping. Cell 167:1555–1570

    Article  CAS  Google Scholar 

  9. Narlikar L, Ovcharenko I (2009) Identifying regulatory elements in eukaryotic genomes. Brief Funct Genomic Proteomic 8:215–230

    Article  CAS  Google Scholar 

  10. Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K (2009) Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 19:24–32

    Article  CAS  Google Scholar 

  11. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316:1497–1502

    Article  CAS  Google Scholar 

  12. Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B (2005) A high-resolution map of active promoters in the human genome. Nature 436:876–880

    Article  CAS  Google Scholar 

  13. Gheorghe M, Sandve GK, Khan A, Cheneby J, Ballester B, Mathelier A (2019) A map of direct TF-DNA interactions in the human genome. Nucleic Acids Res 47:e21

    Article  Google Scholar 

  14. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322

    Article  CAS  Google Scholar 

  15. Zhang W, Wu Y, Schnable JC, Zeng Z, Freeling M, Crawford GE, Jiang J (2012) High-resolution mapping of open chromatin in the rice genome. Genome Res 22:151–162

    Article  CAS  Google Scholar 

  16. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, Sheffield NC, Stergachis AB, Wang H, Vernot B et al (2012) The accessible chromatin landscape of the human genome. Nature 489:75–82

    Article  CAS  Google Scholar 

  17. McKay DJ (2019) Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to identify functional regulatory DNA in insect genomes. Methods Mol Biol 1858:89–97

    Article  CAS  Google Scholar 

  18. Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES (2016) Open chromatin reveals the functional maize genome. Proc Natl Acad Sci U S A 113:E3177–E3184

    Article  CAS  Google Scholar 

  19. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    Article  CAS  Google Scholar 

  20. Lu Z, Hofmeister BT, Vollmers C, DuBois RM, Schmitz RJ (2017) Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res 45:e41

    Article  Google Scholar 

  21. Nordstrom KJV, Schmidt F, Gasparoni N, Salhab A, Gasparoni G, Kattler K, Muller F, Ebert P, DEEP Consortium et al (2019) Unique and assay specific features of NOMe-, ATAC- and DNase I-seq data. Nucleic Acids Res 47:10580–10596

    Article  Google Scholar 

  22. Klein DC, Hainer SJ (2020) Genomic methods in profiling DNA accessibility and factor localization. Chromosom Res 28:69–85

    Article  CAS  Google Scholar 

  23. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898

    Article  CAS  Google Scholar 

  24. Voong LN, Xi L, Wang JP, Wang X (2017) Genome-wide mapping of the nucleosome landscape by micrococcal nuclease and chemical mapping. Trends Genet 33:495–507

    Article  CAS  Google Scholar 

  25. Zhang W, Jiang J (2018) Application of MNase-Seq in the global mapping of nucleosome positioning in plants. Methods Mol Biol 1830:353–366

    Article  CAS  Google Scholar 

  26. Lai B, Gao W, Cui K, Xie W, Tang Q, Jin W, Hu G, Ni B, Zhao K (2018) Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature 562:281–285

    Article  CAS  Google Scholar 

  27. Zhao H, Zhang W, Zhang T, Lin Y, Hu Y, Fang C, Jiang J (2020) Genome-wide MNase hypersensitivity assay unveils distinct classes of open chromatin associated with H3K27me3 and DNA methylation in Arabidopsis thaliana. Genome Biol 21:24

    Article  Google Scholar 

  28. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  29. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  30. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  Google Scholar 

  31. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  CAS  Google Scholar 

  32. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Bioinformatics Center in Nanjing Agricultural University for providing facilities to assist sequencing data analysis. This work was supported by grants from the National Natural Science Foundation of China for W.Z. (32070561, 31571579) and the Fundamental Research Funds for the Central Universities (KYYJ201808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, A., Li, X., Zhao, H., Jiang, J., Zhang, W. (2023). Genome-Wide Identification of Open Chromatin in Plants Using MH-Seq. In: Song, Q., Tao, Z. (eds) Transcription Factor Regulatory Networks. Methods in Molecular Biology, vol 2594. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2815-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2815-7_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2814-0

  • Online ISBN: 978-1-0716-2815-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics