Skip to main content

Use of Direct Current Electroretinography for Analysis of Retinal Pigment Epithelium Function in Mouse Models

  • Protocol
  • First Online:
Mouse Retinal Phenotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1753))

Abstract

A monolayer of pigmented epithelial cells, the retinal pigment epithelium (RPE), supports photoreceptor function in many ways. Consistent with these roles, RPE dysfunction underlies a number of hereditary retinal disorders. To monitor RPE function in vivo models for these conditions, we adapted an electroretinographic (ERG) technique based on direct current amplification (DC-ERG). This chapter describes the main features of this approach and its application to mouse models involving the RPE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85(3):845–881

    Article  CAS  PubMed  Google Scholar 

  2. Kikawada N (1968) Variations in the corneo-retinal standing potential of the vertebrate eye during light and dark adaptations. Jpn J Physiol 18(6):687–702

    Article  CAS  PubMed  Google Scholar 

  3. Peachey NS, Stanton JB, Marmorstein AD (2002) Noninvasive recording and response characteristics of the rat dc-electroretinogram. Vis Neurosci 19(6):693–701

    Article  PubMed  Google Scholar 

  4. Wu J, Peachey NS, Marmorstein AD (2004) Light-evoked responses of the mouse retinal pigment epithelium. J Neurophysiol 91(3):1134–1142

    Article  PubMed  Google Scholar 

  5. Robson JG, Frishman LJ (2014) The rod-driven a-wave of the dark-adapted mammalian electroretinogram. Prog Retin Eye Res 39:1–22

    Article  PubMed  Google Scholar 

  6. Penn RD, Hagins WA (1969) Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 223(5202):201–204

    Article  CAS  PubMed  Google Scholar 

  7. Hagins WA, Penn RD, Yoshikami S (1970) Dark current and photocurrent in retinal rods. Biophys J 10(5):380–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robson JG, Frishman LJ (1995) Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci 12(5):837–850

    Article  CAS  PubMed  Google Scholar 

  9. Tian N, Slaughter MM (1995) Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram. Vis Res 35(10):1359–1364

    Article  CAS  PubMed  Google Scholar 

  10. Robson JG, Frishman LJ (1996) Photoreceptor and bipolar cell contributions to the cat electroretinogram: a kinetic model for the early part of the flash response. J Opt Soc Am A Opt Image Sci Vis 13(3):613–622

    Article  CAS  PubMed  Google Scholar 

  11. Robson JG, Maeda H, Saszik SM, Frishman LJ (2004) In vivo studies of signaling in rod pathways of the mouse using the electroretinogram. Vis Res 44(28):3253–3268

    Article  CAS  PubMed  Google Scholar 

  12. Akopian A, Witkovsky P (2002) Calcium and retinal function. Mol Neurobiol 25(2):113–132

    Article  CAS  PubMed  Google Scholar 

  13. Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, Newman EA (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci 20(15):5733–5740

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Krapivinsky G, Medina I, Eng L, Krapivinsky L, Yang Y, Clapham DE (1998) A novel inward rectifier K+ channel with unique pore properties. Neuron 20(5):995–1005

    Article  CAS  PubMed  Google Scholar 

  15. Shimura M, Yuan Y, Chang JT, Zhang S, Campochiaro PA, Zack DJ, Hughes BA (2001) Expression and permeation properties of the K(+) channel Kir7.1 in the retinal pigment epithelium. J Physiol 531(Pt 2):329–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan Y, Shimura M, Hughes BA (2003) Regulation of inwardly rectifying K+ channels in retinal pigment epithelial cells by intracellular pH. J Physiol 549(Pt 2):429–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang D, Pan A, Swaminathan A, Kumar G, Hughes BA (2003) Expression and localization of the inwardly rectifying potassium channel Kir7.1 in native bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci 44(7):3178–3185

    Article  PubMed  Google Scholar 

  18. Yang D, Swaminathan A, Zhang X, Hughes BA (2008) Expression of Kir7.1 and a novel Kir7.1 splice variant in native human retinal pigment epithelium. Exp Eye Res 86(1):81–91

    Article  CAS  PubMed  Google Scholar 

  19. Hughes BA, Swaminathan A (2008) Modulation of the Kir7.1 potassium channel by extracellular and intracellular pH. Am J Physiol Cell Physiol 294(2):C423–C431

    Article  CAS  PubMed  Google Scholar 

  20. Pattnaik BR, Hughes BA (2009) Regulation of Kir channels in bovine retinal pigment epithelial cells by phosphatidylinositol 4,5-bisphosphate. Am J Physiol Cell Physiol 297(4):C1001–C1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang W, Zhang X, Wang H, Sharma AK, Edwards AO, Hughes BA (2013) Characterization of the R162W Kir7.1 mutation associated with snowflake vitreoretinopathy. Am J Physiol Cell Physiol 304(5):C440–C449

    Article  CAS  PubMed  Google Scholar 

  22. Wu J, Marmorstein AD, Kofuji P, Peachey NS (2004) Contribution of Kir4.1 to the mouse electroretinogram. Mol Vis 10:650–654

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu M, Zou W, Peachey NS, McIntyre TM, Liu J (2012) A novel role of complement in retinal degeneration. Invest Ophthalmol Vis Sci 53(12):7684–7692

    Article  PubMed  PubMed Central  Google Scholar 

  24. Möller A, Eysteinsson T, Steingrı́msson E (2004) Electroretinographic assessment of retinal function in microphthalmia mutant mice. Exp Eye Res 78(4):837–848

    Google Scholar 

  25. Linsenmeier RA, Steinberg RH (1984) Delayed basal hyperpolarization of cat retinal pigment epithelium and its relation to the fast oscillation of the DC electroretinogram. J Gen Physiol 83(2):213–232

    Article  CAS  PubMed  Google Scholar 

  26. Griff ER, Steinberg RH (1984) Changes in apical [K+] produce delayed basal membrane responses of the retinal pigment epithelium in the gecko. J Gen Physiol 83(2):193–211

    Article  CAS  PubMed  Google Scholar 

  27. Steinberg RH (1985) Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol 60(4):327–346

    Article  CAS  PubMed  Google Scholar 

  28. Gallemore RP, Steinberg RH (1989) Effects of DIDS on the chick retinal pigment epithelium. II Mechanism of the light peak and other responses originating at the basal membrane. J Neurosci 9(6):1977–1984

    CAS  PubMed  Google Scholar 

  29. Gallemore RP, Steinberg RH (1993) Light-evoked modulation of basolateral membrane cl- conductance in chick retinal pigment epithelium: the light peak and fast oscillation. J Neurophysiol 70(4):1669–1680

    Article  CAS  PubMed  Google Scholar 

  30. Linsenmeier RA, Steinberg RH (1982) Origin and sensitivity of the light peak in the intact cat eye. J Physiol 331:653–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gallemore RP, Griff ER, Steinberg RH (1988) Evidence in support of a photoreceptoral origin for the "light-peak substance". Invest Ophthalmol Vis Sci 29(4):566–571

    CAS  PubMed  Google Scholar 

  32. Peterson WM, Meggyesy C, Yu K, Miller SS (1997) Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium. J Neurosci 17(7):2324–2337

    CAS  PubMed  Google Scholar 

  33. Marmorstein LY, Wu J, McLaughlin P, Yocom J, Karl MO, Neussert R, Wimmers S, Stanton JB, Gregg RG, Strauss O, Peachey NS, Marmorstein AD (2006) The light peak of the electroretinogram is dependent on voltage-gated calcium channels and antagonized by bestrophin (best-1). J Gen Physiol 127(5):577–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu J, Marmorstein AD, Striessnig J, Peachey NS (2007) Voltage-dependent calcium channel CaV1.3 subunits regulate the light peak of the electroretinogram. J Neurophysiol 97(5):3731–3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deutman AF (1969) Electro-oculography in families with vitelliform dystrophy of the fovea. Detection of the carrier state. Arch Ophthalmol 81(3):305–316

    Article  CAS  PubMed  Google Scholar 

  36. Cross HE, Bard L (1974) Electro-oculography in Best's macular dystrophy. Am J Ophthalmol 77(1):46–50

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Stanton JB, Wu J, Yu K, Hartzell HC, Peachey NS, Marmorstein LY, Marmorstein AD (2010) Suppression of Ca2+ signaling in a mouse model of best disease. Hum Mol Genet 19(6):1108–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edwards MM, Marin de Evsikova C, Collin GB, Gifford E, Wu J, Hicks WL, Whiting C, Varvel NH, Maphis N, Lamb BT, Naggert JK, Nishina PM, Peachey NS (2010) Photoreceptor degeneration, azoospermia, leukoencephalopathy, and abnormal RPE cell function in mice expressing an early stop mutation in CLCN2. Invest Ophthalmol Vis Sci 51(6):3264–3272

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ganguly P, Alam SF (2015) Role of homocysteine in the development of cardiovascular disease. Nutr J 14(6)

    Google Scholar 

  40. Diaz-Arrastia R (2000) Homocysteine and neurologic disease. Arch Neurol 57(10):1422–1427

    Article  CAS  PubMed  Google Scholar 

  41. Yu M, Sturgill-Short G, Ganapathy P, Tawfik A, Peachey NS, Smith SB (2012) Age-related changes in visual function in cystathionine-beta-synthase mutant mice, a model of hyperhomocysteinemia. Exp Eye Res 96(1):124–131

    Article  CAS  PubMed  Google Scholar 

  42. Samuels IS, Bell BA, Pereira A, Saxon J, Peachey NS (2015) Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes. J Neurophysiol 113(4):1085–1099

    Article  CAS  PubMed  Google Scholar 

  43. Tarchick MJ, Bassiri P, Rohwer RM, Samuels IS (2016) Early functional and morphologic abnormalities in the diabetic Nyxnob mouse retina. Invest Ophthalmol Vis Sci 57(7):3496–3508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bearse MA Jr, Ozawa GY (2014) Multifocal electroretinography in diabetic retinopathy and diabetic macular edema. Curr Diab Rep 14(9):526

    Article  PubMed  Google Scholar 

  45. Samuels IS, Bell BA, Sturgill-Short G, Ebke LA, Rayborn M, Shi L, Nishina PM, Peachey NS (2013) Myosin 6 is required for iris development and normal function of the outer retina. Invest Ophthalmol Vis Sci 54(12):7223–7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Collin GB, Hubmacher D, Charette JR, Hicks WL, Stone L, Yu M, Naggert JK, Krebs MP, Peachey NS, Apte SS, Nishina PM (2015) Disruption of murine Adamtsl4 results in zonular fiber detachment from the lens and in retinal pigment epithelium dedifferentiation. Hum Mol Genet 24(24):6958–6974

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Saksens NT, Krebs MP, Schoenmaker-Koller FE, Hicks W, Yu M, Shi L, Rowe L, Collin GB, Charette JR, Letteboer SJ, Neveling K, van Moorsel TW, Abu-Ltaif S, De Baere E, Walraedt S, Banfi S, Simonelli F, Cremers FP, Boon CJ, Roepman R, Leroy BP, Peachey NS, Hoyng CB, Nishina PM, den Hollander AI (2016) Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity. Nat Genet 48(2):144–151

    Article  CAS  PubMed  Google Scholar 

  48. Patil H, Saha A, Senda E, Cho KI, Haque M, Yu M, Qiu S, Yoon D, Hao Y, Peachey NS, Ferreira PA (2014) Selective impairment of a subset of ran-GTP-binding domains of ran-binding protein 2 (Ranbp2) suffices to recapitulate the degeneration of the retinal pigment epithelium (RPE) triggered by Ranbp2 ablation. J Biol Chem 289(43):29767–29789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ridder W 3rd, Nusinowitz S, Heckenlively JR (2002) Causes of cataract development in anesthetized mice. Exp Eye Res 75(3):365–370

    Article  CAS  PubMed  Google Scholar 

  50. Samuels IS, Sturgill GM, Grossman GH, Rayborn ME, Hollyfield JG, Peachey NS (2010) Light-Evoked Responses of the Retinal Pigment Epithelium: Changes Accompanying Photoreceptor Loss in the Mouse. J Neurophysiol 104(1):391–402

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minzhong Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, M., Peachey, N.S. (2018). Use of Direct Current Electroretinography for Analysis of Retinal Pigment Epithelium Function in Mouse Models. In: Tanimoto, N. (eds) Mouse Retinal Phenotyping. Methods in Molecular Biology, vol 1753. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7720-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7720-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7719-2

  • Online ISBN: 978-1-4939-7720-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics